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Hybrid renewable energy system (HRES) arises regularly in real life. By optimizing the capacity and running status of the
microgrid (MG), HRES can decrease the running cost and improve the efficiency. Such an optimization problem is generally a
constrained mixed-integer programming problem, which is usually solved by linear programmingmethod. However, as more and
more devices are added into MG, the mathematical model of HRES refers to nonlinear, in which the traditional method is
incapable to solve. To address this issue, we first proposed the mathematical model of an HRES. )en, a coevolutionary
multiobjective optimization algorithm, termed CMOEA-c, is proposed to handle the nonlinear part and the constraints. By
considering the constraints and the objective values simultaneously, CMOEA-c can easily jump out of the local optimal solution
and obtain satisfactory results. Experimental results show that, compared to other state-of-the-art methods, the proposed al-
gorithm is competitive in solving HRES problems.

1. Introduction

Energy shortages and environmental pollution problems
have become increasingly severe in recent years. Microgrid
(MG) technology [1] has received more and more attention
to improving the rate of renewable energy usage, especially
in large-scale wind and solar energy. MG is a small power
supply and consumption system that contains a variety of
components, e.g., electrical loads, energy storage devices,
and renewable energy. So far, there have beenmany pieces of
research on microgrid energy management. However, how
to plan the capacity of the microgrid and consider the
running operation of the microgrid in the design stage has
become an urgent problem.

Hybrid renewable energy system (HRES) [2] aims to
optimize the installed capacity of components and energy
management of the MG system during the planning phase.
)e main problem is to determine a set of optimal con-
figurations, including whether to install a component and
the capacity to install [3]. )e main problem in microgrid

energy management is how to formulate a power generation
and scheduling plan without affecting the stable operation of
the system.

To address the above problem, many studies have
proposed and improved the HRES model [4, 5]. Generally
speaking, this problem is mixed-integer programming, so it
can be optimized by traditional solving tools, e.g., branch-
and-cut [6]. However, with the update of microgrid com-
ponents, the HRES model has increasingly shown nonlinear
characteristics, which cannot be solved directly by tradi-
tional linear programming methods. It is reported that
through the transformation, which transfers the nonlinear
constraints and objective functions to their linear form,
some simple nonlinear problems can be solved by traditional
linear programming methods. However, such transforma-
tion is limited and loses the information of the original
problems. On the other hand, the HRES problem is a typical
multiobjective optimization problem [3]. Decision makers
(DMs) need to consider the full life cycle cost, power reli-
ability, pollution emission, and so on simultaneously [7].
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)e traditional linear programming method usually
converts multiobjective optimization problems to single-
objective one by summing up objectives with a group of
given weights [8]. )at is, DM gives a set of weight vectors
in advance, and then a scalar function is constructed for
optimization. Although this method is simple, it has many
drawbacks. Firstly, due to the inconsistency of various
objective functions, it is difficult to determine the weights,
resulting in poor robustness of the single-objective opti-
mization problem. )e use of larger weights will amplify
the influence of the objective function noise, leading to
unilateral preference. Secondly, it is often difficult for
decision makers to give appropriate preference weights in
advance [9].

Evolutionary multiobjective optimization (EMO) algo-
rithm has gained more and more attention in dealing with
real-world engineering problems with nonlinear objective
functions and constraints [10]. Multiobjective optimization
problems (MOPs) which require the simultaneous optimi-
zation of multiple objectives are common in real-world
applications. Without loss of generality, a MOP can be
formulated as follows:

Minimize F(x) � f1(x), f2(x), . . . , fm(x) ,

s.t. x � x1, x2, . . . , xn(  ∈ Ω,
(1)

whereΩ denotes the feasible decision space, m is the number
of objectives, and x is a decision vector consisting of n

decision variables xi. A solution xa is said to Pareto dominate
another solution xb iff ∀i � 1, 2, . . . , m, fi(xa)≤fi(xb)

and ∃j � 1, 2, . . . , m, fj(xa)<fj(xb). )e images of Pareto
optimal solution set (PS) in the objective space are termed
the Pareto optimal front (PF).

