
Research Article
Nonsingular Integral Sliding Mode Attitude Control for
Rigid-Flexible Coupled Spacecraft with High-Inertia
Rotating Appendages

Gaowang Zhang, Xueqin Chen , Ruichen Xi, and Huayi Li

Research Center of the Satellite Technology, Harbin Institute of Technology, Harbin 150080, China

Correspondence should be addressed to Xueqin Chen; cxqhit@163.com

Received 21 September 2020; Revised 2 January 2021; Accepted 18 January 2021; Published 16 February 2021

Academic Editor: Rui Wang

Copyright © 2021 Gaowang Zhang et al. ,is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

,is study addresses the challenge of attitude tracking control for a rigid-flexible spacecraft with high-inertia rotating appendages.
,e Lagrange method was used to establish the kinematic and dynamic models of the spacecraft. ,e translation and rotation of
the spacecraft, vibrations of solar panels, and imbalance caused by the rotating appendages, which cause a complex control
problem, were considered. To address the complex control problem, a novel, fast nonsingular integral sliding mode control
method is proposed to perform the attitude tracking function of spacecraft. A sliding mode control law was established for the
high-inertia appendages to maintain an appropriate angular velocity during rotation. Finally, the effectiveness of the proposed
attitude control law was verified by numerical simulations for a spacecraft with high-inertia rotating appendages and symmetrical
flexible solar panels.

1. Introduction

With the increased complexity of modern space missions,
modern spacecraft carry many rigid and flexible compo-
nents, such as manipulators, solar panels, antennas, and
cameras. Additionally, many modern spacecraft compo-
nents possess highly nonlinear characteristics. Owing to the
strong nonlinearity of spacecraft systems and the im-
provements in the spacecraft attitude control and tracking
accuracy, attitude control and tracking for spacecraft with
multiple appendages have become a very complex problem.

Modern spacecraft are predominantly powered by
large, lightweight solar panels. To absorb as much solar
energy as possible, it is necessary that the solar panels rotate
while the spacecraft moves to ensure the panels are oriented
perpendicular to the incident light. Notably, during rapid
maneuvering, the rotation and vibration of flexible com-
ponents reduce the stiffness and increase the nonlinearity
of the spacecraft system. ,ese components are always
coupled with the attitude and orbital motion of the rigid

body of spacecraft, thus increasing the complexity of
spacecraft attitude control and tracking problem [1, 2]. Li
et al. [3] used cooperative tracking protocols to address
unknown nonlinear dynamics problems with an adaptive
learning law, which solved the leader-following tracking
problem of fractional-order multiagent systems. For
multiagent systems with unknown disturbances and input
saturation, Zhou et al. [4] proposed an event-triggered
control method based on disturbance observer to solve the
following consistency problem. Li et al. [5] proposed a
finite-time fuzzy adaptive control (AC) scheme to address
the finite-time adaptive fuzzy control problem for a class of
multiinput multioutput (MIMO) nonlinear nonstrict
feedback systems. Tong et al. [6] proposed a novel observer-
based adaptive fuzzy output-feedback control method to
solve the output-feedback backstepping control design
problem in uncertain strict-feedback nonlinear systems. To
solve the fault observer design problem of Markovian
jumped systems, Chen et al. [7] proposed two types of
adaptive observer methods that could avoid the sliding
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surface switching problem. Zhao et al. [8] proposed a
control strategy combined with filtered backstepping and
adaptive technique to solve the problem of adaptive finite-
time attitude control for multiple spacecraft with unknown
external disturbances. ,e solar panel of the Feng Yun-3
(FY-3) spacecraft rotates relative to the spacecraft body to
ensure the solar panel generates sufficient energy for the
system [9]. In addition, external disturbances, inertial
variability, and nonlinearity pose difficulties for the design
of fast and accurate attitude control schemes, such as
proportional integral derivative (PID) control, active dis-
turbance rejection control (ADRC) [10], AC [11, 12],
sliding mode control (SMC) [13], and finite-time control
(FTC) [14]. SMC exhibits excellent performance in un-
certain nonlinear systems. ,us, various sliding mode
variable structure control methods have been proposed for
spacecraft attitude tracking, such as integral SMC [15],
second-order SMC [16], and terminal SMC [17].

As a form of finite-time control, terminal SMC has
attracted increasing attention owing to its robustness and
anti-interference properties. Terminal SMC has been applied
to spacecraft attitude control but with limitations because of
singularity and slow convergence. Zhao [18] proposed a fi-
nite-time command filter backstepping approach based on a
finite-time adaptive fuzzy tracking control scheme for a class
of unknown nonlinear systems. In recent years, nonsingular
terminal SMC has attracted increasing attention for appli-
cations in complex spacecraft attitude control owing to its
advantageous characteristics. Lu et al. [19] proposed an ef-
fective SMC strategy for a nonlinear spacecraft model with
external disturbances and inertial uncertainty that could ef-
fectively solve the problem of spacecraft attitude tracking
control. Yousefpour et al. [20] proposed an integral terminal
SMCmethod based on a disturbance observer for the tracking
control of a hyperchaotic memory resistance oscillator. To
solve the precise trajectory tracking control problem of un-
manned vehicles, Lv et al. [21] proposed a nonsingular in-
tegral SMC law based on a finite-time disturbance observer. In
[19–21], effective disturbance observers were designed for
controlled systems to achieve high performance in the
presence of inertia uncertainties and external disturbances.
Na [22] proposed an alternative AC with prescribed per-
formance to solve the output tracking problem of nonlinear
systems with unknown dead zones. Chen et al. [23] designed
an adaptive finite-time controller based on the fast TSM
control principle to overcome the singularity problem of
nonlinear systems. Na [22] and Chen et al. [23] designed
effective attitude control schemes for systems with problems
such as uncertain inertia terms, unknown disturbances, and
sudden actuator failure. To solve the attitude tracking
problem for a rigid platform spacecraft with rotating flexible
appendages, Shi et al. [24] proposed the nonsingular terminal
SMC algorithm for the finite-time tracking control of n-order
nonlinear dynamical systems. To achieve underactuated at-
titude stabilization, Yue et al. [25] designed a higher-level
SMC part to stabilize the angular velocity combined with a
tracking control part to track desired angular velocities.
Furthermore, [24, 25] demonstrated effective control laws for
nonlinear dynamical systems to achieve finite-time

