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)is paper presents the problem of robust and nonfragile stabilization of nonlinear systems described by multivariable
Hammerstein models.)e objective is focused on the design of a nonfragile feedback controller such that the resulting closed-loop
system is globally asymptotically stable with robust H∞ disturbance attenuation in spite of controller gain variations. First, the
parameters of linear and nonlinear blocks characterizing the multivariable Hammerstein model structure are separately estimated
by using a subspace identification algorithm. Second, approximate inverse nonlinear functions of polynomial form are proposed
to deal with nonbijective invertible nonlinearities. )ereafter, the Takagi–Sugeno model representation is used to decompose the
composition of the static nonlinearities and their approximate inverses in series with the linear subspace dynamic submodel into
linear fuzzy parts. Besides, sufficient stability conditions for the robust and nonfragile controller synthesis based on quadratic
Lyapunov function, H∞ criterion, and linear matrix inequality approach are provided. Finally, a numerical example based on twin
rotor multi-input multi-output system is considered to demonstrate the effectiveness.

1. Introduction

)e nonlinear modeling of real-world processes, which are
complex in nature, remains a challenging problem. How-
ever, much research works remain to be done for realization
on nonlinear mathematical models that accurately represent
these processes [1–4]. One way to cope with this difficulty is
to use the block-oriented nonlinear models [5–7], which
represent a combination of static nonlinear components and
linear dynamic submodels. )ese models are popular in
nonlinear modeling because of their advantages to be quite
simple to understand and easy to use [8], for instance, the
Hammerstein model (a static nonlinear component followed
by a linear submodel), Wiener model (a linear submodel
followed by a static nonlinear component), and Hammer-
stein–Wiener model (a linear submodel sandwiched by two
static nonlinearities or vice versa). In particular, the simplest
model structure of them is the Hammerstein model, which
has been extensively used for modeling electrical generators
[9], chemical processes [10], and biological processes [11]
and is also used in signal processing applications [12].

Over the past decades, various parametric subspace
identification methods have been very successful for the
modeling of multivariable Hammerstein models. )ese
methods include the iterative identification approach
[13, 14], the overparameterization method [15], the blind
approach [16], the instrumental variables method [17], the
stochastic approach [18], and the least square support vector
machines [19]. Most of them are based on the numerical
subspace state-space system identification algorithm [20],
the canonical variate analysis approach [21], and the mul-
tivariable output error state-space (MOESP) algorithm
[10, 22].

From a control point of view, the conventional control
scheme of a Hammerstein model has introduced the inverse
of the nonlinear block into the appropriate place. )is leads
to reject the nonlinearity effect in the controller design [23].
Hence, the nonlinear control strategy problem is converted
into a new linear one; also, any standard linear controller for
a linear dynamic submodel can be applied. It should be a
strong assumption that this nonlinearity is supposed to be
exactly invertible [24–26]. In contrast, the performance of
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this strategy becomes limited when the nonlinear compo-
nent function is not bijective. In this view, many algorithms
and approximations are used in the literature to determine
the corresponding nonlinearity inverse. One may refer to
latest research works based on polynomial form approxi-
mation [23, 27, 28], Bernstein–Bezier neural network [29],
De Boor algorithm [30], and rational B-spline model ap-
proximation [31].

On the other hand, many studies have been devoted
to the robust and nonfragile controller design problem
for complex systems. Indeed, it is clear that relatively
small perturbations in controller gain parameters can
result in instability of the controlled system [32, 33].
Hence, it is necessary that any controller should be able
to tolerate some bounded uncertainty in its parameters
[3, 34, 35]. For instance, a nonfragile controller for
uncertain nonlinear networked control systems was
proposed in [36]. In [37], a nonfragile robust controller
was investigated for uncertain large-scale systems. Lee
et al. [38] proposed a nonfragile fuzzy H∞ controller for
nonlinear systems described in Takagi–Sugeno (T-S)
fuzzy model, and so on. To our best knowledge, the
nonfragile control problem for Hammerstein models has
not been treated yet.

In this framework, we use the MOESP subspace iden-
tification algorithm, which mainly involves two aspects: (i)
determining the order of the system and obtaining the
structure of the estimated state-space model and (ii) iden-
tifying the mathematical model’s unknown parameters from
the available input-output data [10]. Afterwards, we propose
a new control strategy for multivariable Hammerstein model
including approximate inverse nonlinearities of polynomial
form. Using then the T-S fuzzy model representation
[1, 2, 34, 39], the composed nonlinear functions of the
considered static nonlinearities and their approximate in-
verses in series with the linear dynamic submodel are
decomposed into linear fuzzy parts. )e resulting model is
finally obtained by interpolating the constructed linear fuzzy
parts through nonlinear fuzzy membership functions
[2, 4, 35, 40]. In this regard, a nonfragile H∞ feedback
controller is designed subject to controller gain variations
guaranteeing both the stability and disturbance attenuation
of the controlled nonlinear system.

