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*is paper suggests an online solution for the optimal tracking control of robotic systems based on a single critic neural network
(NN)-based reinforcement learning (RL) method. To this end, we rewrite the robotic system model as a state-space form, which
will facilitate the realization of optimal tracking control synthesis. To maintain the tracking response, a steady-state control is
designed, and then an adaptive optimal tracking control is used to ensure that the tracking error can achieve convergence in an
optimal sense. To solve the obtained optimal control via the framework of adaptive dynamic programming (ADP), the command
trajectory to be tracked and the modified tracking Hamilton-Jacobi-Bellman (HJB) are all formulated. An online RL algorithm is
the developed to address the HJB equation using a critic NN with online learning algorithm. Simulation results are given to verify
the effectiveness of the proposed method.

1. Introduction

In the control field and practical applications, reinforcement
learning (RL) [1, 2] and adaptive dynamic programming
(ADP) [3, 4] play a critical role to address the optimal
control problems. *e purpose of optimal control is to
design a stabilizing control law by minimizing a predefined
performance function. A lot of work focusing on the reg-
ulation problem for optimal control using the RL/ADP
algorithms has been reported [5, 6] in the past years. *e
objective is to solve an optimal control that can maximize or
minimize the system output energy and control actions,
where the associated optimal control equations can be
numerically solved via neural networks (NNs). From the
perspective of both the theoretical study and practical ap-
plication, these results pave a new way to solve the optimal
control problems. Relevant surveys about the recent de-
velopments on the RL and ADP can be referred to [7, 8].

RL was first developed in the intelligent control field,
which was used to address the discrete-time Markov deci-
sion problems. *en, it has been extended to solve the
continuous-time (CT) systems. With respect to optimal
control designs, Abu-Khalaf et al. [9] suggested a policy

iteration (PI) for the optimal regulation of CT nonlinear
systems with actuator saturation. To overcome the problem
of using the time derivatives of CTdynamics, Lewis et al. [10]
developed an integral RL (IRL) technique for systems with
partially known dynamics, where the full system informa-
tion is avoided. In [11], the authors have employed an actor-
critic structure and developed a synchronous PI algorithm
for CT systems. In this framework, both the optimal cost
function and control policy are estimated using NNs, whose
weights are updated online simultaneously. For completely
unknown system dynamics, the results in [12] showed that a
model-free PI approach can be developed for CT linear
systems, which can online calculate the optimal solutions
using the input/output measurements. *is principle was
subsequently extended to nonlinear systems in [13, 14].
Another intelligent learning method used in the RL, expe-
rience replay (ER), was recently incorporated into the
synthesis of ADP for optimal control in [15], where the past
system observations are utilized together with the current
information to enhance the convergence speed of the online
learning.

Moreover, most existing results on the ADP-based op-
timal control designs focus on the optimal regulation
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problems only. However, in the practical application, op-
timal tracking control problem (OTCP) is more widely used
than the optimal regulation problem [16–18], in particular
for robotic applications. However, the OTCP is more
challenging to address than the regulation problem, since its
solution is usually composed of a feedforward action to
guarantee the perfect tracking and a feedback action to
stabilize the closed-loop system dynamics [19]. For linear
systems, the solution of OTCP is calculated by addressing
the Riccati equations [20], while for nonlinear systems, the
existing solution for the OTCP can be derived with a
feedforward term by employing the dynamics inversion and
a feedback term by calculating a complex HJB equation
[16, 21]. However, it is well known that deriving the solution
of OTCP is typically intractable, especially for the online
tracking control. Hence, only few results have been reported
to address the OTCP in the literature, in particular for
robotic systems.

According to the above facts, we propose a new RL
algorithm to realize the optimal tracking control of robotic
systems. To this end, the systemmodel is rewritten as a state-
space form, which will contribute to the realization of op-
timal tracking control. *en, a steady-state control is
designed, and then an adaptive optimal tracking control is
used to retain that the tracking error converges in an optimal
manner. To derive this optimal control, the command
trajectory to be tracked and the modified tracking Hamil-
ton–Jacobi–Bellman (HJB) can be formulated. Finally, an
online RL method is used to address the derived HJB
equation using a single critic NN approximation. Numerical
simulations are also given to show the validity of the pro-
posed approach. *e contributions can be summarized as
follows:

(1) To achieve the optimal tracking control, the robotic
system model is transformed into a canonical form,
which will contribute to the realization of optimal
tracking control.