convergence and strong robustness. Alshamali et al. [26]
designed an observer-based backstepping controller to solve
attitude tracking problems with the angles of satellite dy-
namics under external disturbances. Wang et al. [27] pro-
posed an adaptive SMC scheme to control the chaotic
oscillation of a complex seven-dimensional power system.
,e proposed scheme avoided the singularity problem and
improved the accuracy of attitude control as well. Finally,
Peng et al. [28] proposed a fast, nonsingular integral terminal
SMC scheme for a class of nonlinear systems by introducing a
power integral term.,is type of scheme can be used to avoid
the singularity problem without constraints and to achieve
finite-time convergence of the system state. ,ese control
methods exhibit good performance and robustness in many
systems but are unsuitable for rigid-flexible coupled space-
craft with high-inertia rotating appendages.

In recent years, the number of high-inertia rotating
appendages in spacecraft has increased. “high inertia” is
mainly in the relative sense, and high-inertia components
generally refer to appendages with similar mass as spacecraft
or high-inertia matrixes. However, no unified and quanti-
fiable standard is available in the academic field. ,ese
components often contain both static and dynamic imbal-
ances, thus producing an unbalanced disturbance torque.
,erefore, higher accuracy is required for the attitude
control of spacecraft. Miao et al. [29] designed a fast,
nonsingular SMC method integrated with an adaptive
method, which has been proven to have a higher conver-
gence speed and increased robustness than previous ter-
minal SMC methods. However, high-inertia components
and flexible solar panels were not considered in their study.
Gui et al. [30] proposed a novel integral TSM controller
integrated with an adaptive fault-tolerant control law to
solve the attitude tracking problem for a rigid spacecraft;
however, a rigid-flexible coupled spacecraft was not con-
sidered. ,is TSM controller exhibited better control per-
formance, including higher convergence speed and
estimation accuracy, than the conventional controllers re-
ported in [29, 30]. Xie [31] designed a composite com-
pensation controller to account for the control torques and
reduce the impulse characteristics of the disturbance torque
during the acceleration of rotating components. Further, the
effectiveness of the controller was proven using a semi-
physical simulation system; additionally, the coupling effect
between the high-inertia components and platform and the
characteristics of unbalanced disturbance torque were an-
alyzed. In addition, a PD control algorithm combined with
repetitive control was designed. Regarding the unbalanced
characteristics of high-inertia rotating appendages, Chai
[32, 33] used the Kalman filter method to effectively and
accurately estimate unbalanced interference torques caused
by appendage rotation.

Among the broad array of studies conducted to date, only
a few studies address the problem of attitude tracking control
of rigid-flexible coupled platforms with high-inertia com-
ponents. To bridge this divide, this study proposes a novel, fast
integral SMC strategy for spacecraft with high-inertia com-
ponents and flexible solar panels and demonstrates the ap-
plicability of this approach to facilitate the attitude tracking of
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spacecraft systems.,e primary contributions of this work are
listed below:

(1) A rigid-flexible coupling spacecraft with rotating
components is considered, and the mathematical
and dynamic models are established

(2) An attitude control law for the high-inertia com-
ponents of a spacecraft system, integrated with a
novel, fast nonsingular integral SMC law for sym-
metrical solar panels, and a spacecraft platform to
enable accurate spacecraft attitude tracking are
demonstrated

,e remainder of this paper is organized as follows.
Section 2 introduces the dynamic and kinematic models for
spacecraft attitude tracking with high-inertia rotating ap-
pendages and symmetrical solar panels. Section 3 introduces
the proposed fast nonsingular integral SMC law. Section 4
presents the numerical simulation results to demonstrate the
effectiveness of the control algorithm. Finally, Section 5
concludes the study.

2. Preliminary Modeling

A rigid spacecraft model with large, rigid rotating inertial
components and symmetrical flexible solar panels was
considered in this study.,e coordinate system included the
inertial reference frame OXYZ, orbital reference frame
OXoYoZo, spacecraft platform reference frame oxsyszs,
large rigid rotating component body-fixed frame oxpypzp,
and flexible solar panels body-fixed frame oxayaza

(Figure 1)—these were defined as R, Ro, Rs, Rp, andRa,
respectively. ,e y-axes of Rs, Rp, and Ra were parallel. ,e
flexible solar panels were installed on the ±y-axis, and the
large rigid rotating components were installed on the x-axis
of the platform coordinate system R.

,e rigid-flexible coupling spacecraft model consisted of
kinematic and dynamic equations, which are described in
the following sections.

