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A standard system, which is a powerful tool inmaintaining the normal operations and development of a specific industry, is intrinsically
a complex network composed of numerous standards which coordinate and interact with each other. In a networked standard system,
the identification of critical standards is of great significance when drafting and revising standards. However, a majority of the existing
literature has focused on the citation relationships between standards while ignoring the intrinsic interdependent relationships between
the contents of standards. To overcome this limitation, we utilize the text similarity approach (TSA) to quantify the relationship intensity
between each pair of standards, in order to generate a directed weighted network. *e critical contribution of this study is that the
similarity computed by the TSA is incorporated into the traditional PageRank algorithm for the identification of critical standards. *e
improved algorithm comprehensively considers the quantity and importance of neighboring standards and the citation intensity, as
quantified by TSA. *e algorithm is finally validated using the Chinese environmental health standards through comparison with the
traditional PageRank algorithm and different classic measurements.

1. Introduction

Standards refer to the normative documents formulated by
consensus and issued by recognized institutions, in order to
achieve the best operations within a certain scope. In the
current knowledge economy era, the orderly operation of
any industry is basically inseparable from standards, where
the quality of standards reflects a country’s economic and
technological level to a large extent [1–4]. Standards often
play a synergistic role in the form of a standard system,
which refers to an organic whole composed of numerous
standards that interact and coordinate with each other. *e
specific manifestation of interaction and coordination is the
citation between standards, which maps the transmission of
information and knowledge carried by standard documents.
*erefore, a standard citation network is also a transmission
network of information [5].

A networked standard system has the scale-free char-
acteristic, in which a minority of standards play dominant

roles in controlling the transmission of information and
knowledge [6]. In standardization activities, it is very im-
portant to identify the critical standards, in order to assist
decision-making in revising or drafting standards. Specifi-
cally, we should optimize the structure of existing standard
systems in diversified application areas by creating effective
and reasonable links between newly drafted standards and
existing standards, with the aim of enhancing the system-
aticness, compatibility, and coordination. *e newly created
links, in the form of citations, should reflect the essential
relationships between standards. In this situation, ignoring
critical standards may lead to poor system structure or
standard conflicts. In the process of revising standards, we
also should pay attention to the most significant standards,
in order to maximize their economic or social effects, due to
limited resources (i.e., in terms of people, budgets, and time.)

However, it is difficult and/or time-consuming to
identify the critical standards in massive standard docu-
ments when we consider only individual standards while
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ignoring their interactions. In addition to network methods,
the criticality of standards can be assessed by many tradi-
tional methods, such as AHP, ANP, and TOPSIS [7–9].
However, these methods can hardly address the interactions
between standards and are subjective in selecting mea-
surements and determining weights. In recent years, the
literature has begun to pay attention to identifying the
critical standards in directed standard citation networks,
which are useful in disclosing the evolution of standard
networks [10, 11]. However, in the previous literature, the
citations between standards have been represented by ad-
jacent matrix without weights, which provide limited in-
formation. In reality, the citations between standards differ
in intensity, which should be determined by assessing the
intrinsic relationships between the contents of each pair of
standards. To overcome this shortcoming, the text similarity
approach (TSA) is introduced to quantify the relationship
between each pair of standards and further form a directed
weighted network.*e similarity degree metric as computed
by the TSA is used to improve the traditional PageRank
algorithm for identification of critical standards.

*e PageRank algorithm was originally used by Google
to rank web-pages [12] embedded in search engines. As web
page networks and citation networks have similar structures,
many scholars have introduced this algorithm for the
identification of important nodes [13–16]. However, the
traditional PageRank algorithm also has some limitations.
For example, in each iteration of this algorithm, every node
distributes its PageRank (PR) value equally to its immediate
downstream nodes, which makes it incapable of reflecting
the fact that important nodes often have a stronger ability to
build influence. *erefore, we argue that the PR value
distribution is unbalanced; for example, a standard cites two
other standards, then the standard with a more similar topic
should be assigned a higher PR value than the other in each
iteration. So, in order to overcome this limitation, we
propose an improved PageRank algorithm based on TSA. In
this new algorithm, PR values quantified by TSA are
assigned as the weights in each iteration. *e improved
algorithm comprehensively considers the quantity and
importance of neighboring standards and the citation in-
tensity between each pair of standards, as quantified by the
TSA. Our experimental results show that the improved
PageRank algorithm behaves better than the traditional
PageRank algorithm.

2. Literature Review

*is study focuses on the identification of critical standards
using an improved PageRank algorithm based on a network
model. *e network model was developed by integrating the
information with respect to citations and similarity, as
quantified by TSA. In the following, we review the two main
streams of literature on citation network analysis and the
application of TSA.

2.1. Citation Network Analysis. To date, citation network
analysis has been widely used in different kinds of citation

networks, such as journal citation networks, paper citation
networks, and patent citation networks. However, its ap-
plication in standard systems is still in its infancy. Based on
citation networks, the collaborations between authors, in-
stitutions, and countries can be investigated by constructing
collaboration networks. *e theories and methods used in
other citation networks are valuable for our investigation of
standard citation networks, due to their similarities.