(2) A critic NN is applied to reconstruct the cost
function with guaranteed convergence, such that the
actor NN used in the existing ADP structures is
avoided and the computational costs can be reduced.

(3) A RL algorithm is proposed to obtain the solution of
the derived HJB equation, which can guarantee the
convergence of critic NN weights to ensure the
optimal tracking error convergence.

*e paper is structured as follows: in Section 2, the system
model is transformed into a canonical form, and a tracking
performance function is constructed. In Section 3, an adaptive
steady-state control is designed and an optimal control is
developed with RL to make the tracking error dynamics
convergent. For this purpose, a single critic NN is applied to
estimate the solution of the HJB equation and update the
optimal control action. Section 4 gives some simulation results
to show the validity of the developed control and learning
techniques. Conclusions are summarized in Section 5.

Notations: R denotes the real number set. Rn is the n-
dimensional real vector. Rn×mis the real matrices. ‖ · ‖

denotes the Euclidean norm of a vector inRn or a matrix in
Rn×m. I is the identity matrix, and 0 × 0 means the zero
matrix. λmax and λmin are the maximal and minimum ei-
genvalues of a matrix, respectively. diag [a1, a2, a3, . . . , an] 

is a diagonal matrix with component a1, . . . , an.

(·)x � z(·)/z(x) defines the partial differential operation.

2. Preliminaries and Problem Statement

In this paper, we consider the general rigid body dynamics
for a nonlinear robotic manipulator. On the basis of the
Lagrangian formulation, the manipulator dynamics can be
formulated as [22, 23]

M(q)€q + C(q, _q) _q + G(q) � τ, (1)

where q � q(t) ∈ Rn denotes the generalized coordinates
representing the joint position and _q, €q denote the deriva-
tives of joint position (e.g., velocity and acceleration) with
respect to time t. Let n denote the number of degrees of
freedom and M(q) denote a positive definite n × n inertia
matrix which is invertible, C(q, _q) ∈ Rn are the Coriolis/
centripetal dynamics, and G(q) represents the gravitational
dynamics.

For the brevity of notation, we set x1 � q,

x2 � _q, and u � τ; then,

_x1 � x2,

_x2 � − M
− 1

Cx2 − M
− 1

G + M
− 1

u.
 (2)

Hence, we write system (1) as a state-space form as

_x(t) � f(x) + gu(t), (3)

wherex(t) � q _q 
T ∈ Rn is the system state,

f(x) � x2 − M− 1(Cx2 + G) 
T is the known system dy-

namics, which is a continuous function with f(0) � 0,
g � 0 M− 1 

Tis the control gain matrix, and u(t) ∈ Rm

denotes the control torque.

Assumption 1. *e system dynamics f(x) with f(0) � 0 are
Lipschitz. Hence, system (3) is stable, i.e., a continuous
control u(t) ∈ Ω can be found to stabilize the system, where
Ω is an admissible set.

*is paper aims to find an optimal control u(t) to ensure
that the system state x(t) tracks a desired trajectory xd(t) by
minimizing the following cost function:

V(u(t), e(t)) � 
∞

t
e

T
(t)Qe(t) + u

T
(t)Ru(t) dt, (4)

where Q and R are positive definite symmetric matrices [2].
Ψ(Ω) is the set of admissible policies [9],
eT(t)Qe(t) + uT(t)Ru(t) is a positive utility function, and
e(t) is the tracking error defined as

e(t) � x(t) − xd(t), (5)

where xd(t) ∈ Rn is the reference trajectory. In this paper,
the reference trajectory xd(t) and its derivative _xd(t) are
assumed to be continuous and bounded.
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Remark 1. *ere have been several methods developed to
solve the tracking control problem of robotic systems, e.g.,
[24, 25]. However, most existing robotic controllers are not
designed in the optimal manner, i.e., the required control
actions may be large. Differing from these results, a novel RL
algorithm is proposed in the following sections to design an
optimal control for robotic systems to achieve trajectory
tracking and reduce the required control energy.