2.1. Kinematic Model of the Spacecraft System. Because the
Euler angle has a singularity, the Euler equation is not
suitable for spacecraft with a wide range of attitude
motion. To avoid the singularity and complex calcula-
tions, the unit quaternions are often used to describe the
kinematics of a spacecraft. A unit quaternion is expressed
as Qs � q0 qT

s􏽨 􏽩
T

� q0 q1 q2 q3􏼂 􏼃
T, where q0 and

qs � q1 q2 q3􏼂 􏼃
Tare the scalar and vector parts of the

quaternion, respectively, and q0 and qs satisfy the con-
dition q20 + qT

s qs � 1.
,e kinematic equation with the quaternion of spacecraft

can be given as

Q
·

�
1
2

E qs( 􏼁∗ωb �
1
2

−qT
s

􏽥qs + q0I3

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦∗ωs, (1)

where ωs denotes the angular attitude velocity of the
spacecraft relative to the inertial system and 􏽥qs represents
the skew symmetric matrix of qssuch that

􏽥qs �

0 −q3 q2

q3 0 −q1

−q2 q1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (2)

,e desired orbital coordinate system for the spacecraft
tracking system is denoted asRo, and Qd is the expected
attitude quaternion. ,us, Qd � qd0 qT

d􏽨 􏽩
T

, and the ki-
nematic equation is defined as

Qd

·

�
1
2

E qd( 􏼁∗ωd, (3)

where ωd is the desired angular velocity from Ro relative
to R. In addition, the attitude tracking error quaternion is
defined as Qe � qe0 qT

e􏽨 􏽩
T
such that

Qe �
qe0

qe

􏼢 􏼣 �
qs0qd0 + qT

dqs

qd0qs + 􏽥qsqd − qs0qd

⎡⎣ ⎤⎦, (4)

which describes the error Rs relative to Ro.
,e principle of two vector attitude determinations was

used to determine the desired quaternion of the spacecraft.
,e desired quaternion could then be used to obtain the
attitude transformation matrix of the spacecraft orbit Ro

relative to the inertial orbit R. According to the known
position vector X and velocity vector V of the spacecraft,
matrix B is the projection of X and V of the spacecraft in R,
and matrixA is the projection ofX andV of the spacecraft in
Ro. ,e unique transformation matrix is then defined as

CBA � B
−1

A, (5)

where the matrixes B and A can be defined as

B �
X

|X|
,
X × V

|X × V|
,
X ×(X × V)

|X ×(X × V)|
􏼢 􏼣,

A �

0 0 −1

0 −1 0

−1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(6)

,us, the desired quaternion can be obtained as follows:

q0 �
1
2

�������������������������������

1 + CBA(1, 1) + CBA(2, 2) + CBA(3, 3)

􏽱

,

q1 �
1
4q0

CBA(2, 3) − CBA(3, 2)( 􏼁,

q2 �
1
4q0

CBA(3, 1) − CBA(1, 3)( 􏼁,

q3 �
1
4q0

CBA(1, 2) − CBA(2, 1)( 􏼁,

(7)
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where Csd is the coordinate transformation matrix from Ro

to Rs, which can be calculated as

Csd � q
2
e0 − qT

e qe􏼐 􏼑I3 + 2qeq
T
e − 2qe0􏽥qe. (8)

,e angular attitude velocity tracking error of the
spacecraft is defined as

ωe � ωs − Cs dωd. (9)

,e high-inertia component is the rotation around the
xs-axis of the spacecraft platform with the desired attitude
angular velocityωp d � [ωp d, 0, 0]T. Similarly, the flexible solar
panels rotate around the ys-axis of the spacecraft platform with
the desired attitude angular velocity ωa d � [0,ωa d, 0]T. ,e
kinematic equation for the desired attitude of the high-inertia
components is _Qp d � (1/2)E(qp d)ωp d and that for the
flexible solar panels is _Qa d � (1/2)E(qa d)ωa d. ,us, the real
kinematic equations are _Qp � (1/2)E(qp)ωp and
_Qa � (1/2)E(qa)ωa. ,e quaternion for the attitude tracking
error can be obtained using (4), such that the attitude tracking
error of the flexible solar panels is

Qae �
qae0

qae

􏼢 􏼣 �
qa0qa d0 + qT

a dqa

qa d0qa + 􏽥qaqa d − qa0qa d

⎡⎣ ⎤⎦. (10)

,e angular attitude velocity tracking error of the
high-inertia components and flexible solar panels can be,
respectively, expressed as

ωpe � ωp − ωp d,

ωae � ωa − ωa d.
(11)

When the high-inertia components and the flexible solar
panels rotate only around the xs-axis and ys-axis, respec-
tively, of the spacecraft platform, the rotational angle of the
former is set as θp ∈ [0, 2π] and that of the latter is set as
θa ∈ [0, 2π]. ,e rotational angles can be calculated by

θp � 􏽚ωpdt,

θai � 􏽚ωaidt.

