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'is paper addresses the robust constrained model predictive control (MPC) for Takagi-Sugeno (T-S) fuzzy uncertain quantized
system with random data loss. To deal with the quantization error and the data loss over the networks, the sector bound approach
and the Bernoulli process are introduced, respectively. 'e fuzzy controller and new conditions for stability, which are written as
the form of linear matrix inequality (LMI), are presented based on nonparallel distributed compensation (non-PDC) control law
and an extended nonquadratic Lyapunov function, respectively. In addition, slack and collection matrices are provided for
reducing the conservativeness. Based on the obtained stability results, a model predictive controller which explicitly considers the
input and state constraints is synthesized by minimizing an upper bound of the worst-case infinite horizon quadratic cost
function. 'e developed MPC algorithm can guarantee the recursive feasibility of the optimization problem and the stability of
closed-loop system simultaneously. Finally, the simulation example is given to illustrate the effectiveness of the
proposed technique.

1. Introduction

Model predictive control (MPC) is an effective advanced
control method that has aroused extensive attention among
the academic and industrial communities in the past decades
[1–3]. 'e main idea of MPC is online solution of an op-
timization problem to obtain a sequence of optimal control
inputs; then, only the first one is implemented and it repeats
this procedure with new measurements at the next sampling
time [4]. 'e defining feature of MPC comes from its ability
to handle the multivariable systems with hard constraints. A
large amount of results on MPC of ideal systems without
model uncertainties were reported in [5–7]. However, model
uncertainty exists in practical industrials, and hence robust
MPC is of theoretical and practical significance and need to
be considered. To solve this problem, the authors in [8]
firstly proposed a robust MPC synthesis approach for the
uncertain system by solving a linear matrix inequalities
(LMIs) optimization problem which explicitly considered
the input and state constraints. 'e key point of [8] was to

utilize the concept of robust invariant set to guarantee the
recursive feasibility of the LMI optimization problem. Since
then, much progress has been made in the research of MPC
synthesis approach. 'ere are mainly two aspects: one is to
reduce the computational burden (see [9, 10]) and the other
is to improve the control performance (see [11]).

Meanwhile, networked control systems (NCSs) have
been a hot research topic in the last decade which combines
sensors, controllers, and actuators via a shared communi-
cation network. Compared with traditional point-to-point
control systems, NCSs bring incomparable advantages, such
as high reliability, easy installation and maintenance, and
excellent flexibility [12, 13]. However, some phenomenons,
such as data loss and quantization, inevitably exist in the
communication channels which would deteriorate the
performance or even destroy the stability of the systems.
'ere have emerged many works about the controller design
and stability analysis for the NCSs with packet loss and/or
quantization (see, e.g., [14–16]). Works on the stabilization
problem for NCSs with packet loss can be found in [17–20].
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Some nice results about the quantized feedback control
problem for NCSs were reported in [21, 22]. Further, most
recently, some researchers considered more complex net-
work environment where packet loss and quantization were
coexisted in NCSs [23–27].

Some interesting results are presented in the afore-
mentioned documents; however, all of the results are under
the assumption that the controlled plant is a linear system
without system uncertainty. Unfortunately, almost all the
systems in industry are nonlinear with uncertainty. 'e
research studies on the uncertain system have been made by
many researchers, and several common descriptions of
uncertain systems can be found in [8, 28, 29], such as
polytopic paradigm and structured uncertainty. In addition,
Takagi–Sugeno (T-S) fuzzy model is employed in this paper
to describe the nonlinear system. As we all know that the T-S
fuzzy model can transform the nonlinear system into a set of
linear submodels by IF-THEN rules instead of handling it
directly. In the analysis of T-S fuzzy systems, the controller is
designed based on the linear submodels, while the imple-
mentation of the controller clearly depends on the mem-
bership functions which explicitly consider the nonlinearity
of the system. 'e local linearities of the T-S fuzzy system
provide a bridge between the analysis of nonlinear systems
and the fruitful linear control theory results [30–35]. For the
T-S fuzzy system, some interesting technologies are intro-
duced for the purpose of reducing conservatism, such as
nonquadratic Lyapunov function [36, 37], extended non-
quadratic Lyapunov function [38, 39] with nonparallel
distributed compensation (non-PDC) law, and slack ma-
trices [40]. Recently, some researchers begin applying the
T-S fuzzy model to describe complex nonlinear plant in
NCSs, and more investigations have been carried out. 'e
controller design and stability analysis for T-S fuzzy model-
based NCSs with data losses were considered in [41, 42], and
for NCSs with quantization, the same problems were
addressed in [44, 45].