Garfield [17] originally proposed the evaluation of
journal articles through citation criteria. *e network
analysis approach was introduced into the area of citation
analysis by Small [18], in which co-citation was used to
quantify the relationships between articles. In 1985, Doreian
[19] proposed the concept of stratified journal network
where the nodes are journals and the relations are citations
aggregated over the articles in these journals. Calero-Medina
et al. [20] constructed a paper citation network by collecting
citation data between papers in specific fields from 1990 to
2005 and analyzed the development path of future research.
With the pure number of citations becoming one of the most
important factors of measuring the scientific impact and
quality of authors, Fister et al. [21] established a three-layer
network and proposed two scenarios with SPARQL queries
to find citation cartels, which boldly revealed a common
academic phenomenon. In 2014, Tobias et al. [22] analyzed
the memes in scientific literature and defined the product of
the frequency of occurrence and the propagation score along
the citation graph as the meme score; this research provided
new directions and inspiration for citation networks. In
addition, many scholars have applied the PageRank algo-
rithm to paper citation networks. Singh et al. [23] used the
PageRank algorithm to rank papers based on a citation
network. Qiao et al. [24] defined the value of each paper by
using an improved weighted PageRank algorithm in com-
bination with journal impact factors. Garcia et al. [25]
transformed the rules of social impact of papers in a citation
network into a mathematical equation, in order to predict
the level of social impact of academic papers in the citation
network, by using cooperative game theory.

Narin [26] was the first scholar to apply the citation
network analysis method to the field of patents, opening up a
new direction of patent literature measurement. Subse-
quently, Li et al. [27] analyzed the topological structure of a
nanotechnology patent citation network through social
network analysis (SNA). Cho and Shi [28] selected 42,650
patent documents issued by Taiwan from 1997 to 2008 and
identified five core technologies and emerging technologies
that affected Taiwan’s economy by analyzing the associated
patent citation network. Fujita et al. [29] established a di-
rected weighted network with patent timeliness and text
relevance between patents as mixed parameters, aiming to
assess the limitations of undirected citation networks. Beltz
et al. [30] adopted a sorting algorithm based on rein-
forcement learning to rank patents in the patent citation
network, comparing it with the traditional PageRank al-
gorithm. *eir results showed that this algorithm behaves
better than the traditional PageRank algorithm.

In addition, previous research on standards has mainly
focused on standardization activities and the impact of
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standard implementation on social and economic benefits
[31–34]. As introduced previously, many standards com-
piled together with complicated interactions form a complex
standard network. *e structure plays a fundamental role in
achieving the objectives of standard systems. However, the
previous research has remained incapable of addressing such
structural problems. In recent years, some scholars have
begun to pay attention to the topological characteristics of
standard citation networks. For example, in 2018, Wei et al.
[10] established a dynamic standard citation network model
and analyzed the structural problems existing in the stan-
dard system of China’s automobile industry. To identify
important standards, Wei et al. [11] proposed an integrated
multi-criteria decision-making method, which combined
the entropy weight (EW) method and a TOPSIS method
based on traditional node measurements, such as degree
centrality and betweenness centrality. However, their
existing research focused on simple 0-1 citation relation-
ships, while ignoring the magnitude information of the
relationships between pairs of standards, which can be re-
flected by their connections in terms of document contents.

2.2. Application of Text Similarity Approach. TSA, which is a
type of text mining method [35–37], is employed to quantify
the relationship between standards in this study. At present,
the literature on TSA is extensive and many algorithms have
been proposed, including the cosine similarity algorithm,
Levenshtein distance algorithm, SimHash algorithm, and
Euclid distance algorithm. *ese algorithms generally in-
clude four main steps: text segmentation, extracting text
keywords, converting spatial vectors using the word fre-
quency, and calculating the text similarity using the relevant
algorithm.

*e theories and methods of TSA have been widely used
in various research fields. Originally, Salton et al. [38]
proposed the VSM (vector space model) in the 1970s. *e
core idea of VSM is to simplify the processing of text content
into vector operations in a vector space, as well as expressing
semantic similarity using spatial similarity. *is intuitive
and understandable form is themost widely usedmethod for
text association analysis. Andy and Alice [39] designed an
algorithm to extract the core content of the design model
using the basic idea of text mining and the Bayesian belief
network model, in order to promote the sharing of infor-
mation among designers. In 2007, Tseng et al. [40] proposed
a set of perfect text mining technologies to assist patent
analysts in carrying out various types of data analysis, the
specific algorithm used in the present paper was greatly
inspired by this research. In addition, some scholars have
attempted to introduce the TSA into the traditional Pag-
eRank algorithm, in order to develop a better algorithm for
web page ranking [41, 42]. However, from the application
perspective, to the best of our knowledge, the TSA or
PageRank algorithm has seldom been used in analyzing
standard documents.

In summary, the current research on standard citation
networks is still at an early stage. *e previous literature has
failed to consider the intrinsic relationships with respect to

content between standards, rather than just 0-1 citation
scoring. Consequently, the existing network models are
represented as adjacency matrices with only two elements: 0
and 1. *is is highly insufficient for measuring the signifi-
cance of standards. On the other hand, text mining has
provided fruitful algorithms for quantifying the similarity
between different kinds of documents, which motived us to
use TSA for the identification of critical standards in
standard networks.

3. Network Model Construction Based on TSA

In this paper, TSA is employed to quantify the relationship
between each pair of standards and, further, to form a di-
rected weighted network, which lays the foundation for
designing an improved PageRank algorithm. *e overall
procedure for critical standard identification is shown in
Figure 1. It is noteworthy to emphasize that the TSA is only
applied to the pairs of standards with citation relationships,
in order to improve the computational efficiency. *is is
particularly important in the situation where the number of
standards is very large.