)emain contributions of this paper are listed as follows:

(i) A modified subspace-based algorithm is used to
identify nonlinear systems described by multivari-
able Hammerstein models.

(ii) Compared with the existing results using the normal
nonlinearity inversion method, we derive a new
control strategy based on approximate inverse
nonlinear functions of polynomial form. Further-
more, we appeal the T-S fuzzy model representation
to decompose the existing nonlinearities and fa-
cilitate the controller synthesis.

(iii) From a control point of view, we develop a robust
and nonfragile H∞ controller with variation in the
control law that guarantees both the asymptotic

stability and disturbance attenuation of the con-
trolled nonlinear system and its identified multi-
variable Hammerstein model.

(iv) Besides, sufficient controller design conditions in
terms of linear matrix inequalities (LMIs) are
established, which can be efficiently solved by
convex optimization techniques.

Following the introduction, this paper is organized as
follows. )e subspace identification method for multi-
variable Hammerstein model is presented in Section 2.
Section 3 is reserved to the stability analysis and non-
fragile H∞ control synthesis. A numerical example based
on twin rotor multi-input multi-output system (TRMS)
is considered in Section 4 to demonstrate the
effectiveness.

2. MOESP Algorithm-Based
Subspace Identification

We consider the multi-input multi-output (MIMO) Ham-
merstein model configuration, as depicted in Figure 1. As
mentioned obviously, the model’s structure consists of
m-static nonlinearities fi(·) followed by a linear dynamic
submodel.

More precisely, each nonlinear component fi(·), for
i � 1, 2, . . . , m, is characterized by the following form:

vi,k � fi ui,k􏼐 􏼑 � λi1ui,k + λi2u
2
i,k + · · · + λiυu

υ
i,k, (1)

and the linear dynamic submodel is described by the fol-
lowing state-space representation:

xk+1 � Axk + B1Vk + B2wk,

Yk � Cxk + DVk + εk,
􏼨 (2)

where xk ∈ Rn is the state vector,
Vk � v1,k v2,k . . . vm,k( 􏼁

⊥ is the unmeasurable output,
wk ∈ Rn is the external disturbance vector, εk ∈ Rq is the
measurement noise vector, uk � u1,k u2,k . . . um,k( 􏼁

⊥ is
the input vector, Yk � y1,k y2,k . . . yq,k􏼐 􏼑

⊥
is the output

vector, and the notation (⊥) denotes the transposed element.
A ∈ Rn×n, B1 � B11 B12 . . . B1m( 􏼁 ∈ Rn×m, B2 ∈ Rn×n,
C ∈ Rq×n, and D � D1 D2 . . . Dm( 􏼁 ∈ Rq×m are unknown
state-space matrices.

By substituting (1) into (2), we obtain the following
open-loop model:

xk+1 � Axk + B
λ
1Uk + B2wk,

Yk � Cxk + D
λ
Uk + εk,

⎧⎨

⎩ (3)

where Uk � U1,k U2,k . . . Um,k( 􏼁
⊥, Ui,k � ui,k u2

i,k􏼐 . . .uυ
i,k)⊥,

Bλ
1 � (Bλ

11Bλ
12 . . .Bλ

1m), Dλ � (Dλ
1 Dλ

2 . . . Dλ
m ), Bλ

1i � B1iλ
vec
i ,

Dλ
i � Diλ

vec
i , and λveci � λi1 λi2 . . . λiυ( 􏼁, for i � 1,2, . . . ,m.

In order to estimate the system order and determine the
unknown elements, as are presented in system (3), we use
the MOESP algorithm, which is basically defined by the
following steps:
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(i) Step 1: for sake of simplicity and feasibility, we
assume that ‖λveci ‖2 � 1 and λi1 � 1, for
i � 1, 2, . . . , m [23, 28, 41].

(ii) Step 2: we determine the estimates 􏽢A, 􏽢B
λ
1, 􏽢B2, 􏽢C, and

􏽢D
λ of matrices A, Bλ

1, B2, C, and Dλ directly from the
available input-output data.

(iii) Step 3: we compute a matrix estimate 􏽢Θi of Θi,
which is defined as

Θi ≜
B
λ
1i

D
λ
i

⎛⎝ ⎞⎠ �
B1i

Di

􏼠 􏼡λveci , (4)

by solving the following optimization problem:

􏽢B1i,
􏽢Di,

􏽢λ
vec
i􏼐 􏼑 � arg min

B1i ,Di,λ
vec
i

􏽢Θi −
B1i

Di

􏼠 􏼡λveci

���������

���������

2

2

⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(5)

(iv) Step 4: based on the singular value decomposition
(SVD) theorem, as is detailed in [42], we calculate
the partition of 􏽢Θi as follows:

􏽢Θi � U1 U2􏼂 􏼃
Σ1 0

0 Σ2
􏼢 􏼣

V
⊥
1

V
⊥
2

⎡⎣ ⎤⎦, (6)

where U1, V1, and Σ1 are specific matrices of ap-
propriate dimensions.