'ere also have been some nice works that introduce
MPC to deal with the problem for NCSs represented by
the T-S fuzzy system (see, e.g., [43, 46, 47]). 'e authors in
[43] used Bernoulli random binary distribution to model
data loss occurring intermittently between the controller
and the physical plant. Meanwhile, piecewise approach is
more effective for fuzzy systems with trapezoidal mem-
bership functions. Consequently, the fuzzy predictive
control problem of nonlinear NCSs subject to parameter
uncertainties and data loss was considered in [46]. 'e
difference between [43, 46] is that the authors in [46]
employed slack matrices to develop less conservative
conditions for stability analysis of the closed-loop system.
Yu et al. [47] considered more intricate network where
data loss and quantization were existed simultaneously. In
[48], a fuzzy predictive controller which guaranteed the
stability of the closed-loop system was designed in terms
of sector bound approach. Tang et al. [49] investigated the
output feedback model predictive control for networked
control systems with packet loss and data quantization.
Although some remarkable results are presented in the
foregoing documents, most of the T-S fuzzy systems are

described without uncertainty. In addition, the same
problem for NCSs, packet loss, data quantization, and the
model predictive control strategy, were considered in both
of this paper and [49]. However, this paper is different
from [49]. First, the interval-type 2 T-S fuzzy model is
introduced to describe the nonlinear NCSs, while the type
1 T-S fuzzy model is applied in this paper and the system
uncertainty is also considered which is not involved in
[49]; second, the result for [49] was obtained based on the
assumption that the system states were not measurable
and the output feedback MPC strategy was addressed,
while this paper assumed that the system states can be
sampled and state feedback MPC approach was investi-
gated. It is noted that different assumptions resulted in
completely different solutions. Indeed, few works are
focused on the problem of reducing the conservatism for
fuzzy MPC for NCSs which motivates our research. To
illustrate this research more clearly, we provide Table 1 to
compare published works with this paper.

'is paper focuses on the synthesis approach of the
robust constrained MPC with quantization and data loss
for the uncertain fuzzy system. 'e quantization error is
regarded as sector bound uncertainties by using the sector
bound approach, and the data loss process is described by
Bernoulli distributed sequence. A new stability condition
for NCSs is achieved based on extended nonquadratic
Lyapunov function and additional slack and collection
matrices. By optimizing an objective function in the
infinite time horizon at each sampling time, a robust MPC
optimization problem which explicitly considers the data
loss and quantization is presented. Furthermore, the
optimization problem is proved to be recursive feasible,
and the networked control system turns out to be as-
ymptotically stable.

'e remainder of this paper is summarized as follows.
'e problem formulation is given in Section 2. Section 3
provides the new stability results for fuzzy NCSs. Online
synthesis of MPC for fuzzy NCSs is presented in Section 4.
Section 5 gives the analysis of feasibility and stability. Section
6 presents a simulation example, and Section 7 draws the
conclusion.