(12)

,e transformation matrixes from Rp and Ra to Rs are
then defined as

Cps �

1 0 0

0 cos θpx􏼐 􏼑 sin θpx􏼐 􏼑

0 −sin θpx􏼐 􏼑 cos θpx􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Cabi �

cos θayi􏼐 􏼑 0 −sin θayi􏼐 􏼑

0 1 0

sin θayi􏼐 􏼑 0 cos θayi􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(13)

2.2. Dynamics of the Spacecraft System. We considered the
rotation of the rigid high-inertia components and flexible solar
panels on the rigid-flexible coupling spacecraft, as well as the
translation and rotation of the spacecraft platform and the
modal vibration of the solar panels. ,e Lagrange method was
used to deduce the complex equations and the dynamic model
equations of the spacecraft system attitude, as follows:

M + mp + 2ma􏼐 􏼑 €X � Ps, (14a)

Js _ωs + 􏽥ωs Jsωs + Rspωp + Rsaωa􏼐 􏼑 + Fsa€ηai

+ Rsa _ωai + Rsp _ωp � Ts + Ts dp + d,
(14b)

Jai _ωai + Fai€ηai + RT
sai _ωs � Tai(i � −y, y), (14c)

€ηai + 2ζaiΩai _ηai + Λaiηai + RT
sa _ωs + FT

ai _ωai � 0(i � −y, +y),

(14d)
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Figure 1: Coordinate system of spacecraft with appendages.
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where M is the mass of the spacecraft platform; mp is the
mass of the high-inertia component; mais the mass of a
single flexible solar panel; Ps denotes the combined external
forces on the spacecraft system; the inertia matrix with
respect to Rs of the spacecraft is defined as Js and satisfies the
equation Js � Js0 + CsaJa0C

T
sa + CspJpCT

sp; Ja0 is the inertia
matrix of the flexible solar panel relative to the platform
when it is not rotating; Jp is the inertia matrix of the high-
inertia rotating component with respect to the platform; Ts

and Ta denote the torque of the spacecraft platform and the
solar panels, respectively; Td is the unknown external dis-
turbance torque; Ts dp is the sum of the dynamic and static
unbalanced torques and the bearing torque of high-inertia
components under the influence of coupling; ηa denotes the
modal coordinates of the solar panel; Ωa is the diagonal
matrix of the modal frequency of the solar panel; Λa is the
stiffness matrix of the solar panel such thatΛa � Ω2a; ξa is the
damping ratio of the solar panel. Notably, all these pa-
rameters are diagonal matrixes. From (14a)–(14b), Fsa �

Fsa right + Fsa left and Rsa � Rsa right + Rsa left.
,e connection point between the high-inertia rotation

component and the platform was modeled as shown in
Figure 1. In this paper, rs denotes the vector from the
connection point to the origin of the high-inertia rotation
component’s Rscoordinate system; rp denotes the vector
from the origin of the Rp coordinate system to the con-
nection point; and r denotes the vector from the connection
point to the mass element dm on the high-inertia rotation
component. When the high-inertia rotation component
rotates around the x-axis at the angular velocityωp, the
unbalanced torque Ts d can be generated on the satellite
platform. ,e dynamic equations for a high-inertia ap-
pendage are as follows:

Ts d � −rp × 􏽚
p
ωp × ωp × r􏼐 􏼑􏽨 􏽩dm − r

× 􏽚
p
ωp × ωp × r􏼐 􏼑􏽨 􏽩dm

� −ωp × Jpωp􏼐 􏼑 + mpω
T
pωp rs × rp􏼐 􏼑,

(15)

Jp _ωp + RT
sp _ωs � Tp, (16)

Ts dp � Ts d − Tp, (17)

where Tp is the control torque of the high-inertia compo-
nent. Because the solar panels only rotate about the y-axis
relative to the spacecraft platform, Fsadenotes the coupling
coefficient matrix of the rotation of the spacecraft platform
with the vibration of the solar panels such that

Fsa � fsa1

sin θay􏼐 􏼑

1

cos θay􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, fsa2

sin θay􏼐 􏼑

1

cos θay􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, . . . , fsa6

sin θay􏼐 􏼑

1

cos θay􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(18)

where fsa is the coefficient matrix of the platform rotation to
the solar panel vibration, which is related to the rotating
angle θay, Fa is the coupling coefficient matrix between the
vibration and rotation of solar panels, Rsa is the coupling
coefficient matrix of rotation between the solar panels and
the platform and is calculated in a similar manner as
equation (18), with rsa as the angle-independent coefficient,
and Rsp is the matrix of vibration of the high-inertia
component with the rotation of the spacecraft platform. ,e
high-inertia component rotates only around the x-axis
relative to the spacecraft platform; thus, Rsp can be described
by a variation of (16).

Equation (13) shows the dynamic equations of the
spacecraft system, including the translation of the platform,
as well as the rotation of the high-inertia components and
solar panels. Upon substituting (5) and (11) into (14a)-(14d),
we obtain

Θ _ω + Γ + Δ � T, (19)

where

ω � ωe ωae􏼂 􏼃
T

,

Θ �
Js0 − FsaF

T
sa Rsa − FsaF

T
a

RT
sa − FaF

T
sa Ja − FaF

T
a

⎡⎢⎣ ⎤⎥⎦

Γ �
RsP _ωP + ωs × Js0ωs + Rspωp + Rsaωa􏼐 􏼑 + Js0 − FsaF

T
sa􏼐 􏼑 −􏽥ωeCs dωd + Cs d _ωd( 􏼁 − Ts dp

RT
sa − FaF

T
sa −􏽥ωeCs dωd + Cs d _ωd( 􏼁

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

Δ �
Δ1
Δ2

􏼢 􏼣 �
Fsa 2ζaiΩai _ηai + Λaiηai( 􏼁 + CsaJa0C

T
sa + CspJpC

T
sp􏼐 􏼑 _ωe − 􏽥ωeCs dωd + Cs d _ωd( 􏼁 − d + Δ Fsa,Rsa( 􏼁

Δ Fsa,Rsa( 􏼁

⎡⎢⎣ ⎤⎥⎦,

T �
Ts

Ta

􏼢 􏼣.