(v) Step 5: we compute finally the estimates 􏽢B1i, 􏽢Di, and
􏽢λ
vec
i so that the following system of equations is
satisfied:

􏽢B1i

􏽢Di

⎡⎣ ⎤⎦ � U1Σ1,

􏽢λ
vec
i � V1, for i � 1, 2, . . . , m.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

3. Nonfragile H‘ Control Scheme Design

In this section, we discuss sufficient conditions that guar-
antee the global asymptotic stability in closed loop of the
following system:

xk+1 � Axk + B1Vk + B2wk,

zk � Czxk + D1Vk + D2wk,
􏼨 (8)

where Cz ∈ Rp×n is the output matrix of the controlled
output vector zk ∈ Rp, D1 ∈ Rp×m, and D2 ∈ Rp×n.

In what follows, we assume that the m-nonlinearities:

vi,k � fi ui,k􏼐 􏼑 � ui,k + λi2u
2
i,k + · · · + λiυu

υ
i,k, (9)

are not bijective and approximated of the following form:

ui,k � f
−1
i,app 􏽢vi,k􏼐 􏼑 � βi1􏽢vi,k + βi2􏽢v

2
i,k + · · · + βiυ􏽢v

υ
i,k + hot.

(10)
where (hot) denotes the higher order terms. As the non-
linearities (9) and (10) are in series, we may write

vi,k � ψi 􏽢vi,k􏼐 􏼑 � fi f
−1
i,app 􏽢vi,k􏼐 􏼑􏼐 􏼑. (11)

In addition, the parameters βij are determined by solving
􏽢vi(+∞) � vi(+∞), for i � 1, 2, . . . , m. An example of cal-
culation for the order υ � 3 is detailed in Appendix A.

With the above approximation, system (8) is trans-
formed as follows:

xk+1 � Axk + B
ρ
1

􏽢Vk + B2wk,

zk � Czxk + D
ρ
1

􏽢Vk + D2wk,

⎧⎨

⎩ (12)

where B
ρ
1 � B

ρ1
11 B

ρ2
12 . . . B

ρm

1m( 􏼁, D
ρ
1 � D

ρ1
11 D

ρ2
12 . . . D

ρm

1m( 􏼁,
B
ρi

1i � B1iρi,k(􏽢vi,k), D
ρi

1i � D1iρi,k(􏽢vi,k), for i � 1,2, . . . ,m, ρi,k

(􏽢vi,k)�
ψi(􏽢vi,k)/􏽢vi,k if 􏽢vi,k≠0
1else􏼨 , and 􏽢Vk � 􏽢v1,k 􏽢v2,k . . . 􏽢vm,k( 􏼁

⊥.

Using then the polytopic transformation method, the
m−nonlinearities ρi(􏽢vi,k) are decomposed as follows:

ρi,k 􏽢vi,k􏼐 􏼑 � H
1
i 􏽢vi,k􏼐 􏼑σi + H

2
i 􏽢vi,k􏼐 􏼑σi, (13)

with

H
1
i 􏽢vi,k􏼐 􏼑 �

ρi,k 􏽢vi,k􏼐 􏼑 − σi

σi − σi

, (14)

H
2
i 􏽢vi,k􏼐 􏼑 � 1 − H

1
i 􏽢vi,k􏼐 􏼑, (15)

where σi and σi are the maximum and minimum of ρi(􏽢vi,k),
respectively.

For the convenience of notations, we define
H

j
i � H

j
i (􏽢vi,k), wi � wi(􏽢vj,k), and hi � hi(􏽢vj,k).

)ereafter, we construct the following fuzzy subsystems:

rule 1: if 􏽢v1,k isH
1
1􏼐 􏼑 and 􏽢v2,k isH

1
2􏼐 􏼑 and . . . 􏽢vm,k isH

1
m􏼐 􏼑,

thenxk+1 � Axk + 􏽥B11
􏽢Vk + B2wk, zk

� Czxk + 􏽥D11
􏽢Vk + D2wk,

(16)

rule 2: if 􏽢v1,k isH
1
1􏼐 􏼑 and 􏽢v2,k isH

1
2􏼐 􏼑 and . . . 􏽢vm,k isH

2
m􏼐 􏼑,

thenxk+1 � Axk + 􏽥B12
􏽢Vk + B2wk, zk � Czxk + 􏽥D12

􏽢Vk + D2wk,

⋮
(17)

u1

u2

um

v1

v2

vm

y1

y2

yq

Linear
dynamic
submodel

f1 (-)

f2 (-)

fm (-)

... ... ... ...