Remark 2. For linear OTCP scheme, the derivation of
optimal solution is shown in [18], i.e., u � − R− 1BT

0 Sx +

R− 1BT
0 vss with B0 being the input matrix, and S can be solved

by addressing a Riccati equation and vss is the feedforward
action. Different from linear systems, the tracking control
problem for nonlinear systems is not trivial since we cannot
obtain a uniform formulation as the linear cases. *is fact
stimulated the current study.

3. Online Dynamic Tracking Control

To realize the optimal tracking control design, we decom-
pose the control input u into two parts [18, 21] as

u � us + ue, (6)

where us and ueare the steady-state control and optimal
control, which are applied tomake the steady-state trajectory
tracking and stabilize the tracking error dynamics optimally,
respectively. Figure 1 shows the proposed control system
structure.

3.1. Steady-State Tracking Control. Since us can be adopted
to ensure that the control error converges to zero in the
steady-state, then we have from (3) that

us � g
+

_xd − f(x) − Ke , (7)

where K> 0 is the feedback gain set by the desingers and
g+ � [(gTg)− 1gT] is defined as the generalized inverse of g.

*en, based on (3) and (7), we have the tracking error e

as

_e � f(x) + g us + ue(  − _xd � − Ke + gue. (8)

From equations (7) and (8), we know that the tracking
control of system (3) can be considered the regulation
problem of (8). Hence, an optimal control ue will be
designed to stabilize tracking error dynamics (8) in an
optimal manner.

3.2. Approximate Optimal Tracking Control. *e controller
ue can be used to make (8) converge in an optimal sense. For
this purpose, we can rewrite the infinite horizon cost
function (4) as follows:

V(e(t)) � 
∞

t
e

T
(t)Qe(t) + u

T
e (t)Rue(t) dt. (9)

*en, an admissible control policy ue should be found so
that cost function (9) of system (8) can be minimized. To this
end, the Lyapunov equation of (7) is given by

0 � V
T
e − Ke + gue  + e

T
Qe + u

T
e Rue, (10)

with Ve � (zV/ze) being the partial differential.
*en, the optimal cost function V∗(e) is given as

V
∗
(e) � min

ue


∞

t
e

T
(t)Qe(t) + u

∗T
e (t)Ru

∗
e (t) dt ,

(11)

and the derived HJB equation is shown as

0 � min
ue

H e, u
∗
e , V
∗

( . (12)

*e optimal control ue can be derived by solving
(zH(e, u∗e , V∗)/zu∗e ) � 0 from (10) as

u
∗
e � −

1
2
R

− 1
g

TzV
∗
(e)

ze
. (13)

*e problem to be finally addressed is to solve HJB
equation (12) to obtain the optimal cost function V∗(e)

required in control (13).

3.2.1. Online Reinforcement Learning Algorithm. To calcu-
late the above optimal control, we can recall the policy it-
eration (PI) method. Inspired by [1, 26], a policy iteration
algorithm can be given as follows:

(1) Select a small positive constant κ. Let i � 0 and
V(0) � 0, then set an initial admissible control policy
u(0)

e .
(2) Solve the nonlinear Lyapunov equation using the

control policy u(i)
e

0 � e
T

Qe + u
T(i)
e Ru

(i)
e + ∇V(i+1)

(e) 
T

− Ke + gu
i
e ,

(14)

with V(i+1)(0) � 0.
(3) Improve the control policy by

u
(i+1)
e � −

1
2
R

− 1
g

T∇V(i+1)
. (15)

(4) If |V(i+1)(e) − V(i)(e)| ≤ κ, stop the iteration and take
the approximate optimal control; else, let
i � i + 1and go back to Step 2.

*e above PI scheme can guarantee the convergence to
the optimal cost function and control action, i.e.,
V(i)⟶ V∗ and u(i)

e ⟶ u∗ as i⟶∞. *e convergence
proof of the PI algorithm was detailed in [9].

3.2.2. Neural Network Approximation. *e above policy
iteration method is run offline. To implement online optimal
control, we will introduce an online learning method in this
section.