So far, a large number of works have been done to find a
well-distributed PF of a MOP without constraints, which can
be roughly categorized as (i) Pareto dominance-based algo-
rithms, e.g., NSGA-II [11] and SPEA2 [12], (ii) indicator-based
algorithms, e.g., IBEA [13], and (iii) decomposition-based
methods, e.g., MOEA/D [14, 15]. Although the proposed EMO
algorithms can well solve the benchmark problems without
constraints [16], they are not specially designed for MOPs with
constraints. To deal with constraints by EMO algorithms,
many approaches have been proposed. Among them, penalty
function [17, 18] may be the most representative and easiest
way, which introduces a penalty term into the objective
function to penalize constraint violations on a minimization
problem. )e introduction of the penalty term enables us to
transform a constrained optimization problem into an un-
constrained one. However, it is very difficult to strike the right
balance between objective and penalty functions. Other ap-
proaches like ϵ-constraints [19] and stochastic ranking [20] can
somehow deal with the constraints. Another effective way to
deal with the constraints is to modify the dominance rela-
tionship [21], which has been proved effective and efficient.
Specifically, there are two basic rules to calculate the domi-
nance relationship. Solutions satisfying the constraints dom-
inate unsatisfied solutions. If both solutions satisfy the
constraints, then use the basic rule to compare their objective
values.

In addition, it is still an open issue to solve mixed-integer
programming problem through EMO [22, 23]. Compared to
continuous problems, the decision spaces of mixed-integer
problems are separated. As shown in Figure 1, a very simple
example is given with only two integer variables. In this case,
each feasible region contains only one solution. )e number
of feasible regions will exponentially increase as the number
of decision variables grows. In general, we set the population
size to 100 to optimize, which is largely insufficient for the
whole decision space. Moreover, since feasible regions in the
decision space are separated, it is difficult for EMO algo-
rithms to continuously search the whole decision space.

In this paper, we first proposed the mathematical model
of an HRES. We consider the building and running cost of
this system as well as the energy supply stability. )is HRES
model is a nonlinear and mixed-integer multiobjective
optimization problem. To solve this problem, we proposed a
coevolutionary EMO algorithm with modified dominance
relationship to deal with the constraints, termed CMOEA-c.
Specifically, there is an assistant archive which aims to
explore the whole decision space and help jump out of the
local optimal solution. In addition, we compared the per-
formance of the proposed algorithm with other state-of-the-
art algorithms. Experimental results show that our model
and algorithm are effective and efficient.

)e rest of this paper is structured as follows. A
mathematical model of a hybrid renewable energy system is
proposed and specifically explained in Section 2. In Section
3, the proposed coevolutionary multiobjective optimization
algorithm is illustrated, followed by Section 4, which shows
the experiment setting and the result analysis. Finally, a
conclusion of this work is given in Section 5.

2. MathematicalModelof theHybridRenewable
Energy System (HRES)

A typical HRES model includes the following components,
i.e., the external electricity grid, renewable power generation,
user load, diesel generator (DE), and energy storage system
(ESS), as shown in Figure 2. We need to first determine the
installed capacities of these components. )en, we can
optimize the control strategy of ESS and DE to minimize the
running cost of this HRES.

2.1. Constraints. Due to the randomness and intermittent
nature of renewable energy, the power supply is often un-
stable [24], and it is difficult to meet energy demand all the
time with renewable energy alone. With the help of ESS, the
gap between supply and demand can be eased to a certain
extent. In order to improve the reliability of power supply,
MG must be connected to an external power grid. In this
process, to ensure safety, the maximum transmission ca-
pacity is limited within a certain range.

XsellP
min
grid ≤Pgrid(t)≤XsellP

max
grid , (2)

where Pgrid(t) is the exchanged power between external grid
and MG. Pmin

grid and Pmax
grid represent the minimum and

maximum power of the interaction respectively. Xsell is a
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binary variable that indicates whether the MG can sell
electricity to the grid. Pmin

grid could be negative which means
that the MG can sell electricity to the external grid.

Renewable energy includes photovoltaic and wind tur-
bine; the main constraint is the minimum and maximum
installed capacity.