Figure 1: Multivariable Hammerstein model configuration.
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rule ς � 2m
: if 􏽢v1,k isH

2
1􏼐 􏼑 and 􏽢v2,k isH

2
2􏼐 􏼑

and . . . 􏽢vm,k isH
2
m􏼐 􏼑,

then xk+1 � Axk + 􏽥B1ς
􏽢Vk + B2wk, zk

� Czxk + 􏽥D1ς
􏽢Vk + D2wk,

(18)

where 􏽥B11 � B
ρ1
11 B

ρ2
12 . . . B

ρm

1m􏼐 􏼑, 􏽥D11 � D
ρ1
11 D

ρ2
12 . . .􏼐

D
ρm

1m), 􏽥B12 � B
ρ1
11 B

ρ2
12 . . . B

ρm

1m)􏼐 , 􏽥D12 � D
ρ1
11 D

ρ2
12 . . .􏼐 D

ρm

1m),
􏽥B1ς � B

ρ1
11B

ρ2
12. . .B

ρm

1m)( , 􏽥D1ς � D
ρ1
11D

ρ2
12. . .D

ρm

1m)( , B
ρi

1i � σiB1i,
B
ρi

1i � σiB1i, D
ρi

1i � σiD1i, and D
ρi

1i � σiD1i, for i � 1, 2, . . . , m.
As a consequence, the final system is inferred as follows:

xk+1 � 􏽘

ς

i�1
hi Axk + 􏽥B1i

􏽢Vk + B2wk􏼐 􏼑,

zk � 􏽘

ς

i�1
hi Czxk + 􏽥D1i

􏽢Vk + D2wk􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

where the nonlinear weighting functions are
hi � wi/􏽐

ς
i�1 wi, such that 0≤ hi ≤ 1 and 􏽐

ς
i�1 hi � 1, and

w1 � H
1
1H

1
2 . . . H

1
m,

w2 � H
1
1H

1
2 . . . H

2
m,

⋮

wς � H
2
1H

2
2 . . . H

2
m.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(20)

For stabilizing system (19) in closed loop, we assume that
each subsystem (A, 􏽥B1i) is fully controllable and measurable.
)en, we use the nonfragile control law:

􏽣Vk � −Kxk, (21)

with the uncertainty:

K � K + ΔK � I + μϕk( 􏼁K, (22)

where K ∈ Rm×n is the nominal controller, μ> 0 is a scalar to
be assigned, I ∈ Rm×m denotes the identity matrix, and
ϕk ∈ Rm×m, such that ϕ⊥k ϕk ≤ I.

Substituting (21) into (19), we obtain the final controlled
system:

xk+1 � 􏽘

ς

i�1
hi Gixk + B2wk( 􏼁,

zk � 􏽘

ς

i�1
hi Fixk + D2wk( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

where Gi � Gi + ΔGi, Fi � Fi + ΔFi, Gi � A − 􏽥B1iK,
ΔGi � −μ􏽥B1iϕkK, Fi � Cz − 􏽥D1iK, and ΔFi � −μ 􏽥D1iϕkK.

)e closed-loop system (23) is globally asymptotically
stable with decay rate α and achieves a prescribed attenu-
ation level c if

Tzw

����
����∞ � sup

‖w‖2 ≠ 0

‖z‖2

‖w‖2
< c. (24)

As a consequence, we announce the following theorem.

Theorem 1. 1e equilibrium (x � 0Rn ) of the closed-loop
system (23) is quadratically and globally asymptotically stable
with decay rate α satisfying the control performance objective
(24) if there exist positive scalars μ, τ1, τ2, δ12 � τ−1

1 + τ−1
2 , and

β ∈][0, 1[, a common symmetric positive definite matrix
X ∈ Rn×n, and M ∈ Rm×n verifying the following LMI
formulation:

minimize
X,M,c

β

subject to :

−βX ∗ ∗ ∗ ∗
0 −c

2
I ∗ ∗ ∗

AX − 􏽥B1iM B2 −ℓ33,i ∗ ∗
CzX − 􏽥D1iM D2 0 −ℓ44,i ∗

M 0 0 0 −δ−1
12I

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,

(25)

for i � 1, 2, . . . , ς, where ℓ33,i � X − τ1μ2􏽥B1i
􏽥B
⊥
1i and

ℓ44,i � I − τ2μ2 􏽥D1i
􏽥D
⊥
1i.

)en, the feedback gain K, as is shown in (22), is cal-
culated by using the following relation:

K � MX
− 1

. (26)

Proof. )e controlled system (23) is globally asymptotically
stable with decay rate α if there exist a discrete-time qua-
dratic Lyapunov function VLyap(xk) � x⊥k Pxk > 0 and a
positive scalar 0< α< 1 such that

ΔVLyap xk( 􏼁≤ α2 − 1􏼐 􏼑VLyap xk( 􏼁, (27)

where ΔVLyap(xk) � VLyap(xk+1) − VLyap(xk) and P ∈ Rn×n

is a symmetric positive definite matrix. By considering (27)
in (24), we may write

ΔVLyap xk( 􏼁 − α2 − 1􏼐 􏼑VLyap xk( 􏼁 + z
⊥
k zk − c

2
w
⊥
k wk < 0.