A directed unweighted standard citation network is
firstly established. After obtaining the text similarities be-
tween pairs of standards with citation relationships, a di-
rected weighted network based on text similarity is
established. Finally, the improved PageRank algorithm is
used for the identification of critical standards.

3.1.Quantifying theCitation IntensitywithTSA. *e key part
of network construction lies in the calculation of similarity
values between each pair of standards. In the following, the
implementation of the text similarity algorithm is described.
*e source code for the TSA method is included in the
supplementary material (available here).

*is paper mainly combines the vector space model
(VSM), the TF-IDF (term frequency-inverse document
frequency) method, and the cosine similarity algorithm to
calculate the text similarity value between each pair of
standards with a citation relationship.*e TF-IDFmethod is
a common weighting technique used for information re-
trieval and data mining [43, 44]. After processing, the
standard document is transformed into an n-dimensional
vector composed of keyword frequencies. Further, the
keyword frequencies are converted into keyword values by
weighting with the TF-IDF method. *en, the text similarity
values between standards are calculated using the cosine
value algorithm.

*e cosine value of two n-dimensional spatial vectors
x
→
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*e specific process of the TSA is depicted as Figure 2.

Step 1 (content extraction from standard documents):
content extraction lays the foundation for similarity
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analysis. In this study, we do not extract all the sen-
tences of an original standard document for similarity
calculation, as the use of too many useless sentences
greatly increases the computational time and may lead
to large deviations in the similarity results. In this study,
we manually reviewed all the standard documents and
selected the most significant sentences that matched the
theme of each standard. In particular, all the titles were
included, whereas all the tables and figures were ex-
cluded from analysis.
*e process includes six steps: content extraction, text
segmentation, invalid words filting, building word
dictionary, building corpus and TF-IDF model, and
similarity computation.
Step 2 (text segmentation): text segmentation is an
important step in the preprocessing of text mining. In

this step, each original standard text is transferred into
a set of “word + part of speech (pos).”

Step 3 (invalid words filtering): invalid words are
automatically filtered out, in order to save storage space
and increase computational efficiency during the text
similarity calculation. In this step, we use a stop word
set and a stop pos set to filter the invalid words. Invalid
words mainly include auxiliary words and tone words.
In this step, we have a list of invalid words and a list of
corresponding pos (called stop word set and stop pos
set). *e words in the stop word set mainly include
auxiliary words and tone words. As we cannot enu-
merate all the words, we think to be invalid at once, in
order to increase the efficiency of filtration, we add an
extra stop pos set including all the invalid, such as
conjunctions and adverbs. *en, all the “word + pos”

Standard database

Standard texts

Directed unweighted
citation network

Pairs of standards
based on citation

relationships
Text similarity
between each

pair of 
standards

Traditional
PageRank
algorithm

Directed weighted
citation 

network based
on text similarity

An improved PageRank
algorithm is designed

for final critical
standard identification

Figure 1: *e overall procedure of critical standards identification.
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sets obtained in the previous step are double-condi-
tionally filtered, where the words are retained only if the
words and corresponding pos are neither in the stop
word set nor the stop pos set. At the same time, the
filtered results form a preliminary word dictionary. We
check this dictionary carefully and add the missing
words which we think are invalid into the list of invalid
words, followed by filtering again. *e above process is
repeated until the word dictionary includes all the
important words; this process also makes the final
calculation results as scientific as possible.
Step 4 (building the final word dictionary based on the
set of important words): the main work of this step is to
assign a specific ID to all the important words for
subsequent quantitative processing.
Step 5 (building a corpus based on the dictionary and
TF-IDF model training): the corpus is a list of sparse
vectors. After this step, each standard document is
transferred into an important word list, stored in the
form of “word ID+word frequency.” *en, TF-IDF
model training is in process. It can be understood that
the TF-IDF model is used to measure a word’s value,
relative to an article, based on the word’s word fre-
quency. After obtaining the TF-IDF model, all the
important word lists above are stored in the form of
“word ID+word value.”
Step 6 (similarity computation): the procedure from
Step 1 to Step 3 is repeated for all the standards to be
compared. *en, the standard contents are transferred
into a list in the form of “word ID+word value” based
on the corpus and TF-IDF model obtained in Step 5.
Further, the text similarities between this standard and
the other standards are calculated using formula (1),
which gives the final standard’s similarity matrix. After
repeating all the steps for each standard, we finally
obtain the final similarity result between each standard.

3.2. Network Model Construction. After calculating the text
similarity of standards, we can quantify the citation intensity
between each pair of standards. A weighted and directed
standard citation network can be represented as a set
composed of three subsets: G � Ns,Ec,Tt􏼈 􏼉, where the
node set Ns � s1, s2, . . . , sn􏼈 􏼉 includes n standards,
Ec � 〈si, sj〉> |si, sj ∈Ns􏽮 􏽯 is the set of directed edges based
on the citation relationship, and Tt � ξij|〈si, sj〉 ∈ Ec􏽮 􏽯 is
the set comprised of the text similarity of each pair of
standards 〈si, sj〉 corresponding to the edges in Ec, as
computed by the TSA algorithm described above. From the
view of the model, the set Tt reflects the substantial dif-
ference between the model herein and the citation network
model of standards in the existing literature, in which only
the citation relationship has been considered [10, 11]. By
incorporating the similarity relationship, the standard sys-
tem becomes a directed and weighted network, which
subsequently changes the network measurements. For ease
of computation, the citation relationships between standards
can be represented as a weighted adjacency matrix

Aw � (aw
ij)n×n, i, j ∈Ns, in which aw

ij � ξij if standard i cites
standard j, and aij � 0 otherwise.