Notations. For any vector x and positive-definite matrix W,
‖x‖2

W � xTWx. Rn and Rn×m denote n-dimensional Eu-
clidean space and the set of n × m real matrices, respectively.
I is the identity matrix with appropriate dimension. For any
vector, x(k + s|k) is the value of x at sampling instant k + s.
'e superscript T denotes the transpose of matrix or vector.
'e symbol ∗ stands for a symmetric element or submatrix.
For simplicity, μt, t ∈ i, j  and μ+

z , z ∈ l, m{ } are used in
place of μt(f(k)), μz(f(k + 1)) and μt(f(k + s|k)),
μz(f(k + s + 1|k)), respectively. χh � 

r
i�1 μi(·)χi, χh+ � 

r
l�1

μi(·)χl, χhh � 
r
i�1 

r
j�1 μi(·)μj (·)χij, and χhh+ � 

r
l�1 

r
m�1 μl

(·)μm(·)χlm, with χ ∈ A, B, E, K, Q, S{ }.

2. Problem Formulation

Consider a discrete-time T-S fuzzy model with r rules and
describe its ith rule as
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Rule i: IFf1(k) is ξi
1, f2(k) is ξi

2, . . . , andfθ(k) is ξi
θ, THEN

x(k + 1) � Ai + ΔAi( x(k) + Bi + ΔBi( u(k), i � 1, 2, . . . , r{ },
(1)

where ξi
g(g � 1, 2, . . . , θ) stands for the fuzzy set of rule i

and f(k) � [f1(k), . . . , fg(k)] is the corresponding
premise variable which depends on the states of the system;
x(k) ∈ Rn and u(k) ∈ Rm denote the system state and

control input, respectively; Ai ∈ R
n×n and Bi ∈ R

n×m are
known matrices; and ΔAi and ΔBi are introduced to de-
scribe the system uncertainty, which satisfy

ΔAi ΔBi  ∈ Ω ≔ DF(k)E1i DF(k)E2i F(k)
T
F(k)≤ I, i � 1, 2, . . . , r, k≥ 0 , (2)

where F(k) is an uncertain matrix and D, E1i, and E2i are
known matrices.

According to the above discussion, the definition of the
inferred T-S fuzzy model can be represented as follows:

x(k + 1) � 
r

i�1
μi(f(k)) Ai + ΔAi( x(k) + Bi + ΔBi( u(k) ,

(3)

where

μi(f(k)) �
ϖi(f(k))


r
i�1 ϖi(f(k))

,

ϖi(f(k)) � 

θ

g�1
ξi

g fg(k) , i ∈ 1, 2, 3 . . . , r{ },

(4)

in which ϖi(x(k)) represents the weight of the ith rule and
μi(f(k)) is the membership grade of f(k) in ξi

j and satisfies

μi(f(k))≥ 0,



r

i�1
μi(f(k)) � 1, i ∈ 1, 2, 3 . . . , r{ }.

(5)

In this paper, we assume that the communication net-
work exists in sensor-to-controller (S/C) and controller-to-
actuator (C/A) links, and the configuration of quantized
NCSs with data loss is shown in Figure 1. At time k, the
output of controller is quantized as

uc(k) � φ(v(k)), (6)

where φ(·) denotes a logarithmic quantizer which is defined as

φ(v) �

εi, if
1

1 + τ
εi < v≤

1
1 − τ

εi, v> 0,

0, if v � 0,

− φ(− v), if v< 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

in which τ � (1 − ρ/1 + ρ) and ρ is the quantization density.
'e set of quantization levels is presented as follows:
] � ±εi, εi � ρiε0, i � ±1, ±2, . . . ∪ ±ε0 ∪ 0{ }, 0< ρ< 1,
ε0 > 0. Each quantization level corresponds to a segment
such that the quantizer maps the whole segment. Based on
the sector bound approach in [48], the control input can be
expressed as follows:

uc(k) � φ(v(k)) � (I + ς(k))v(k), ς(k) ∈ [− τ, τ], (8)

where ς(k) � diag ς1(k), ς2(k), . . . , ςm(k) , |ςi(k)|≤ τi.
When x(k) and uc(k) are transmitted in the commu-

nication channel, it may be lost due to the poor network
traffic. Hence, two Bernoulli processes are introduced to
model the data loss in NCSs.

xc(k) � α(k)x(k),

u(k) � β(k)uc(k),
(9)

where xc(k) is input of controller. α(k){ } and β(k)  are two
mutually independent Bernoulli processes. α(k), β

(k)} ∈ 0, 1{ } (1 means that the data are transmitted suc-
cessfully and 0 indicates that data packet is lost).