(20)
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Remark 1. ,e moment of inertia of the spacecraft system
has the specific form J � J0 + ΔJ, where J0 is the nonsingular
nominal constant matrix, and ΔJ is the uncertainty of
moment of inertia and is a bounded constant.

Remark 2. (ΔFsa,ΔRsa,ΔRsp) represent the combined un-
certainties on parameters Fsa, Rsa, and Rsp; these uncer-
tainties exist because, although the high-inertia components
and solar panels rotate predominantly around one axis of the
spacecraft, they exhibit small rotations around the other
axes. ,us, the combined uncertainties are bounded.

Remark 3. ,e disturbance Δ is bounded, and satisfies
Δ≤Δd, where d is a constant.

3. Sliding Mode Control Law Design

Lemma 1. 0e extended Lyapunov of finite-time stability can
be expressed in the form of a fast TSM as follows [34, 35]:

V
·

(x) + λ1V(x) + λ2V
c
(x)≥ 0. (21)

If (18) satisfies the conditions λ1 > 0, λ2 > 0 and 0< c< 1,
the convergence time can be given by

T≤
1

λ1(1 − c)
ln
λ1V

1− c
x0( 􏼁 + λ2
λ2

. (22)

Lemma 2. For any xi ∈ R (i � 1, 2, . . . , n) and a positive real
number c ∈ (0, 1), the following inequality holds [36]:

􏽘

n

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2⎛⎝ ⎞⎠

(1+c/2)

≤􏽘
n

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+c

. (23)

Lemma 3. We consider the system _x � f(x, u), where f is a
continuous function that satisfies f(0) � 0, and a Lyapunov
function V(x) that satisfies [37]

V
·

(x) + λV
α
(x)≤ 0, (24)

where λ> 0, 0< α< 1. 0en, the origin is a finite-time stable
equilibrium of the system _x � f(x, u). LetT represent the time
required for the system to reach V(x) ≡ 0. If x0 is the initial
system state, the convergence time satisfies

T≤
V

1− α x0( 􏼁

λ(1 − α)
. (25)

Using the quaternion for the attitude tracking error of
the spacecraft platform and solar panel to describe the at-
titude system state, we can write x � qe qae􏼂 􏼃

T and define

_x � _qe _qae􏼂 􏼃
T

�
1
2
Eω. (26)

,us, €x can be given as

€x �
1
4
L +

1
2

(EΘ)(T − Γ − Δ). (27)
Finally, the augmented matrix E can be written as E �

E(qe) 0
0 E(qae)

􏼢 􏼣 and L �
qeω

T
e ωe

qaeω
T
aeωae

􏼢 􏼣.

3.1. Controller Design of the Spacecraft Platform and
Solar Panel

3.1.1. Integral Sliding Mode Surface Design. ,e integral
sliding mode surface can be defined by

S � kxx
.

+ 􏽚
t

0
C1S1 λ1, ρ1, x, ε1( 􏼁 + C2S2 λ2, ρ2, x

.
, ε2( 􏼁dt,

(28)

where C1 � diag(c11, c12, c13, c14, c15, c16) and C2 � diag
(c21, c22, c23, c24, c25, c26), and

γ1 � c11, c12, c13, c14, c15, c16􏼂 􏼃
T
,

γ2 � c21, c22, c23, c24, c25, c26􏼂 􏼃
T
,

ε1 � ε11, ε12, ε13, ε14, ε15, ε16􏼂 􏼃
T
,

ε2 � ε21, ε22, ε23, ε24, ε25, ε26􏼂 􏼃
T
,

(29)

where c1i > 0 and c2i > 0 are the sliding surface design ma-
trixes for i� 1,2, . . ., 6. Furthermore, the vectors S1 and S2
can be defined as

S1 � S11, S12, S13, S14, S15, S16􏼂 􏼃
T
,

S2 � S21, S22, S23, S24, S25, S26􏼂 􏼃
T
.

(30)

In (30), S1i and S2i are defined as

S1i c1i, ρ1i, x1i, ε1i( 􏼁 �
x1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c1i , if x1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ε1i,

εc1i−ρ1i

1i x1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
ρ1isign x1i( 􏼁, if x1i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> ε1i,

⎧⎨

⎩

S2i c2i, ρ2i, _x2i, ε2i( 􏼁 �
_x2i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c2i , if _x2i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ε2i,

εc2i−ρ2i

2i _x2i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
ρ2isign _x2i( 􏼁, if _x2i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> ε2i,

⎧⎨

⎩

(31)

where c1i and c2i are the positive constant gains, which
satisfy 0< c2i < 1 and c1i � (c2i/2 − c2i). In the same way, ρ1i,
ρ2i, ε1i, and ε2i are the positive constant gains, which satisfy
ρ1i ≥ 1, ρ2i ≥ 1, ε1i > 0, and ε2i > 0, respectively.

,e control torque T can be expressed as follows:

T � 2 KxEΘ( 􏼁
− 1

−τS − Kssgn(S) − C1S1 γ1, ρ1, x, ε1( 􏼁(

− C2S2 γ2, ρ2, _x, ε2( 􏼁􏼁 +
1
2
(EΘ)

− 1L + Γ + Δ.