4. Critical Standards Identification with an
Improved PageRank Algorithm

*e standard network model provides an important foun-
dation for the identification of critical standards. However,
in this study, as the standard system is represented as a
weighted network with similarities as weights, the network
measurements are substantially different from those of
traditional unweighted networks. In this study, we focus on
the well-known PageRank algorithm, which has been used
by Google for their search engine and has been widely
applied in citation networks for node evaluation. We note
that the traditional PageRank algorithm equally distributes
the PR values to its downstream nodes, which can be im-
proved by considering the importance difference of
downstream nodes as characterized by the similarity metric.
In this section, we start by analyzing the limitations of the
traditional PageRank algorithm and then propose the im-
proved PageRank algorithm for critical standard
identification.

4.1. Traditional PageRank Algorithm. *e PageRank algo-
rithm was originally used by Google to evaluate the im-
portance of web-pages. In a standard citation network, the
higher PR value a standard has, the greater importance the
standard has. Two basic assumptions are made when ap-
plying the PageRank algorithm to standard citation
networks:

(1) Quantity Assumption. A standard cited by more
other standards is more likely to be important.

(2) Quality Assumption. A standard cited by higher
quality standards is more likely to be important.

*e quantity assumption is usually reflected by other
network measurements, such as degree centrality and en-
tropy [45]. As the concept of quality is abstract, there are
various quality or importance measurements for network
nodes. In the PageRank algorithm, the quality or importance
of a standard in a network is measured by its PR value. *e
PR value of a node can be transmitted to its neighboring
nodes.

*e process of the PageRank algorithm is described as
follows. In the initial stage, each standard is evenly assigned a
PR value 1/n, where n represents the number of standards in
the citation network. *en, a new round of PR value allo-
cation follows, with each standard distributing its current PR
value equally to the standards cited by this standard, based
on its out-degree. Each cited standard obtains the corre-
sponding PR value from the upstream citation standards.
*en, each standard sums all the incoming PR values from
the upstream citation standards, in order to update a new PR
value.When each standard has an updated PR value, a round
of PageRank calculations is completed. After some itera-
tions, the PR value for each standard tends to a stable value,
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which is the final PR value of each standard. *e specific
formula of the algorithm is as follows:

pri
t � (1 − c)

1
n

+ c 􏽘

sj∈M si( )

prj
t

L sj􏼐 􏼑
, (2)

where pri
t is the PR value of standard si, M(si) is the set of

upstream standards that cite standard si, L(sj) is the number
of standards that standard sj cites, and c represents the
damping factor.

4.2. An Improved PageRank Algorithm. *e traditional
PageRank algorithm was originally designed to rank the
importance of web-pages. However, there exist some dif-
ferences between standard citation networks and the web
page networks, in terms of network structure and topo-
logical properties. In the following, we introduce the limi-
tations in the case where the algorithm is directly applied to
the critical standards identification.

*e major limitation is related to the distribution
mechanism of the PR values. For a web page in a web page
network, the quantity and quality of the web-pages linked to
this web page determine the page’s final PR value. *e
traditional PageRank algorithm is an unbiased allocation
algorithm, namely, the PR value of a page is distributed
equally, according to the number of pages linked to this
page, in each iteration. However, in practice, the pages differ
in information quality, and the quality of the pages linked to
a page also highly differ. Hence, the final ranking results may
be inconsistent with the real influence of web-pages, without
considering the importance of linked pages and redesigning
the distribution mechanism of PR values.

If a standard in a standard citation network distributes
its PR value equally (i.e., only according to its out-degree),
the final ranking results may also not be rational. *is is
because the information transmission between standards
that are closely related to each other plays a critical role in
forming the structure of the standard systems. In other
words, we should take the citation quality between stan-
dards into account. To deal with this problem, we use the
text similarity to reflect the citation quality and to dis-
tribute the PR values. When distributing the PR values in
each iteration, the standards whose topics are close to that
of standard sj in M(si) obtain high PR values from
standard sj.

A minor limitation is related to the damping factor c.
*e damping factor c indicates the probability that an user
will continue to browse a web page, and 1 − c indicates the
probability that the user will reopen a new page to browse. In
the traditional PageRank algorithm, the value of c is set as
0.85 [46]. Chen et al. [47] found that the citation distance of
the paper citation network is smaller than that in web page
networks, where the average is 2. *erefore, when the
PageRank algorithm is applied to a paper citation network,
the damping factor has been suggested set as 0.5. As standard
citation network and paper citation network have similar
network structure and topological properties, we also set c as
0.5.

4.3. An Improved PageRank Algorithm Based on Text Simi-
larity Analysis. Based on the above description, we propose
an improved PageRank algorithm based on TSA. *e source
code for the improved PageRank algorithm is included in the
supplementary material. In this algorithm, the damping
factor c is set to 0.5, and every standard distributes its PR
value using the weights measured by the TSA. *e specific
formula of the improved PageRank iteration algorithm is
expressed as

pri
m � (1 − c)

1
n

+ c 􏽘

sj∈M si( )

prj
m ×

ξji

􏽐
sk∈D sj( 􏼁

ξjk

, (3)

where D(sj) is the downstream standard set of standard sj

and ξjk is the text similarity value between standard sj and
standard sk. Compared with the traditional PageRank al-
gorithm, the substantial difference of our improved Pag-
eRank algorithm lies in the allocation mechanism of PR
values, with consideration of the association degree between
upstream and downstream standards, in terms of similarity.