'en, we assume that α(k){ } and β(k)  satisfy the
following conditions:

Table 1: Comparisons of published papers and this paper.

[13] [21] [22] [25] [31] [33] [35] [40] [45] 'is paper
Data loss Yes No No Yes No No No Yes No Yes
Data quantization No Yes Yes Yes No No No No Yes Yes
Uncertainties No No Yes No No Yes Yes No Yes Yes
T-S fuzzy model No No No No Yes Yes Yes Yes Yes Yes
Non-PDC control law No No No No No No Yes No No Yes
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Pr α(k) � 1{ } � E α(k){ } � α,

Pr α(k) � 0{ } � 1 − α,

Pr β(k) � 1  � E β(k)  � β,

Pr β(k) � 0  � 1 − β.

(10)

In the following, the fuzzy controller is presented.

RuleR
i
: IFf1(x(k)) is ξi

1, f2(x(k)) is ξi
2, . . . , andfθ(x(k)) is ξi

θ,THEN

v(k) � KiQ
− 1
i xc(k), i ∈ 1, 2, . . . , r{ },

(11)

where Ki ∈ R
m×n in which i ∈ 1, 2, . . . , r{ } and Qi ∈ R

n×n

in which i ∈ 1, 2, . . . , r{ } are the controller gains. 'en, the
state feedback fuzzy controller is defined by

v(k) � 
r

i�1
μi(f(k))Ki

⎛⎝ ⎞⎠ 

r

i�1
μi(f(k))Qi

⎛⎝ ⎞⎠

− 1

xc(k)

� KhQ
− 1
h xc(k), i ∈ 1, 2, . . . , r{ }.

(12)

Based on (9) and (12), the following state feedback fuzzy
controller is achieved:

u(k) � (I + ς(k))α(k)β(k)KhQ
− 1
h x(k), i ∈ 1, 2, . . . , r{ }.

(13)

Let ω(k){ } � α(k)β(k). It is obvious that if α(k) � 1 and
β(k) � 1, ω(k) � 1; otherwise, ω(k) � 0. 'us, we have

Pr ω(k) � 1{ } � E ω(k){ } � ω,

Pr ω(k) � 0{ } � 1 − ω.
(14)

According to (3), (8), and (13), the overall uncertain
closed-loop fuzzy system is described as follows:

x(k + 1) � 
r

i�1
μi(f(k)) Ai + ΔAi(  + Bi + ΔBi( (I + ς(k))ω(k)KhQ

− 1
h x(k)

� Ah + ωBh(I + ς(k))KjQ
− 1
j + ω(k)Bh(I + ς(k))KjQ

− 1
j x(k),

(15)

where Ah � 
r
i�1 μi(f(k))Ai, ΔAh � 

r
i�1 μi(f(k))ΔAi,

Bh � 
r
i�1 μi(f(k))Bi, ΔBh � 

r
i�1 μi(f(k))ΔBi, Kj � 

r
i�1 μi

(f(k))Kh, and Qj � 
r
i�1 μi(f(k))Qh. Ah � Ah + ΔAh, Bh �

Bh + ΔBh, and ω(k) � ω(k) − ω. Obviously, E ω(k){ } � 0
and E ω(k)ω(k){ } � ω(1 − ω).

3. New Stability Results for Fuzzy NCSs

Compared with the conditions of stability for traditional
control fuzzy systems, a new stability condition which can
reduce the conservatism is presented in this section by

Plant

Actuator

u (k)

v (k) xc (k)

x (k)

Network

Controller

Network

Sensor

Figure 1: Configuration of quantized NCSs with data loss.
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introducing the notation of slack matrices. 'is new stability
condition is the foundation of the MPC for fuzzy NCSs
which will be provided in the next section.