(32)

Remark 4. From (28), it is observed that the controller
parameters c1i, c2i, kxi, C1i, and C2i affect the convergences
performances of the closed-loop systems. Smaller c1i and c2i

and larger kxi, C1i, andC2iwill yield a more quick conver-
gence of the attitude tracking errorx(t); xcan be further
reduced by increasing the control parameters τ and kS.
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3.1.2. Proof. With the spacecraft attitude dynamics model
described in (14a)-(14d), the integral sliding mode (see (28))
and the control law (see (32)) were designed. ,e system
state will slide to the equilibrium point in a finite time after
reaching the sliding mode surface. Based on Lyapunov
theory, it can be proved that

V �
1
2
STS, (33)

because

S
·

� kx €x + C1S1 γ1, ρ1, x, ε1( 􏼁 + C2S2 γ2, ρ2, _x, ε2( 􏼁

� kx

1
4
L +

1
2

(EΘ)(T − Γ − Δ)􏼔 􏼕 + C1S1 γ1, ρ1, x, ε1( 􏼁

+ C2S2 γ2, ρ2, _x, ε2( 􏼁.

(34)

Differentiating V with respect to time yields (30); from
(32), it can be determined that

V
·

� STS
·

� ST kx

1
4
L +

1
2

(EΘ)(T − Γ − Δ)􏼔 􏼕􏼚

+ C1S1 γ1, ρ1, x, ε1( 􏼁 + C2S2 γ2, ρ2, _x, ε2( 􏼁􏼛

� ST
−τS − Kssgn(S)􏼂 􏼃 � −τV − ksV

(1/2)
.

(35)

According to Lemma 1, the convergence time can be
determined as

T≤
2
τ
ln
τV

(1/2)
x0( 􏼁 + ks

ks

. (36)

3.2. Controller Design for High-Inertia Components. ,e
high-inertia components rotate around the x-axis at a
certain attitude angular velocity relative to the spacecraft
platform. ,us, a control law can be designed for these
components.

3.2.1. Sliding Mode Surface Design. ,e sliding mode
function is defined as

Sp � KPωPe + Kdsig
c

_ωPe( 􏼁, (37)

where KP � diag(kp1, kp2, kp3), Kd � diag(kd1, kd2, kd3), and
c> 1 is a positive odd number. When the sliding mode
function Sp � 0, the attitude angular velocity tracking error
of the high-inertia component is equal to 0 (ωPe � 0) because

_ωPe �
kpi

kdi

ωPe

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

(1/c)

sign
kpi

kdi

ωPe􏼠 􏼡 �
kpi

kdi

ωPe

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
(1/c)sign ωPe( 􏼁.

(38)

,e control torque Tp can be expressed as

Tp � Jp kp􏼐 􏼑
− 1

−τSp − kdsig
c

€ωpe􏼐 􏼑􏼐 􏼑 + R
T
sp _ωs. (39)

3.2.2. Proof. As the high-inertia component dynamics
model described in (16), the sliding mode (see (37)) was
designed. ,e system state slides to the equilibrium point in
a finite time after reaching the sliding mode surface. Based
on Lyapunov theory, it can be proved that

V2 �
1
2
ωT

PeJωPe. (40)

Differentiation of V2 with respect to time yields

V2 � ωT
PeJωPe􏽘

3

1

kpi

kdi

ωT
PeJ ωPei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
(1/c)sign ωPei( 􏼁

� −􏽘
3

1

kpi

kdi

J ω2
Pei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
(c+1/2c)

≤ − min
kpi

kdi

􏼨 􏼩 2 ·
1
2

J􏽘
3

1
ωPei

⎛⎝ ⎞⎠

(c+1/2c)

� −min
kpi

kdi

􏼨 􏼩 · 2(c+1/2c)
V

(c+1/2c)
.

(41)

Furthermore, letting ξ � −min kpi/kdi􏽮 􏽯 · 2(c+1/2c), _V2
satisfies

_V2 + ξV
(c+1/2c)
2 ≤ 0. (42)

Finally, the convergence time can be determined
according to Lemma 3, as follows:

Tp ≤
2cV

(c+1/2c)
2 (0)

ξ(c − 1)
. (43)

4. Numerical Simulation Results

,is section presents numerical simulations to demonstrate
the performance of the proposed nonsingular integral
sliding mode controller (NISMC). ,e results of the pro-
posed method are compared with those of the fast TSM
finite-time controller (FSMC) designed by Yang and Yang in
[38] and the PD controller. ,e simulation results of the
spacecraft with high-inertia components and flexible solar
panels are presented, and the proposed control laws are
demonstrated to have superior performance.,e fast-sliding
mode finite-time controller exhibits higher convergence
speed and an accurate attitude tracking and control of the
component angle. In this analysis, the desired angular ve-
locity of the flexible solar panels about the y-axis of the
spacecraft was set asωa d � 0.1 rad/s and that of the large rigid
inertial component about the x-axis of the spacecraft as
ωp d � 0.2 rad/s. ,e expected attitude of the spacecraft
platform is the coordinate system Rs that coincides with Ro.