(28)

By, respectively, substituting the dynamics of xk+1 and zk

into (28), it becomes

􏽘

ς

i�1
hi

xk

wk

􏼠 􏼡

⊥

Γi
xk

wk

􏼠 􏼡< 0, (29)

where Γi �
G
⊥
i PGi − α2P + F

⊥
i Fi ∗

B
⊥
2 PGi + D

⊥
2 D2 B

⊥
2 PB2 + D

⊥
2 D2 − c

2
I

􏼠 􏼡

and the symbol (∗ ) represents the transposed element in
the symmetric position.

As the nonlinear functions hi ∈ [0, 1], matrix inequality
(29) is equivalent to Γi < 0, for i � 1, 2, . . . , ς. Using the Schur
Complement, as is presented in Appendix B, we get

−α2P ∗ ∗ ∗

0 −c
2
I ∗ ∗

PGi PB2 −P ∗

Fi D2 0 −I

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0. (30)
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Denoting X � P− 1, M � KX, and β � α2 and, respec-
tively, premultiplying and postmultiplying (30) by positive
definite matrix diag(X, I, X, I) yields

−βX ∗ ∗ ∗

0 −c
2
I ∗ ∗

GiX B2 −X ∗

FiX D2 0 −I

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0. (31)

As the above matrix inequality contains certain terms
Ψi,k and uncertain ones ΔΨi,k, (31) can be transformed as
follows:

Ψi,k + ΔΨi,k < 0, (32)

with

Ψi,k �

−βX ∗ ∗ ∗

0 −c
2
I ∗ ∗

GiX B2 −X ∗

FiX D2 0 −I

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (33)

ΔΨi,k �

0 0 ∗ ∗
0 0 0 0

−μ􏽥B1iϕkM 0 0 0
−μ 􏽥D1iϕkM 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (34)

We notice that there are antidiagonal terms in ΔΨi,k.
However, we use the Separation Lemma, as is defined in
Appendix C, to transform them into diagonal terms as
follows:

Δψi,k ≤

δ12M
⊥

M 0 0 0

0 0 0 0

0 0 τ1μ
2􏽥B1i

􏽥B
⊥
1i 0

0 0 0 τ2μ
2 􏽥D1i

􏽥D
⊥
1i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (35)

where τ1, τ2, and δ12 � τ−1
1 + τ−1

2 are positive scalars to be
assigned.

Referring to relations (33) and (35), we obtain

−βX + δ12M
⊥

M ∗ ∗ ∗

0 −c
2
I ∗ ∗

GiX B2 −X + τ1μ
2􏽥B1i

􏽥B
⊥
1i ∗

FiX D2 0 −I + τ2μ
2 􏽥D1i

􏽥D
⊥
1i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0. (36)

After some manipulations, we get the LMI formulation
(25). □

Remark 1. Consider system (19) with no uncertainty, i.e.,
ΔK � 0. )en, the origin of the closed-loop system (26) is
globally asymptotically stable if [27]

minimize
X,R,c

β

subject to:

−βX ∗ ∗ ∗

0 −c
2
I ∗ ∗

AX − 􏽥B1iM B2 −X ∗

CzX − 􏽥D1iM D2 0 −I

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0, for i � 1, 2, . . . , ς.

(37)

In the following, a numerical example is provided to
demonstrate the validity and the effectiveness of the pro-
posed control scheme.

4. Application to a TRMS

)e objective of this simulation study is to stabilize the
controlled TRMS and its identified multivariable

Complexity 5



Hammerstein model at the origin, as an asymptotically
stable equilibrium point. More precisely, its system be-
haviour resembles that of a helicopter, as is seen in
Figure 2. It consists of two rotors (main and tail), which
are situated on a beam together with a counterbalance.
)e inputs of the open-loop system are the voltages u1(V)

and u2(V) applied, respectively, to the main and tail
rotors. )e first output is called pitch angle y1(rad) when
the main rotor is free to rotate in the horizontal plane. )e
second output is called yaw angle y2(rad) when the tail
rotor is free to rotate in the vertical plane.

)e studied system is described by the following
continuous-time nonlinear equations [43]:

I1€ψ � M1 − MFG − MBψ − MG,

I2
€ϕ � M2 − MBϕ − MR,

⎧⎨

⎩ (38)

where M1 � a1η21 + b1η1, MFG � Mg sin(ψ), MBψ � B1ψ _ψ,

MG � KgyM1
_ϕ cos(ψ) − Kgx

_ϕ2 sin(2ψ), M2 � a2η22 + b2η2,
MBϕ � B1ϕ

_ϕ, _η1 � −T10/T11η1 + k1/T11u1, _η2 � −T20/
T21η2 + k2/T21u2, MR � kcη11 + T0s/1 + Tps, and s is the
Laplace variable. All parameters are defined in Appendix D.