A
pv
min · Xpv ≤Apv ≤A

pv
max · Xpv,

Ppv(t)≤ApvCp
pv
rat,

(3)

where Apv is the installed area of photovoltaic; Xpv is a
binary variable presenting if the photovoltaic equipment is
installed or not; and Cp

pv
rat is the transfer efficiency of

photovoltaic. )e constraints of the wind turbine can be
expressed as

N
wt
min · Xwt ≤Nwt ≤N

wt
max · Xwt,

Pwt(t)≤Cp
wt
rat · Nwt,

(4)

where Nwt and Cpwt
rat represent the installed number and

rated capacity of the wind turbine, respectively. Xwt is the
selecting state of the wind turbine, where Xwt � 0 means that
wind turbine is not installed in this HRES.

Similarly, the constraints of diesel generator are listed as
follows:

x2

x1

Figure 1: Decision space of a mixed-integer programming problem.

Grid

User load
Energy storage system

Diesel generator 
Photovoltaic

Wind turbine

Figure 2: Physical structure of an HRES.
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N
de
min · Xde ≤Nde ≤N

de
max · Xde,

Pde(t)≤Cp
de
rat · Nde.

(5)

Energy storage system (ESS) in anMG can not only store
excess power but also supply power as a backup when the
power generation is insufficient. With the help of the ESS,
HRES can runmore flexibly and stably.)emain constraints
are shown as follows:

P
min
ess · Xess ≤Pess(t)≤P

max
ess · Xess,

P
max
ess � Cp

ess
rat · Ness,

E
min
ess · Xess ≤Eess(t)≤E

max
ess · Xess,

Eess(t + 1) � Eess(t) 1 − ϵess(  + ηessPess(t)Δt,

(6)

where Pmin
ess and Pmax

ess are theminimum andmaximum power
of charging and discharging, respectively. Eess(t) means the
energy storage capacity at t. In addition, ϵess is the self-
discharge rate of ESS, which is provided by the
manufacturer.

Parameter ηbess denotes the charging and discharging
efficiency of the ESS, which changes according to the state
(charging and discharging) of the ESS.

ηbess �
ηc
bess, Pbess(t)> 0,

ηd
bess, Pbess(t)≤ 0,

⎧⎨

⎩ (7)

where ηc
bess and ηd

bess denote the charge/discharge efficiency
of the energy storage system ranging from 0 to 1.

)e power balance constraint refers to balancing the
power supply and demand as shown in the following
equation:

Ppv(t) + Pwt(t) + Pde(t) + Pgrid(t) + Plack(t) � Pload(t) + Pess(t),

(8)

where Ppv(t), Pwt(t), Pde(t), Pgrid(t), Pload(t), and Pess(t)

represent the power of photovoltaic, wind turbine, diesel
generator, interaction with external grid, users’ load, and the
energy storage system, respectively.

2.2. Objective Functions. In this HRES model, we consider
two objective functions, one is to minimize the life cycle cost,
and the other is to minimize the rate of lack of electricity.
Specifically, the life cycle cost includes the investment cost
and maintenance cost, which is calculated as

CINV � C
pv
INV + C

wt
INV + C

ess
INV + C

de
INV,

C
pv
INV � CRFpv · Cp

pv
rat · Apv · Cpv,

C
wt
INV � CRFwt · Cp

wt
rat · Nwt · Cwt,

C
de
INV � CRFde · Cp

de
rat · Nde · Cde,

C
ess
INV � CRFess · Cp

ess
rat · Ness · Cess,

(9)

where CINV and Cequipment are the total and unit installed
costs of each component. In this study, we only consider
two-day energy management. )us, CRF is introduced to
calculate the annual cost, which is given by decision makers.