Figures 2 and 3 present the results of the vector
component of the error quaternion and the error of the
attitude angular velocity of the platform, respectively.
Figure 4 presents the results of the vector component of the
error quaternion of the flexible solar panels. Figures 5 and 6
present the results of the error of the attitude angular

Complexity 7



velocity and the attitude angular velocity of the flexible
solar panels relative to the spacecraft platform. Figure 7
shows the attitude angular velocity and error of the angular

velocity of the large rigid inertial component that rotates
around the x-axis of the spacecraft platform. Figures 3, 5,
and 7 indicate that the error of the attitude angular velocity
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Figure 2: Trajectories of the vector component of the platform error quaternion.
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Figure 3: Trajectories of the error of attitude angular velocity of platform.
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of the spacecraft satisfies the constraint. ,erefore, the
system can reach the sliding surface in a finite time, and
when the system enters the sliding surface, it can maintain

sliding mode motion. ,erefore, the designed controller
can ensure that the system tracks the desired attitude angle
and angular velocity.
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Figure 4: Trajectories of vector component of the error quaternion of flexible solar panel.
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Figure 5: Trajectories of the error of attitude angular velocity of flexible solar panel.
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Figures 8–11 present the results of the error quaternion
and the error of angular velocity of the flexible solar panels
and platform. ,ese figures indicate that the proposed

method converges faster than the existing methods (FSMC
and PD). Table 1 presents the results of the stable error of
attitude angular velocity and the stable error quaternion of
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Figure 6: Trajectories of the y-axis flexible solar panel’s attitude angular velocity.
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Figure 7: Trajectories of angular velocity and error of angular velocity of the large rigid inertial component.
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Figure 8: Comparison of platform error quaternions.

Complexity 11



the flexible solar panels and platform. ,e table indicates
that the stable error of attitude angular velocity of the large
rigid inertial component is 3.622×10−4.

Figures 8 and 9 show that NISMC drives the attitude
tracking errors to the origin faster than the existing FSMC
and PD algorithms. In specific, NISMC takes ∼60 s for the
error quaternion to converge to the equilibrium position,
whereas the FSMC and PD require ∼80 s and ∼110 s, re-
spectively. Furthermore, NISMC takes ∼55 s for the error
angular velocity to converge to the equilibrium position,
whereas the FSMC and PD algorithms require ∼120 s. In
the steady-state response region, the final stable error
quaternion and the final error of attitude angular velocity of
the platform are 3.560×10−7 and 1.798 ×10−5, respectively,
under the NISMC algorithm.

Figures 10 and 11 indicate that the NISMC takes ∼70 s
for the error quaternion of the flexible solar panels to

converge to the equilibrium position, whereas the FSMC and
PD require ∼100 s and ∼110 s, respectively. Furthermore,
NISMC takes ∼75 s for the error of angular velocity to
converge to the equilibrium position, whereas the FSMC and
PD algorithms require ∼105 s. ,e final stable error qua-
ternion of the flexible solar panels is 1.704×10−5 and the
final error of attitude angular velocity of the platform is
1.114×10−5, under the NISMC algorithm.

Table 1 presents the final stable error quaternion and the
final error of attitude angular velocity of the platform under
the FSMC and PD algorithms. Clearly, the magnitude of the
error of angular velocity and error quaternion is smaller
under the NISMC algorithm than under other control laws,
indicating that the system has high steady-state accuracy.

,ese results demonstrate the superiority of the pro-
posed NISMC algorithm in terms of faster convergence and
higher stable accuracy over other control algorithms.
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Figure 9: Comparison of errors of attitude angular velocity of platform.
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Figure 10: Comparison of error quaternions of flexible solar panels.
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5. Conclusions

A novel integral sliding mode control law was proposed for
spacecraft systems with high-inertia components and flexible
solar panels. ,e proposed control scheme exhibited faster
convergence and provided precise attitude tracking in terms of
external imbalances caused by appendages, rotation and vi-
bration of flexible solar panels, and parametric uncertainties.
Using numerical simulations, the control method was shown
to allow an accurate tracking of the desired spacecraft attitude
and the rotation of the flexible solar panels and high-inertia
components around the special axis with a stable angular

speed. ,erefore, the control scheme offers a valuable con-
tribution to the design of future space missions in both the-
oretical and practical respects. As future work, high-flexibility
appendages, such as flexible antennas and connecting adapters
as magnetic bearings, would be considered. Problems such as
parameter uncertainty and actuator saturation demand ad-
vanced control methods to realize special state-constrained
attitude maneuvering without any intrusion into the forbidden
zones. Given the increasing complexity of space missions and
the resulting changes to spacecraft design, I believe that this
study will be of interest to those who work in aerospace en-
gineering and similar fields.
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Figure 11: Comparison of errors of attitude angular velocity of flexible solar panels.

Table 1: Parameter control performance.

Control strategy NISMC FSMC PD
Stable error of attitude angular velocity of platform 1.798×10−5 5.074×10−4 0.0012
Stable error of attitude angular velocity of flexible solar panels 1.114×10−5 1.243×10−4 0.0018
Stable error quaternion of platform 3.560×10−7 2.574×10−4 0.00391
Stable error quaternion of flexible solar panels 1.704×10−5 6.819×10−4 0.00115
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Appendix

,e initial parameters of numerical simulation are as follows.
,e initial position of the spacecraft is
X0 � 1097.540456 6040.616206 −12.924317􏼂 􏼃

T km, and its
initial velocity isV0 � −7.450822 0.308646 1.538879􏼂 􏼃

T km/
s in the coordinate system R. ,e initial quaternion of the
platform is Qs � −0.3696 −0.5301 0.6621 −0.4372􏼂 􏼃

T, and
its initial angular velocity is ωs0 � −0.02 0.015 0.025􏼂 􏼃

T. ,e
initial angular velocity of the flexible solar panels is
ωa0 � 0 0 0􏼂 􏼃

T, and that of the high-inertia component is
ωp0 � 0 0 0􏼂 􏼃

T. ,e mass of the spacecraft platform is
1850kg. Js0 represents the inertia matrix of the spacecraft
platform and is defined as

Js0 �

4938.75 0 0

0 4642.63 0

0 0 6607.31

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (A.1)