4.1. Identification Result. From an identification point of
view, we assume that the input-output data are available.
)en, we consider that the sampling period is T � 0.1 s and
the inputs are u1,k � 2.5 sin(0.6πkT) and
u2,k � 2 sin(0.8πkT). Figures 3 and 4 depict the responses of
the true (solid line) and estimated (dashed line) outputs of
the open-loop system.

It is then clear that the nonlinear TRMS is accurately
identified by 2-input 2-output Hammerstein state-space
model, which is described by

xk+1 � Axk + B1Vk + B2wk,

Yk � Cxk + DVk + εk,

v1,k � u1,k + 0.0381u
2
1,k − 0.0457u

3
1,k,

v2,k � u2,k + 0.0237u
2
2,k − 0.0118u

3
2,k,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(39)

where

xk �

x1,k

x2,k

x3,k

x4,k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Vk �

v1,k

v2,k

􏼠 􏼡, Yk �
y1,k

y2,k

􏼠 􏼡, wk ∈ R
4
, εk ∈ R

2
,

A �

0.9709 −0.3380 0.1232 0.0306

0.1179 0.9745 0.0093 −0.0109

−0.0375 0.0087 0.9974 −0.0798

0.0109 −0.0226 0.0270 0.8693

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B1 �

0.0111 0.0547

−0.0131 −0.0027

0.2172 0.3044

0.0865 0.0520

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B2 �

−0.2292 0.5655 7.7293 0.2978

1.4445 0.2131 −5.6435 0.0878

−0.4621 −0.0928 −2.4361 0.1226

−0.2324 0.0914 9.9696 −0.7869

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

C �
−0.0853 0.2915 −0.1147 0.0093

0.0121 −0.1440 −0.3784 −0.1127
􏼠 􏼡,

D �
−0.0326 0.0063

0.0284 −0.0713
􏼠 􏼡.

(40)

Free beam

Main rotor

Counterbalance
beam

Tail rotor

-αv

αh

Figure 2: TRMS [43].
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4.2. Control Results. From a control point of view, we as-
sume that the inverse functions ui,k � f−1

i,app(􏽢vi,k), for
i � 1, 2{ }, are approximated as follows:

u1,k � 􏽢v1,k − 0.0381􏽢v
2
1,k + 0.1219􏽢v

3
1,k + hot,

u2,k � 􏽢v2,k − 0.0237􏽢v
2
2,k + 0.0592􏽢v

3
2,k + hot.

⎧⎪⎨

⎪⎩
(41)

Choosing the scalars σ1 � 0.4, σ1 � 1.7, σ2 � 0.3, and
σ2 � 2, Figure 5 depicts the evolution of nonlinearities
vi,k � ψi(􏽢vi,k), for i � 1, 2{ }. )is leads to obtain, for the
control scheme, the bounded control signals
􏽢v1,k ∈ −5.87, 5.73􏼂 􏼃 and 􏽢v2,k ∈ −2.33, 2.24􏼂 􏼃.

Afterwards, we assume that the controlled output zk is
expressed by

zk � Czxk + D1Vk + D2wk, (42)

where zk �
z1,k

z2,k
􏼠 􏼡, Cz � C, D1 � D, and D2

�
1 0 0 0
0 0 1 0􏼠 􏼡.

By considering the pairs (σ1, σ2), (σ1, σ2), (σ1, σ2), and
(σ1, σ2), we construct the following fuzzy subsystems:

rule 1: if 􏽢v1,k isH
1
1􏼐 􏼑 and 􏽢v2,k isH

1
2􏼐 􏼑,

then xk+1 � Axk + 􏽥B11
􏽢Vk + B2wk, zk

� Czxk + 􏽥D11
􏽢Vk + D2wk,

(43)

rule 2: if 􏽢v1,k isH
1
1􏼐 􏼑 and 􏽢v2,k isH

2
2􏼐 􏼑,

then xk+1 � Axk + 􏽥B12
􏽢Vk + B2wk, zk

� Czxk + 􏽥D12
􏽢Vk + D2wk,

(44)

rule 3: if 􏽢v1,k isH
2
1􏼐 􏼑 and 􏽢v2,k isH

1
2􏼐 􏼑,

then xk+1 � Axk + 􏽥B13
􏽢Vk + B2wk, zk

� Czxk + 􏽥D13
􏽢Vk + D2wk,

(45)

rule 4: if 􏽢v1,k isH
2
1􏼐 􏼑 and 􏽢v2,k isH

2
2􏼐 􏼑,

then xk+1 � Axk + 􏽥B14
􏽢Vk + B2wk, zk

� Czxk + 􏽥D14
􏽢Vk + D2wk,

(46)