)e maintenance cost of HRES can be expressed as

CMTN � C
pv
MTN + C

wt
MTN + C

ess
MTN + C

de
MTN + C

grid
op ,

C
pv
MTN � CRFpv · Ppv · C

pv
mtn,

C
wt
MTN � CRFwt · Pwt · C

wt
mtn,

C
de
MTN � CRFde · Pde · C

de
mtn,

C
ess
MTN � CRFess · Pess · C

ess
mtn,

C
Grid
op � C

grid
Pur · P

grid
Pur − C

grid
Sal · P

grid
Sal ,

(10)

where CGrid
op is the cost of purchasing and selling electricity

with the grid.
Another objective is to minimize the rate of lack of

electricity. )erefore, the objective functions of HRES are
written as follows:

Minf1 � CINV + CMTN,

Minf2 �  Plack(t).
(11)

Generally speaking, these two objectives are conflicting,
which means we cannot simply optimize one objective.
Reasonably, the higher the cost of investment and main-
tenance, the lower the lack of electricity.

3. The Constrained Coevolutionary
Multiobjective Optimization Algorithm

3.1.Motivation and Framework. )ere are many approaches
to deal with constraints in a MOP as we have reviewed in
Section 1. )ese approaches can obtain favorable results on
benchmark problems. However, real-world engineering
problems are generally complex and multimodal. Generally,
the feasible regions of these problems are usually separated
from each other in objective space and decision space.
Figure 3 explains the objective space of a two-objective real-
world engineering problem, where the red line means the
Pareto front. As shown in Figure 3, there are two feasible
regions B and D in the objective space, separated by in-
feasible region C. For traditional EMO algorithms with
constraint-handling strategies, it is really hard for pop-
ulations to enter into region B due to the existence of in-
feasible region C. Generally speaking, at the beginning of the
algorithm run, most of the solutions will randomly locate
outside region C. As the algorithms adopt the constraint-
handling methods, solutions will converge to the bound of
region C and D and keep exploring region D. As a result, the
algorithm is stuck into the local optimal solution and it is
extremely hard to jump out.

To address this issue, we proposed a constrained coevo-
lutionary multiobjective optimization algorithm, termed
CMOEA-c, which introduces an archive to help explore the
whole decision space. )e thoughts of coevolution can be
widely found in some state-of-the-art EMO algorithms
[25–27], which is proved effective and efficient. Specifically, we
do not process the constraints in this archive.)is archive aims
to find the Pareto optimal front of a normal MOP without
considering the constraints. )erefore, solutions in the archive
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will quickly converge to the true Pareto front, namely, the red
line in Figure 3. In the beginning of the evolution process,
solutions in the main population and the archive are randomly
generated and may locate on regions C and D. As the algo-
rithm runs, solutions in main population will converge to the
optimal solution of region D, which is similar to that of tra-
ditional constrained EMO. As a comparison, since solutions in
the archive do not consider the constraints, they will directly go
through region C. Once the solutions in the archive enter into
region B, this information will pass to the main population
through the sharing function. As a result, the main population
will quickly move to region B and then converge to the true
Pareto optimal front. )e framework of the proposed algo-
rithm is explained in Algorithm 1.

As we can see from Algorithm 1, the main population
and the introduced archive will coevolve by sharing their
offspring (line 8 − 9).)erefore, solutions in region B can be
added to the main population and help to converge to the
true Pareto front. We will explain the selection strategy in
the following section in detail.

3.2. Environmental Selection. After combining with the
offspring, we need to update the population and the assistant
archive by environmental selection, namely, maintain the
population size to a certain number, shown in Algorithm 2.
)ere is one major difference between the update process of
the population and the archive. Specifically, there are two
steps. Firstly, we need to calculate the dominance ranking
information and crowding distance of the population.
Secondly, if the number of nondominated solutions exceeds
N, then we truncate it to N according to crowding distance;
otherwise, we will firstly choose all nondominated solutions
and then select other solutions by crowding distance to make
sure the population size is equal to N.

Notably, for the main population, we use modified
dominance relationship. )at is, a feasible solution

dominates an infeasible solution; if two solutions are fea-
sible, then we use objective values to calculate the dominance
relationship. As for the assistant archive, we do not consider
whether the solution is feasible or not. )e calculation of the
dominance relationship is the same as the traditional ones.

3.3. Solving HRES by CMOEA-c. )e main problem to solve
HRES problem by EMO algorithms is to encode a solution
and design the mutation strategies. Since the HRES model in
the work is complex, we use a structure to represent the
solution, which can be seen in Figure 4.