,e mass of a single flexible solar panel is 65 kg. Jsa

represents the inertia matrix relative to a single flexible solar
panel and is defined as

Jsa �

251.385 35.56 1.417

35.56 44.17 −1.834

1.417 −1.834 875.97

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (A.2)

,e mass of the high-inertia component is 800 kg. Jsp

represents the inertia matrix relative to the high-inertia
component and is defined as

Jsp �

764.385 76.201 1.417

76.201 652.17 −2.17

1.417 −2.17 875.97

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (A.3)

,e constant coefficient matrix of the vibration of solar
panels relative to its rotation is

Fa �

−1.989e1 −3.141e − 10 −1.578e − 2 2.984 −1.0287 3.945e − 3

1.398e − 2 8.598e − 8 −3.214 5.028e − 2 5.982e − 2 1.174

2.791e − 8 −1.913 −5.027e − 8 3.13e − 10 2.016e − 9 −5.279e − 9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (A.4)

,e damping coefficient of the solar panel is 0.004, and
the modal frequency of the flexible solar panel is Ωa � diag
[0.7033, 0.8021, 1.102, 1.3006, 2.755, 3.044]. Furthermore,
Λa � Ω2a. ,e coupling coefficient matrix that relates to the
angle of the +y-axis between solar panels’ vibration and
platform’s rotation is fsa right, given by

fsa right 1 �

1.996e − 10 −1.425e1 8.016e − 13
−2.451e − 2 −2.016 5.946e − 3

14.5 1.916e − 9 6.824e − 11

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

fsa right 2 �

−15.0146 −2.125e − 9 2.616e − 9
−2.451 2.516e − 2 4.346e − 9

2.143e − 9 16.16 2.124e − 6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

fsa right 3 �

−2.842e − 8 8.164e − 3 −1.921e − 10
1.274e − 4 9.524e − 3 −2.014

−8.302e − 3 −2.840e − 8 −1.56e − 8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

fsa right 4 �

−1.519e − 9 3.441 2.502e − 11
1.376e − 2 −0.546 −3.014e − 2

−3.412 −5.840e − 9 2.021e − 8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

fsa right 5 �

5.842e − 9 −1.245 −1.721e − 10
−1.204e − 3 −0.629 2.514e − 2

1.425 −6.840e − 10 −1.462e − 8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

fsa right 6 �

−1.627e − 9 −5.314e − 2 −2.701e − 10
2.204e − 5 2.429e − 2 1.017
−0.7253 −1.747e − 8 −1.629e − 10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(A.5)

,e constant matrix of the −y-axis solar panels’ vibration
to the platform’s rotation isfsa left and is defined as

fsa left 1 �

1.923e − 10 −1.464e1 1.107e − 12

−2.397e − 2 −2.111 5.589e − 3

14.745 1.867e − 9 6.977e − 11

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

fsa left 2 �

−15.7046 −2.1074e − 9 2.819e − 9

−2.5415 2.624e − 2 4.402e − 9

2.271e − 9 1.5963e1 9.924e − 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

fsa left 3 �

−2.822e − 8 8.132e − 3 −1.893e − 10

1.24e − 4 9.245e − 3 −1.9184

−8.295e − 3 −2.789e − 8 −1.506e − 8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

fsa left 4 �

−1.589e − 9 3.941 2.752e − 11

1.731e − 2 −0.740 −3.214e − 2

−3.410 −5.836e − 9 2.122e − 8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

fsa left 5 �

5.857e − 9 −1.347 −1.691e − 10

−1.344e − 3 −0.867 2.474e − 2

1.476 −6.753e − 10 −1.512e − 8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

fsa left 6 �

−1.616e − 9 −5.324e − 2 −2.671e − 10

2.134e − 5 2.527e − 2 1.457

−0.923 −1.547e − 8 −1.591e − 10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A.6)
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Here, rsa right represents the coupling rotation coefficient
matrix of the +y-axis between the solar panels and the
platform; similarly, rsa left is given as

rsa right 1 �

5.996e − 11 0 6.213e − 3

0 4.88e1 1.613e − 12

−3.75e2 0 1.216e − 6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

rsa right 2 �

−1.329e − 7 0 −1.717e − 1

0 −8.964e − 5 0

1.826e − 3 1.023e − 13 1.071e − 10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

rsa right 3 �

3.462e2 0 −1.213e − 6

0 1.0121 0

−4.956e − 9 0 9.016e − 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

fsa left 1 �

6.106e − 11 0 6.115e − 3

0 4.69e1 1.718e − 12

−3.68e2 0 −1.203e − 6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

fsa left 2 �

−1.006e − 7 0 −1.998e − 1

0 −8.964e − 5 0

1.904e − 3 −1.021e − 13 1.176e − 10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

fsa left 3 �

3.501e2 0 −1.116e − 6

0 1.0121 0

−4.755e − 9 0 9.314e − 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A.7)

Furthermore, rsp represents the constant rotating cou-
pling coefficient matrix between the high-inertia component
and the platform and is given as

rsp 1 �

2.206e − 6 −1.128e − 6 6.213e − 3

0 4.88e − 8 0

−3.75e − 12 0 1.216e − 8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

rsp 2 �

3.173e − 5 0 −1.213e − 7

0 1.012e − 7 1.038e − 9

−1.097e − 12 0 9.016e − 11

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

rsp 3 �

3.462e − 5 0 −1.213e − 6

2.277e − 7 5.02e − 8 0

−4.956e − 10 0 4.414e − 13

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(A.8)
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