From HJB equation (12), it is generally difficult to derive
its solution. As shown in [27, 28], we will use a critic NN to
estimate the ideal cost function V∗(e). In this paper, the cost
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function can be considered as smooth, then a critic NN
[26, 28] is applied to approximate V∗(e) as

V
∗
(e) � W

Tσ(e) + ε(e), (16)

where W ∈ Rl is the ideal NN weight, σ(e) ∈ Rl is the
activation function, l is the number of neurons, and ε(e) is
the approximation error. *en, we have its derivative with
respect to e as

∇V(e) � (∇σ(e))
T

W + ∇ε(e), (17)

where ∇σ(e) � (zσ(e)/ze) ∈Rl×n and ∇ε(e) � (zε(e)/ze) ∈
Rnare the partial derivatives. *en, based on (17), equation
(10) is represented as

0 � e
T
Qe + u

∗T
e Ru

∗
e + W

T∇σ(e) +(∇ε(e))
T

  _e. (18)

Assumption 2 (see [9, 26]). Consider the critic NNweight W

with the regressor ∇σ(e), and then the error ε(e) and its
gradient ∇ε(e) are all bounded. Moreover, we have
ε(e)⟶ 0 and ∇ε(e)⟶ 0 as l⟶∞.

According to ideal cost function (16), the actual cost
function can be given as

V(e) � W
Tσ(e), (19)

which can be used to estimate the practical cost function. For
critic NN (19), we can select σ(e) such that V(e)> 0 for e≠ 0
and V(e) � 0 for e � 0. *en, we have

∇V(e) � (∇σ(e))
T W, (20)

where ∇V(e) � (zV(e)/ze).
*en, the approximated Hamiltonian function can be

derived as

0≜H(x, u, W) � e
T

Qe + u
T
e Rue + W

T∇σ(e) _e � ec. (21)

For training the critic NN to obtain the control action, it
is expected to estimate W to minimize the objective function
E � (1/2)eT

c ec. Hence, the gradient descent algorithm can be
used to update the critic NN weights W by

W
.

� − Γ
zE

z W
  � − Γec

zec

z W
 , (22)

where Γ > 0 is the learning gain.
Based on (18), the Hamiltonian function is

0 � e
T

Qe + u
∗T
e Ru

∗
e + W

T∇σ(e) _e � ec2, (23)

where ec2 � − (∇ε(e))T _e is the residual error.
Define ϑ � ∇σ(e) _e and W � W − W as the estimation

error of the critic NN weights, and a positive constant ϑM

with ‖ϑ‖≤ ϑM. *en, from (21) and (23), we have
ec2 − ec � W

Tϑ. Hence, the estimation error dynamics are
given by

W
.

� − W
.

� Γ ec2 − W
Tϑ ϑ. (24)

*e persistent excitation (PE) condition is required to
retain the critic NN weights convergence and the condition
‖ϑ‖≥ ϑm with a positive constant ϑm. *is condition can be
satisfied in this paper since we consider the tracking control
problem, and thus, the probing noise used in many existing
ADP literature studies may be not necessary.

When implementing the online optimal control algo-
rithm with critic NN (16), we have from (13) and (17) the
optimal control as

u
∗
e � −

1
2
R

− 1
g

T
(∇σ(e))

T
W + ∇ε(e) . (25)

*en, the approximated control action with critic NN
(19) is formulated as

u
∗
e � −

1
2
R

− 1
g

T
(∇σ(e))

T W. (26)

Equation (26) implies that with the updated critic NN
weights W, the approximated control action can be calcu-
lated directly. Consequently, the widely used actor-critic
structure can be simplified, and only the critic NN is adopted
in this paper to reduce the computational cost.

Next, the stability of the proposed algorithm is given.

Steady-state 
control

System

Optimal control

Critic NN

+

–

e

+

+
u x

xd ud

ue

Figure 1: Schematic of the proposed control system.
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Lemma 1. For error system (8) with control (26) and learning
law (22), then the estimation error dynamics (24) are uni-
formly ultimately bounded (UUB).

Proof. We select the Lyapunov function candidate as
J(t) � tr( W

TΓ− 1 W). *en, the time derivative of the Lya-
punov function along the trajectory of error dynamics (24) is

_J(t) � 2tr W
TΓ− 1 W

.