As we can see from Figure 4, there are five parts de-
scribing a solution for an HRES.)e first two parts indicate
the installed information of an HRES, including whether to
install the equipment or not and the installed capacity.
Specifically, 0 means that the HRES does not select to install
this equipment, and vice versa. Besides, the running state of
this HRES is determined by the first four parts, where ESS
running state and DE running state participate. Notably,
some instrumental variables can help to calculate the ob-
jective function values but do not take part in the mutation,
which are stored in the final part of the solution, e.g., wind
power output, photovoltaic power output, and electricity
prices. Specifically, the values of these variables change
when the equipment select state and installed capacity
change.

As we can see from Figure 4, there are several variable
types in a solution for an HRES. )us, simply applying the
same mutation strategy to evolve the solution is low-efficient
and unreasonable. To accelerate the searching process, we
divide them into several parts and perform different mu-
tation strategies. Specifically, for the equipment select states,
we use a small mutation probability pm � 0.1 because the
change of equipment select state will significantly affect the
running state of an HRES. In addition, for mixed-integer
variables, we will perform integrity checking after the
mutation to ensure the solution is feasible. )e mutation
probabilities for mixed-integer variables and continuous
variables are 0.5 and 1, respectively.

4. Experiments

4.1. Parameter Setting. To examine the performance of
CMOEA-c, we choose SRA [20] and SPEA2+pf (SPEA2+
[28] with penalty function) as the competitor algorithms.
Specifically, SRA is the most representative algorithm using
stochastic ranking to deal with the constraints; SPEA2+ is
chosen as the latest MOEA where the penalty function is
added to each objective directly. All parameters are set to
default values according to the original paper for fairness.
For all algorithms, population size is 100 and the number of
function evaluation is 20000. Each experiment is run for 31
times and the mean value is adopted for comparison and
presentation. )e parameters of this HRES are listed in
Table 1. Besides, the generation power of the wind turbine
and photovoltaic is related to local weather, which is shown
in Figure 5. Moreover, the purchasing price and selling price
of electricity are given as well.

Pareto front
Feasible region

A B C

f1

f2

D

Figure 3: Illustration of a constraint multiobjective problem,
where the feasible regions are separate.
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4.2. Performance of the Proposed Algorithm. To examine the
performance of CMOEA-c, we choose two constraint EMO
algorithms as the competitors. It is worthmentioning that all
experiments are executed 31 times independently. We
choose the mean result among 31 times to present, which is
shown in Figure 6.

As we can see from Figure 6, the Pareto front obtained by
CMOEA-c is better than that of SRA. Moreover, the result
obtained by SPEA2+pf is far away from the true Pareto front.
)is is because directly adding penalty function to objective
functions cannot provide effective information to lead the
search. As a result, there is a large probability for SPEA2+pf to
get into the local optimal solution in the early stage of the
algorithm run.

Compared to SRA, CMOEA-c got better results. )is is
because the introduction of the assistant archive can help to

explore the whole decision space. As we mentioned in
Section 3, since the feasible regions are generally separated,
once the constraint population converges to the optimal
solution, the archive will keep search without considering
the constraints. However, there is no such mechanism in
SRA to help jump from one feasible region to another.
)erefore, CMOEA-c can obtain better results.

4.3. Analysis of the Obtained Result. To further analyse the
result obtained by CMOEA-c, we use Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) [29] to
pick the ideal solution as the final optimal result. Other
approaches like knee point [30, 31] are also suitable for
selecting satisfactory solutions. Specifically, the basic prin-
ciple of TOPSIS is to sort solutions by calculating the

Equipment select state

Installed capacity

ESS running state

DE running state

Instrumental variables

Binary

Mix-integer

Continuous

Continuous

Other

Solution

Components Variable type

Figure 4: Illustration of solution encoding method and the variable type.

Input: Maximum generations MaxGen, population size N

Output: Nondominated set Pop
1 Pop⟵ Initialization(N)

2 Arc ⟵ Initialization(N)

3 While gen≤MaxGen
4 MatingPool1⟵ TournamentSelection(Pop)

5 MatingPool2⟵ TournamentSelection(Arc)
6 OS1⟵ Variation(MatingPool1)
7 OS2⟵ Variation(MatingPool2)
8 Pop⟵ EnvSelection(Pop,OS1,OS2)
9 Arc⟵ EnvSelection(Arc,OS1,OS2)
10 End While

ALGORITHM 1: General framework.