where

􏽥B11 �

0.0187 0.1094

−0.0223 −0.0054

0.3692 0.6088

0.1470 0.1040

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 􏽥B12 �

0.0187 0.0164

−0.0223 −0.0008

0.3692 0.0913

0.1470 0.0156

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

􏽥B13 �

0.0044 0.1094

−0.0052 −0.0054

0.0869 0.6088

0.0346 0.1040

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 􏽥B14 �

0.0044 0.0164

−0.0052 −0.0008

0.0869 0.0913

0.0346 0.0156

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

􏽥D11 �
−0.0554 0.0126

0.0483 −0.1426
⎛⎝ ⎞⎠, 􏽥D12 �

−0.0554 0.0019

0.0483 −0.0214
⎛⎝ ⎞⎠,

􏽥D13 �
−0.0130 0.0126

0.0114 −0.1426
⎛⎝ ⎞⎠, 􏽥D14 �

−0.0130 0.0019

0.0114 −0.0214
⎛⎝ ⎞⎠.

(47)

As the pairs (A, 􏽥B1i), for i � 1, 2, 3, 4{ }, are controllable,
the resulting fuzzy system can be described as follows:

xk+1 � 􏽘
4

i�1
hi Axk + 􏽥B1i

􏽢Vk + B2wk􏼐 􏼑,

zk � 􏽘
4

i�1
hi Czxk + 􏽥D1i

􏽢Vk + D2wk􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(48)

where the nonlinear weighting functions hi � wi/􏽐
4
i�1 wi are

depicted in Figure 6.
Using the LMI formulation (25) with μ � 0.85 and

c � 0.7, we obtain α � 0.794, β � 0.63, and

10 20 30 40 50 60 70 80 90 1000
kT iterations

–8

–6

–4

–2

0

2

4

6

8

Real output
Estimated output

Figure 3: Response of the pitch angle of the open-loop system.

kT iterations
20 30 4010 50 60 70 80 90 1000

Real output
Estimated output

–1.5

–1

–0.5

0

0.5

1

1.5

Figure 4: Response of the yaw angle of the open-loop system.
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v2,k = ψ2 (v⌃2,k)

v1,k = ψ1 (v⌃1,k)

Figure 5: Evolution of nonlinear functions. Up Polt: v1,k � ψ1(􏽢v1,k). Down Polt: v2,k � ψ2(􏽢v2,k).
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Figure 6: Weighting functions for the four fuzzy sets considered.
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P �

6.4497 0.8651 −0.2691 0.1327

0.8651 4.7781 −0.3205 0.1191

−0.2691 −0.3205 5.0222 0.4860

0.1327 0.1191 0.4860 4.9015

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

K �
−0.5072 −0.2251 2.3094 1.4059

0.5327 −0.0653 1.4641 −0.4069
􏼠 􏼡.

(49)

Hence, by considering the nonfragile control law (21)
subject to the uncertainty (22) with

ϕk �
0.5 sin(πk) 0

0 0.5 cos(πk)
􏼠 􏼡, the inferred controlled

system can be described as follows:

xk+1 � 􏽘
4

i�1
hi Gixk + B2wk( 􏼁,

zk � 􏽘
4

i�1
hi Fixk + D2wk( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(50)

where Gi � Gi + ΔGi, Fi � Fi + ΔFi, ΔGi � −μ􏽥B1iϕkK,
ΔFi � −μ 􏽥D1iϕkK, for i ∈ 1, 2, 3, 4{ }, and

G1 �

0.9221 −0.3266 −0.0802 0.0488
0.1095 0.9691 0.0686 0.0182

−0.1745 0.1316 −0.7467 −0.3512
0.0301 0.0173 −0.4649 0.7049

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

G2 �

0.9716 −0.3327 0.0560 0.0110
0.1070 0.9694 0.0619 0.0201
0.1011 0.0978 0.0110 −0.5618
0.0772 0.0115 −0.3354 0.6689

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

G3 �

0.9149 −0.3299 −0.0471 0.0689
0.1181 0.9730 0.0293 −0.0057

−0.3177 0.0680 −0.0946 0.0458
−0.0269 −0.0080 −0.2052 0.8630

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

G4 �

0.9644 −0.3359 0.0890 0.0311
0.1157 0.9733 0.0226 −0.0039

−0.0421 0.0342 0.6631 −0.1648
0.0201 −0.0138 −0.0757 0.8270

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(51)

F1 �
−0.1201 0.2798 −0.0052 0.0923
0.1125 −0.1425 −0.2811 −0.2386

􏼠 􏼡,

F2 �
−0.1144 0.2791 0.0105 0.0880
0.0480 −0.1345 −0.4586 −0.1893

􏼠 􏼡,

F3 �
−0.0986 0.2894 −0.1030 0.0328
0.0938 −0.1508 −0.1959 −0.1867

􏼠 􏼡,

F4 �
−0.0929 0.2887 −0.0874 0.0284
0.0293 −0.1428 −0.3733 −0.1374

􏼠 􏼡.