First, the following two lemmas that play a significant
role in the proof of 'eorem 1 are introduced.

Lemma 1 (see [50]). For vectors a and b and matrices N, X,

Y, and Z of any appropriate dimensions, if X Y

Y
T

Z
 ≥ 0, then

the following inequality holds:

− 2a
T
Nb≤

a

b

⎡⎢⎣ ⎤⎥⎦

T
X Y − N

Y
T

− N
T

Z

⎡⎢⎣ ⎤⎥⎦
a

b

⎡⎢⎣ ⎤⎥⎦. (16)

− 2a
T
Nb≤

a

b

⎡⎣ ⎤⎦

T 0 − N

− N
T 0

⎡⎣ ⎤⎦
a

b

⎡⎣ ⎤⎦

≤
a

b

⎡⎣ ⎤⎦

T 0 − N

− N
T 0

⎡⎣ ⎤⎦
a

b

⎡⎣ ⎤⎦ +
a

b

⎡⎣ ⎤⎦

T
X Y

Y
T

Z

⎡⎣ ⎤⎦
a

b

⎡⎣ ⎤⎦

≤
a

b

⎡⎣ ⎤⎦

T
X Y − N

Y
T

− N
T

Z

⎡⎣ ⎤⎦
a

b

⎡⎣ ⎤⎦.

(17)

'is inequality is generally calledMoon inequality. It can
be seen that if N � Y � I and Z � X− 1, then
− 2aTb≤ aTXa + bTX− 1b. For any w, z ∈ Rn and any posi-
tive-definite matrix c ∈ Rn×n, the following inequality holds:

2w
T
z≤w

T
c

− 1
w + z

T
cz. (18)

Lemma 2 (see [51]). Symmetric matrix L1 and matrices
L2 and L3 satisfy the following inequality:

L1 + L2F(k)L3 + L
T
3 F(k)

T
L

T
2 < 0, (19)

for F(k)TF(k)≤ I, if there exists a scalar η> 0 such that

L1 + ηL2L
T
2 + η− 1

L
T
3 L3 < 0. (20)

Next, the following theorem is given to obtain the
conditions of the stability for NCSs.

Theorem 1. Considering the T-S fuzzy system (3), the as-
ymptotic stability is guaranteed if there exist scalars
ηij and ηij, matrices Kj, Qj, and Y, symmetric matrices Gl

ii

and Gl
ij, and Si > 0, Sj > 0 such that

Ψl
ii ≤ − G

l
ii, i, l ∈ 1, 2, . . . , r{ }, (21)

Ψl
ij + Ψl

ji ≤ − G
l
ij, j> i, i, j, l ∈ 1, 2, . . . , r{ }, (22)

2G
l
11 ∗ · · · ∗

G
l
12 2G

l
22 · · · ∗

⋮ ⋮ ⋱ ∗
G

l
1r · · · G

l
(r− 1)r 2G

l
rr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0, l ∈ 1, 2, . . . , r{ }, (23)

where

Ψl
ij �

d1 ∗ ∗

d2 d3 ∗

d4 d5 d6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i, j, l ∈ 1, 2, . . . , r{ },

d1 �

Si − Qj − Q
T
j ∗ ∗

AiQj + ωBiKj − Sl+ + ω2
BiτYτB

T
i ∗

κBiKj κωBiτYτB
T
i − Sl+ + κ2BiτYτB

T
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

d2 �

E1iQj + ωE2iKj ω2
E2iτYτB

T
i ωκE2iτYτB

T
i

0 ηijD
T 0

κE2iQjKj ωκE2iτYτB
T
i κ2E2iτYτB

T
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

d3 �

− ηijI + ω2
E2iτYτE

T
2i ∗ ∗

0 − ηijI ∗

ωκE2iτYτE
T
2i 0 − ηijI + κ2E2iτYτE

T
2i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

d4 �
0 0 − ηijD

T

Kj 0 0
⎡⎢⎣ ⎤⎥⎦,

d5 �
0 0 0

0 0 0
 ,

d6 �
− ηijI ∗

0 − Y
 .