Input: Joint population JointPop, population size N

Output: Updated population Pop
1 Ranking ⟵ NondominatedSort(JointPop)

2 CrowdD is⟵ CalCrowdD is(JointPop)

3 NumNondominated←number(Ranking �� 1)

4 If NumNondominated>N then
5 Pop⟵ JointPop(Ranking �� 1)

6 Pop⟵ Pop(CrowdD is(1: N))

7 else
8 Pop⟵ JointPop(Ranking �� 1)

9 Pop⟵ Pop∪ Pop(CrowdD is(1: N − NumNondominated))

10 End If

ALGORITHM 2: Environmental selection.
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distances between the evaluating solution and the optimal
and the worst solutions. If the evaluating solution is closest
to the optimal solution and farthest from the worst solution,
it is the best; otherwise, it is not an optimal solution. )e
running status of all components is presented in Figure 7.

As we can see from Figure 7(b), when the HRES is
connected with the grid, it is more likely to sell electricity to

the grid when the electricity purchasing price is high. )is is
because the system can minimize the running cost in this
way. It is worth mentioning that wind turbine power gen-
eration is very close to electricity, and thus other compo-
nents of the HRES are running with a low maintenance cost.
In addition, when the HRES is isolated from the main grid, it
needs to balance the power supply and demand all the time.

Table 1: )e parameter values of all equipment used in HRES.

Equipment Unit cost investment Unit cost maintenance Min capacity Max capacity Lifetime
Wind turbine 55 5 0 100 5
Photovoltaic 14 0.1 0 10000 (m2) 25
Energy storage system 3 0.1 0 100 9
Diesel generator 2000 0.05 0 50 20
Power grid — — — 10000 (kW) —
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Figure 5: Running data of HRES in this study. (a) Wind speed and solar radiation. (b) User load and electricity price.
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Figure 6: Pareto fronts obtained by CMOEA-c, SRA, and SPEA2+pf.
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To minimize the running cost of diesel generator and energy
storage system, renewable energy generation (wind power
and photovoltaic) is matched with the electricity load as
much as possible as we can see from Figure 7(a). In con-
clusion, the proposed HRES model is effective which can be
used to optimize the configuration in the designing stage.
Moreover, our proposed CMOEA-c can effectively and ef-
ficiently solve HRES problems with nonlinear parts.

5. Conclusion

Microgrid is an effective tool to make better use of renewable
energy. However, it is a tough task to determine the installed
capacity of components, e.g., the number of wind turbine
and the area of the photovoltaic cell. )us, a hybrid re-
newable energy system (HRES) is proposed, which is gen-
erally nonlinear and large-scale. In addition, as more and
more aspects are taken into consideration, an HRES problem
needs to optimize more than one objective simultaneously.
)erefore, traditional methods like linear programming are
not suitable to solve this kind of problems.

In this paper, we first proposed the mathematical model
of a hybrid renewable energy system, which has nonlinear
parts. We consider two objectives to optimize, one is to
minimize building and daily running cost, and another is to
minimize the rate of lack of electricity. To solve this problem,
we also proposed a coevolutionary multiobjective algorithm.
Specifically, we use an archive to help explore the whole
decision space. To examine the effectiveness of our proposed
algorithm, several experiments are conducted, which show
that the proposed algorithm can effectively find the Pareto
optimal front of HRES problems.

We only consider a two-day (48 hours) energy manage-
ment problem for HRES in this study. However, a longer

period is necessary, e.g., one year. Such problems are large-scale
which have more than 10000 decision variables. So far, it is
really difficult to solve this issue with evolutionary algorithms
[32, 33], which is our future work. On the other hand, the
decision variables of the HRES problem studied in this work
are highly correlated. Specifically, the selecting state can sig-
nificantly affect other decision variables. For such a mixed-
integer problem,we need to develop amore effective algorithm.
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