(52)

Figures 7–10 show the simulation results of applying the
designed nonfragile H∞ controller to the TRMS (dashed line)
and its identified Hammerstein model (solid line) with null

initial conditions and the exogenous disturbance signal
wk � rand 0 rand 0( 􏼁

⊥, where (rand) is a uniform number
with a uniform distribution on the interval [0, 0.01], which is
added by w+

k � −0.15 if 50≤ kT≤ 100 and 0 otherwise.
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u1 (system)
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kT iterations
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–0.1

0

0.1

Figure 7: Control signal u1(V).
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Figure 8: Control signal u2(V).
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Figure 9: Response of the pitch angle of the closed-loop system.

Complexity 9



)e obtained results indicate that the designed robust
and nonfragile H∞ controller shows good results. However,
the responses of the pitch and yaw angles of the controlled
nonlinear system and its identified Hammerstein model can
rapidly achieve the origin despite the presence of external
disturbances and uncertainty in the control law.

5. Conclusion

In this paper, a nonfragile H∞ feedback controller was
designed for nonlinear systems described as multivariable
Hammerstein model with separate nonlinearities. )e pa-
rameters of the linear and nonlinear blocks characterizing
the multivariable Hammerstein model structure were sep-
arately estimated using the MOESP identification algorithm.
Unlike the normal control scheme, the inverses of the static
nonlinearities were supposed not bijective and approxi-
mated by polynomial functions. )e T-S fuzzy representa-
tion was used to simplify the nonlinear system description
and reject the nonlinearity effect in the controller design.
Based on the quadratic Lyapunov function and H∞ crite-
rion, robust H∞ was then proposed to robustly stabilize the
controlled nonlinear system and its identified Hammerstein
model and guarantee the attenuation of disturbance effect in
spite of controller gain variations. A TRMS was considered
to illustrate the validity and the effectiveness of the designed
stabilization scheme.

Appendix

A. Calculation of βij Scalars

)e calculation of βi,j scalars are presented for υ � 3. )en,
we have

vi,k � fi ui,k􏼐 􏼑 � ui,k + λi2u
2
i,k + λi3u

3
i,k,

ui,k � f
−1
i,app 􏽢vi,k􏼐 􏼑 � βi1􏽢vi,k + βi2􏽢v

2
i,k + βi3􏽢v

3
i,k + hot.

⎧⎪⎨

⎪⎩

(A.1)

Substituting the above quantities, we get

ui,k � f
−1
i,app 􏽢vi,k􏼐 􏼑 ≈ βi1 ui,k + λi2u

2
i,k + λi3u

3
i,k􏼐 􏼑

+ βi2 ui,k + λi2u
2
i,k + λi3u

3
i,k􏼐 􏼑

2
+ βi3 ui,k + λi2u

2
i,k + λi3u

3
i,k􏼐 􏼑

3
.

(A.2)

)en, we eliminate the powers higher than 3 of ui,k. So,
we get

ui,k � βi1ui,k + βi1 + βi2λi2( 􏼁u
2
i,k

+ βi1λi3 + 2βi2λi2 + βi3( 􏼁u
3
i,k + hot.

(A.3)

We obtain finally βi1 � 1, βi2 � −λi2, and βi3 � 2λ2i2 − λi3.

B. Schur Complement

For matrices M, L, and Q with appropriate dimensions, the

matrix inequality M ∗
L Q

􏼠 􏼡< 0 is equal to (i) Q< 0, M −

L⊥Q− 1L< 0 and (ii) M< 0, Q − LM− 1L⊥ < 0 where M and Q

are invertible and symmetric.

C. Separation Lemma

For matrices A and B with appropriate dimensions and
positive scalars τ, one has A⊥B + B⊥A≤ τA⊥A + τ− 1B⊥B.

D. TRMS Parameters

TRMS parameters are shown in Table 1.
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Figure 10: Response of the yaw angle of the closed-loop system.

Table 1: TRMS parameters.

Symbol Definition
u1, u2 Input signals
ψ Pitch angle of the beam
ϕ Yaw angle of the beam
I1, I2 Moment of inertia of vertical (horizontal) rotor
MFG Gravity momentum
MBψ , MBϕ Friction momentum forces
MG Gyroscopic momentum
ai, bi Static parameters of motor i, i � 1, 2{ }

Mg Gravity momentum
B1ψ , B1ϕ Friction momentums
Kgy, Kgx Gyroscopic momentums
kii Motor i gain
Ti1, Ti0 Motor i denominator
MR Cross reaction momentum approximation
kc Cross reaction momentum gain
Tp Cross reaction momentum
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