  � 2tr W
T

ec2 − W
Tϑ ϑ . (27)

After some mathematical manipulations, we have

_J(t)≤ − (2 − Γ) W
Tϑ

�����

�����
2

+
1
Γ

e
2
c2. (28)

Considering the Cauchy–Schwarz inequality and no-
ticing the assumption ‖ϑ‖≤ ϑM, we can conclude that
_J(t)< 0 as long as 0< Γ< 2 and

‖ W‖>

����������

e
2
c2

Γ(2 − Γ)ϑ2M




. (29)

According to the Lyapunov theory, we obtain that the
estimation error is UUB.

4. Simulation

To demonstrate the validity of the developed method, a
numerical simulation based on a SCARA robot plant is
given. Consider the dynamics of a two degree-of-freedom
SCARA robot system as

_x �
_x1

_x2
  �

x2

− M
− 1

Cx2 − M
− 1

G + M
− 1

u
 , (30)

where x1 � q1 q2  and x2 � _q1 _q2  are the SCARA
robot’s joint position and velocity vectors. *e inverse of
inertia matrix M− 1, Coriolis dynamics C, and gravity dy-
namics G is shown as

M
− 1

�

b − b − c

− b − c a + b + 2c

⎡⎢⎣ ⎤⎥⎦

ab − c
2

 
,

C �
− 2d _q2 − d _q2

d _q1 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, andG �

0

0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(31)

with a � 0.613, b � 0.1173, c � 0.1584 cos(q2), andd �

0.1584sin(q2), and the detail modelling process can be found
in [29].

*en, system (30) can be formulated as

_x(t) � f(x) + gu(t), (32)

where f(x) � x2 − M− 1(Cx2 + G) 
T denote the drift

dynamics and g � 0 M− 1 
T denotes the control gain. To

complete the optimal tracking control, equation (7) for
system (30) can be given as ud � g+[ _xd − f(x) − Ke] with
K � 0.8. *e initial critic NN weights are selected as

W � 1 2 5 2 − 3 1 − 1 − 7 5 − 6 
T, and the initial sys-

tem states are x1 � [− 2, 6]T and x2 � [− 2.4, 1]T. In the
learning process, we set the learning gain as Γ � 0.02. *e
activation function of the critic NN is chosen as
σ � [e21, e1e2, e1e3, e1e4, e22, e2e3, e2e4, e23, e3e4, e24], and the
weighting matrices Q and R are selected as identity matrices
as [29]. *e desired trajectory xd are given as xd �

[q1d, q2 d, dq1 d, dq2d], where q1d � 2sin(t), q2d � 2cos(t),
dq1d � q2d, and dq2 d � − q1 d. During the implementation of
the policy iteration algorithm, we take the sinusoidal signals
as the reference and thus the persistence excitation condition
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has been fulfilled. In this case, the probing noise introduced
into the system can be avoided.

With these parameter configurations, numerical simu-
lations are conducted and simulation results are given in
Figures 2–5. *e online profile of the approximated critic
NN weights W with proposed adaptive law (22) are dis-
played in Figure 2, which converge to the vector
[− 0.4847, 1.6323, − 0.4100, 6.0223, − 3.8430, − 1.3071, 1.9629,

− 2.2160, − 3.7896, 2.9225]Tafter a short transient stage.
Clearly, we can find that the weights are convergent when

performing the proposed online learning. With these online
updated critic NN weights, the estimated control can con-
verge to the ideal solution. As a consequence, the system
tracking performances are given in Figures 3 and 4, which
indicate that the system states can track the desired tra-
jectories with the proposed optimal control. To better show
the motion tracking results, the tracking errors are given in
Figure 5, which converge to zero with very smooth profiles.
Moreover, the control input is given as Figure 6, which is
also bounded. It can be found from above simulations that
the proposed optimal control can realize perfect tracking
control. Specifically, the proposed RL algorithm can retain
convergent response for the critic NN.

5. Conclusion

*e optimal tracking control design for robotic systems
using the RL algorithm is presented in this paper.*e system
model is first transformed into a canonical form, which can
facilitate the realization of optimal tracking control design.
To maintain the tracking response, a steady-state control is
designed, and then an optimal tracking control is used to
ensure the tracking error dynamics to be optimal.*e online
RL algorithm is dedicated to solving the HJB equation using
a critic NN. Numerical simulations are given to show the
effectiveness of the proposed technique. We will study the
nonlinear optimal tracking problem with fully unknown
system dynamics in the future work.
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