5. Empirical Analysis

*e area of environmental health focuses on all aspects of the
natural and built environment affecting human health.*us,
improving environmental health is an important foundation
for guaranteeing human safety and realizing sustainable
development. *e standards associated with environmental
health have played effective roles in controlling the envi-
ronmental factors andmitigating the related risks that affects
public health through a series of standardization activities.
Due to the interdependence of individual standards, an
environmental health standard system is a typical complex
network, which should be established with desired perfor-
mance with respect to systematicness, compatibility, and
coordination, which are intrinsically determined by the
network structure. In the process of drafting and revising
standards, we must pay attention to the critical standards, in
order to optimize the system structure. *erefore, effective
algorithms or measurements for the identification of critical
standards are highly important.

In this section, we focus on demonstrating the effec-
tiveness of the proposed improved PageRank algorithm, in
contrast to the traditional one, with realistic data of envi-
ronmental health standards. Since the existing measure-
ments or algorithms differ from each other, it is difficult to
compare them directly. *erefore, we propose two as-
sumptions for indirect validation. Firstly, a strong algorithm
should be closely related to classical measurements. Sec-
ondly, a strong algorithm should generally identify more
common critical standards than classical measurements.
*ese two assumptions are justified by the fact that different
measurements or algorithms share a common objective of
assessing node importance despite their distinctions. *e
validation process was carried out in two steps. In the fist
step, we assessed the correlation differences between the two
PageRank algorithms and classical measurements. In the
second step, we compared the differences with respect to the
capability of critical standards identification of these two
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algorithms. *is was performed by analyzing the proportion
of common critical standards identified simultaneously by
the different classical measurements and each PageRank
algorithm.

5.1. Data Collection andNetworkVisualization. We selected
103 standards on environmental health from the category
of health-related standards from National Health Com-
mission of the People’s Republic of China (http://www.nhc.
gov.cn/wjw/pgw/wsbz.shtml). *e corresponding citation
relationship was established by viewing the normative
document of each standard and confirmed on the website
of the National Public Service Platform for Standards
Information (http://std.samr.gov.cn/gb) to ensure the
accuracy of the data. After obtaining each standard’s ci-
tation data, each standard was assigned with a unique ID
from “S1” to ”S103,” and an initial adjacency matrix with
0-1 elements of the citation network, as established in the
EXCEL 2019. *e adjacency matrix of the standard ci-
tation network was then imported into Gephi, an open-
source visualization software for network analysis, in
order to visualize the network structure, in which each
node represents a standard and each directed edge rep-
resents a citation relationship, as shown in Figure 3. *e
classical node measurements, including degree centrality,
eigenvector centrality, eccentricity, and betweenness
centrality, were also computed by Gephi. *en, the TSA
was performed to update all the “1” elements in the ad-
jacency matrix to form a weighted and directed network.
After that, the improved PageRank algorithm was pro-
grammed in Python 3.7.3 to rank the importance of
standards. *e detailed information of standards men-
tioned in this paper is shown in Table 1. In the following,
we represent the results of the classical measurements, in
order to validate the effectiveness of our improved Pag-
eRank algorithm for critical standards identification.

Each node represents a standard; the directed edges
represent the citation relationship. *e size of nodes is
displayed according to its in-degree, and the nodes holding
the same out-degree share the same color.

5.2. Results of Classical Measurements

5.2.1. Selection of Classical Measurements. Extensive liter-
ature in the field of network analysis has been devoted to
the concept of centrality, which aims at answering a
fundamental question: which nodes occupy the core
positions of a network? Some centrality measurements
have been proposed to evaluate the importance of nodes
[48–51]. We selected four widely investigated measure-
ments, namely, degree centrality, eigenvector centrality,
eccentricity, and betweenness centrality, to evaluate the
importance of China’s environmental health standards
system and to validate the improved PageRank algorithm.

It should be noted that the weighted adjacency matrix
constructed in this paper was only used in our improved
PageRank algorithm. *e citation relationship between

standards here was represented as an unweighted adjacency
matrix Au � (au

ij)
n×n, i, j ∈Ns, in which au

ij � 1 if standard i

cites standard j, and au
ij � 0 otherwise.

(1) Degree Centrality. In a directed standard citation net-
work, degree centrality is divided into in-degree and out-
degree. In general, a standard with high in-degree reflects the
fact that many standards cite it, indicating its strong impact
across the whole network [11]. In contrast, the relationship
between out-degree and node importance is implicit.*e in-
degree of standard i ∈Ns, dc

i
in, is defined as dc

i
in � 􏽐j∈Ns

au
ji,

which reflects the number of standards that cite the con-
cerned standard. Similarly, the out-degree of standard
i ∈Ns, dc

i
out, is defined as dci

out � 􏽐j∈Ns
au

ij, which reflects
the citation count of standard i.

(2) Eigenvector Centrality. Degree centrality has the limi-
tation of only considering the number of neighboring
standards, while the eigenvector centrality, which is similar
to the PageRank algorithm, overcomes this problem by
considering the importance or quality of neighboring
standards. *e eigenvector centrality gives a relative score to
each node in the network, as proportional to the sum of the
eigenvector centrality of all the nodes connected to it [52]. In
a standard citation network, the higher eigenvector cen-
trality a standard has, the more important the standard is.
*e eigenvector centrality of standard i ∈Ns, eci, is rep-
resented as

eci
�
1
λ

􏽘
j∈Ns

a
u
jiec

j
, (4)

where λ represents the eigenvalue of adjacency matrix A.

(3) Eccentricity. Eccentricity is a different measurement,
which defines the importance of a standard by describing its
“influence transfer depth” in the network. Eccentricity refers
to the maximal distance from a node to other nodes in a
network [50]. In a standard citation network, a standard
with high eccentricity has a persistent impact on other
standards. *e eccentricity of a standard i ∈Ns, eti, is
represented as

eti � max lenji􏼐 􏼑
j∈Ri

, (5)

whereRi is the set of standards that standard i can transmit
information to a certain path in the network and lenji is the
length of the shortest path between standard j and standard
i.

(4) Betweenness Centrality. *e betweenness centrality is a
measure of centrality in a network based on the shortest
paths, which refers to the ratio of the number of shortest
paths passing through a node to the total number of all the
shortest paths in the network [53]. Consequently, a standard
with high betweenness centrality plays a hub-role in in-
formation transmission. *e betweenness centrality of a
standard i ∈Ns, bc

i, is represented as

Complexity 7

http://www.nhc.gov.cn/wjw/pgw/wsbz.shtml
http://www.nhc.gov.cn/wjw/pgw/wsbz.shtml
http://std.samr.gov.cn/gb


Figure 3: *e China’s environmental health standard citation network.

Table 1: *e detailed information of the standards mentioned in this paper.

Id Standards name
S59 Hygienic standards for drinking water
S66 Standard test method for drinking water: indicators of disinfection by-products
S5 Standard test method for drinking water: indicators of organic matter
S63 Standard test method for drinking water: sensory properties and physical indicators
S64 Standard test method for drinking water: indicators of inorganic nonmetal
S6 Standard test method for drinking water: indicators of metal
S4 Standard test method for drinking water: indicators of pesticide
S67 Standard test method for drinking water: indicators of disinfectant
S61 Standard test method for drinking water: collection and preservation of water samples
S60 General principles of hygienic standards for drinking water
S52 Hygienic standards for hotel
S30 Hygienic standards for planning of village and town
S95 Hygienic standards for restaurants
S94 Hygienic standards for secondary water supply facilities
S70 Indoor air quality standards
S47 Hygienic standards for gymnasiums
S91 Hygienic standards for inhalable particulate in indoor air
S53 Hygienic requirements for innocuous feces
S87 Safety evaluation standards for drinking water distribution equipment and protective materials
S97 Quality assurance specification for biological monitoring
S84 Standard for determining the chronic arsenic poisoning area of residents caused by environmental arsenic pollution
S86 Sanitary safety evaluation of chemical treatment agent for drinking water
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bci
� 􏽘

m,n∈Ns

σ(m, n|i)

σ(m, n)
, (6)

where σ(m, n) is the number of all the shortest paths from
standard m to standard n and σ(m, n|i) is the number of
those paths passing through standard i other than standard
m or standard n. It is important to notice that standard i

cannot be either the starting or ending node, that is,
i∩ (m, n) � ∅.

It should be noted that this paper is not a denial of these
classical measurements but, instead, inheriting and im-
proving them. *e improved PageRank algorithm not only
comprehensively considers the quantity and quality of
neighboring standards but also highlights the quality of the
citation between the standards as quantified by TSA.

5.2.2. Results of Classical Measurements. In view of the large
number of standards, we only represent the top ten stan-
dards in criticality identification in this paper, as shown in
Table 2. As the in-degree can better reflect the importance of
the standard than out-degree, we mainly analyzed in-degree
centrality. As can be seen from Table 2, the top 10 standards
are almost all standards relating to drinking water methods,
indicating that the standards of drinking water occupy a very
important position in the whole environmental health
standards system. In addition, we found that, in the top 10
standards ranked by out-degree, only S59 and S66 are in the
list of top 10 standards ranked by in-degree. It means that
there exists a trade-off between in-degree and out-degree
measurements.

*e results of eigenvector centrality in Table 2 are
normalized, which show that the top 10 standards, with
respect to eigenvector centrality, are still the standards re-
lating to drinking water; again verifying the importance of
drinking water standards in China’s environmental health
standard system. In addition, S59 ranks first in both in-
degree and out-degree, but drops to sixth in terms of ei-
genvector centrality. *is phenomenon is due to the core
idea of eigenvector centrality, which not only considers the
number of neighboring standards, but also highlights the
quality of them.

As can be seen from Table 2, the eccentricity of each
standard in the network is not high, with a maximum of 3.
As the eccentricity of a standard defines the importance of a
node by describing the “transfer depth of influence” of a
node in the network, in the citation network, the infor-
mation transmission of a standard is interrupted by “three
layers” at most. *is, to some extent, indicates that the
current environmental health standards do not have far-
reaching impacts. In addition, it is noteworthy that most of
the top 10 standards, in terms of eccentricity, are also about
drinking water.

As we can see from Table 2, among the top 10 standards,
the betweenness centrality values vary from each other. *e
two standards S59 and S52 are the most prominent, in terms
of betweenness centrality, with values of 256.5 and 62.9,
respectively. As can be seen from Figure 3, these two
standards are indeed information hubs of the network. If

these two nodes were removed, the entire network would be
broken down into several isolated components, inevitably
interrupting the information transmission between
standards.

5.3. Results of Improved PageRank and Traditional PageRank

5.3.1. An Example. In this section, we compare the results of
the two PageRank algorithms, in order to assess their dif-
ferences with two exemplified standards. Table 3 shows that
the PR values of the top five standards under the two
PageRank algorithms are basically the same. However, the
four standards S67, S87, S61, and S62 exhibit higher sig-
nificance in the improved PageRank algorithm than the
traditional PageRank algorithm. *e four standards S5, S70,
S52, and S53 are evaluated as more important by the tra-
ditional PageRank algorithm.

To explain the essential differences between the two
PageRank algorithms, we selected two standards S5 and
S67 due to their large ranking gaps in the two algorithms.
Specifically, S5 ranks fourth in the traditional PageRank
algorithm and 13th in the improved PageRank algorithm,
while S67 ranks 20th in the traditional PageRank algorithm
but rises to seventh in the improved PageRank algorithm.
As a standard’s PR value is derived from its upstream
standards that cite it, we also analyze the upstream
standards of the two standards. Table 4 shows that their
upstream standards are almost the same; that is, S87, S97,
S59, S84, and S86 all cite S5 and S67. Even if S5 has one
more upstream standard S4 which ranks 16th and 28th in
the improved PageRank and traditional PageRank algo-
rithms, respectively, it does not have a significant impact
on the PR values of S5 and S67. In addition, S5 has more
upstream standards to distribute PR values than S67, but
its final PR value is lower than S67, which is counterin-
tuitive. *erefore, we can judge that the distribution
mechanism of PR values of the two different PageRank
algorithms leads to the substantial differences in the re-
sults presented in Table 3.

To analyze the interdependent relationships between
standards, Figure 4 shows the word cloud diagrams of seven
standards with the font size of keywords positively correlated
to the keyword count in each standard. *e cloud diagrams
show that S59, S86, and S87 are closely related with each

Table 2: Results of critical standards based on classical
measurements.

Rank Id dci
in Id dci

out Id eci Id eti Id bci

1 S59 14 S59 16 S66 1 S66 3 S59 256.5
2 S66 9 S94 14 S5 0.889 S6 3 S52 62.9
3 S5 8 S86 14 S63 0.888 S91 3 S30 17
4 S63 8 S87 14 S64 0.747 S63 3 S95 11.9
5 S64 7 S84 14 S6 0.673 S64 3 S66 9
6 S6 7 S97 13 S59 0.598 S5 3 S94 6
7 S4 6 S73 12 S61 0.452 S67 3 S70 5
8 S67 6 S32 7 S60 0.452 S61 3 S64 4
9 S61 6 S1 4 S4 0.452 S62 3 S61 4
10 S60 6 S66 3 S67 0.452 S60 3 S47 3.4
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other in terms of drinking water. *e three standards S5,
S59, and S67 simultaneously concern indicators. *eir
similarity values are further shown in Figure 5, which shows
that the similarity between S67 and each upstream standard
is generally higher than S5, implying that S67 receive more
PR values from S87, S97, S59, S84, and S86 than S5.
According to the improved PageRank algorithm, S67 has a
stronger ability to acquire PR values than S5, due to having
closer relationship with its upstream standards. *erefore, it
is rational that S67 is identified as a more important standard
than S5 by the improved PageRank algorithm. *e above
example demonstrates the superiority of our improved
PageRank algorithm, with respect to the two exemplified
standards.

Word cloud diagram presents the topics of a document.
*e standards S59, S86, and S87 are closely related with each
other in terms of “drinking water,” while the three standards
S5, S59, and S67 simultaneously concern the “indicators.”

*e five upstream standards S59, S84, S86, S87, and S97
simultaneously cite S5 and S67; these five standards con-
tribute to the final PR value of S5 and S67. *e similarity
between S67 and each upstream standard is generally higher
than S5, which imply that S67 will receive more PR value
from the five common standards than S5.

5.3.2. Performance Comparison of the Identification Capa-
bility of Critical Standards. *e previous analysis demon-
strates that the improved PageRank algorithm has a
significant impact on the importance assessment of stan-
dards. In the following, we focus on exploring the rela-
tionships between the classical node measurements and the
two PageRank algorithms by correlational analysis and by
varying the parameter of the predetermined proportion of
critical standards.

Each node in the graph represents a standard with data
under the corresponding measurement. *e left four figures
show the correlation between the improved PageRank

algorithm and classical measurements; the right ones show
the correlation between the traditional PageRank algorithm
and classical ones. c represents the correlation coefficients
between the corresponding measurements.

As shown in Figure 6, the left figure in each row rep-
resents the correlation between the improved PageRank
algorithm and classical measurements, and the right figure
in each row shows the correlation between the traditional
PageRank algorithm and classical measurements.

By comparing the correlation coefficients of c, we find
that the correlations of the improved PageRank algorithm
and the classical measurements are stronger than those of
the traditional PageRank algorithm. *is proves the as-
sumption proposed previously that the improved PageRank
algorithm is more comprehensive in the identification of
critical standards. In addition, we can also see a phenom-
enon occurring with the improved PageRank algorithm,
where the points with high PR values and high classical
measurements data values are denser than the traditional
PageRank algorithm. *is means that the improved Pag-
eRank algorithm behaves better than the traditional algo-
rithm in terms of differentiating capability.

In order to further demonstrate the efficacy of our
improved PageRank algorithm, we analyze the proportion of
common critical standards identified by the different clas-
sical measurements and each PageRank algorithm. We
define a parameter pcZm to represent the proportion of
critical standards, which is calculated as

pcZm �
ncs

Ns

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
, (7)

where ncs is the number of top critical standards selected and
|Ns| is the total number of standards in the citation network
G.

Meanwhile, we define the proportion of common top
critical standards identified by classical measurements, pcZc,
as

pcZc �
n
χ
cs

Ns

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
, (8)

where n
χ
cs is the number of common top critical standards

identified by classical measurements and the PageRank
algorithm.

*e ideal function relationship between pcZm and pcZc is
y � x, that is, the ranking results of standards between the
improved PageRank algorithm and classical measurements
are absolutely the same. As we can see from Figure 7, the
relation curves between pcZm and pcZc with respect to the
improved PageRank algorithm under different classical
measurements is closer to y � x. In particular, in the interval
of (0.6, 1.0), the relation curve of the improved PageRank
algorithm and the four classical measurements completely
coincides with y � x, while that with the traditional Pag-
eRank algorithm deviates greatly.

A strong algorithm will generally identify more common
critical standards as classical measurements. *e standard
ranking results obtained by the two PageRnk algorithms are
fitted with the four classical measurements in the proportion

Table 3: Results of critical standards based on two PageRank
algorithms.

Rank Id pri
t Id pri

m

1 S59 0.100829319 S59 0.107478692
2 S66 0.069139751 S6 0.072567929
3 S6 0.048371879 S66 0.065847632
4 S5 0.044023854 S63 0.058175466
5 S63 0.044021582 S64 0.049741324
6 S70 0.04191036 S91 0.047526619
7 S64 0.036734466 S67 0.033505722
8 S52 0.033686738 S87 0.032926043
9 S91 0.032476497 S61 0.032181632
10 S53 0.030890666 S62 0.029800786

Table 4: Upstream standards of S5 and S67.

Id Upstream standards
S5 S87, S97, S59, S84, S86, S4
S67 S87, S97, S59, S84, S86
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(a) (b)
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(e) (f )

(g)

Figure 4: *e word cloud diagram of seven standards. (a) S5. (b) S59. (c) S67. (d) S84. (e) S86. (f ) S87. (g) S97.
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Figure 5: *e text similarity of S5 and S67 with common upstream standards.
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Figure 7: Proportion of common critical standards identified by different classical measurements and each PageRank algorithm.
(a) Improved PageRank algorithm. (b) Traditional PageRank algorithm.
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(0.0, 0.2, 0.4, 0.6, 0.8, 1.0); dotted line y � x represents the
perfect fit. Compared with traditional PageRank algorithm,
our improved PageRank algorithm does not show obvious
advantage in proportion (0.0, 0.6), while behaves much
better in proportion (0, 6, 1.0).

To quantify the distance between the relationship curve
between pcZm and pcZc and y � x, we here define the two
measurements of identification capability: the mean and
variance of discrete deviations, μic and σ2ic, which are rep-
resented as

μic �
􏽐

Ns| |
ncs�1 ncs − n

χ
cs

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Ns

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

, (9)

σ2ic �
􏽐

Ns| |
ncs�1 ncs − n

χ
cs

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ncs􏼐 􏼑

2

Ns

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

. (10)

A PageRank algorithm with lower μic is associated with
stronger identification capability, regardless of the pre-
defined proportion of critical standards pcZm. Further, σ2ic is
associated with the stability or the variability of a mea-
surement. *e computational results of μic and σ2ic with
respect with each class measurement are shown in Table 5. It
can be seen that the improved PageRank algorithm is more
capable of identifying the critical standards than the tra-
ditional PageRank algorithm.

6. Conclusion

*is paper aimed to overcome the limitations of traditional
PageRank in the context of standard citation networks, by
incorporating the TSA. Specifically, an improved PageRank
algorithm, which incorporates a different distribution
mechanism for PR values, was proposed for the identifi-
cation of critical standards. To demonstrate the effectiveness
of the improved algorithm, we used standard data from the
National Health Commission of the People’s Republic of
China. *e verification process was carried out by analyzing
the correlations between the two PageRank algorithms and
classical measurements. We also defined two mean- and
variance-based metrics, in order to evaluate the identifica-
tion capability by computing the common proportion of
critical standards identified by classical measurements and
PageRank algorithms simultaneously. Our results show that
the improved PageRank algorithm is superior to the tra-
ditional PageRank algorithm. Due to the substantial dif-
ferences between weighted and unweighted networks, the
network model is highly valuable in designing measure-
ments for the importance evaluation of standard nodes.

It should be noted that there are some shortcomings in
this paper, which deserve further exploration in our ongoing
study. In addition to VSM, other TSA algorithms can also be

applied to quantify the connectivity of standards; the rele-
vant researches Onan et al. have done can provide great
inspiration [35–37, 54]. Meanwhile, other network mea-
surements can be proposed for the weighted standard ci-
tation network. A meaningful research direction would be to
compare the differences of the results of critical standards
between identification obtained by different network
models. Finally, the improved PageRank algorithm is based
on a small-scale standard citation network.*e research idea
proposed in this study can be employed to other large-scale
standard citation networks in different application areas.
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