(24)

Proof. See Appendix A for details. □

4. Online Synthesis of MPC for Fuzzy NCSs

Based on the stability condition achieved in the above
section, the online synthesis of MPC is derived for fuzzy
NCSs with the quantization and data loss. Furthermore, the
model uncertainty and physical constraints are considered.

'e following non-PDC fuzzy predictive controller is
used for the T-S fuzzy system:

u(k + s | k) � α(k)β(k)(I + ς(k)) 
r

i�1
μi(f(k + s | k))Ki

⎛⎝ ⎞⎠

× 
r

i�1
μi(f(k + s|k))Qi

⎛⎝ ⎞⎠

− 1

x(k + s|k)

� ω(k)(I + ς(k))KhQ
− 1
h x(k + s|k).

(25)
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In view of (25), we can get the predictive model of
uncertain T-S fuzzy NCSs:

x(k + s + 1|k) � Ah + ωBh(I + ς(k))KhQ
− 1
h + ω(k)Bh(I + ς(k))KhQ

− 1
h x(k + s|k), (26)

where Ah � Ah + ΔAh, Bh � Bh + ΔBh, and ω(k) � ω(k) − ω.
'e following is the optimization problem for the online

constrained robust fuzzy MPC, which is optimized in the
infinite time horizon at each time:

min
u(k+s|k),s≥0

max
ς(k), ΔAi(k+s)ΔBi(k+s)[ ]∈Ω,i∈ 1,2,...,r{ },s ≥ 0

J
∞
0 (k), (27)

where J∞0 (k) � 
∞
s�0 E [x(k + s|k)T

 Wx(k + s|k) +

u(k + s|k)TRu(k + s|k)]}, with W> 0 and R> 0 the
weighting matrices. It is obvious that this objective function
is related to the model uncertainty, quantization density, and
expected values of stochastic variables.

'e following extended nonquadratic Lyapunov func-
tion is considered:

V(x(k + s|k)) � x(k + s|k)
T



r

i�1


r

j�1
μi(f(k + s|k))μj(f(k + s|k))Sij

⎛⎝ ⎞⎠

− 1

× x(k + s|k)

� x(k + s|k)
T
S

− 1
hhx(k + s|k), Sij > 0, s≥ 0.

(28)

'en, imposing the following stability constraint at each
time,

E V(x(k + s + 1|k)) − V(x(k + s|k)){ }

≤ − E x(k + s|k)
T
Wx(k + s|k) + u(k + s|k)

T
Ru(k + s|k)  .

(29)

Summing up both sides of (29) from s � 0 to s �∞, we
have

E V(x(k +∞|k)) − V(x(k|k)){ }≤ − E 
∞

s�0
x(k + s|k)

T
Wx(k + s|k) + u(k + s|k)

T
Ru(k + s|k) . (30)

As we all know, when s⟶∞, E x(k + s|k){ } � 0. 'en,
we can obtain lims⟶∞E V(x(k + s|k)){ } � 0. 'us,
J∞0 (k)≤E V(x(k|k)){ }, which is equal to

max
ΔAi(k+s)ΔBi(k+s)[ ]∈Ω,i∈ 1,2,...,r{ }

J
∞
0 (k)≤ 

r

i�1


r

j�1
μi(ξ(k|k))μj(ξ(k|k))‖x(k|k)‖

2
S− 1

ij
, (31)

where s≥ 0.
Hence, the problem of minimizing J∞0 is transformed

into minimizing a scalar c satisfying

x(k|k)
T



r

i�1

r

j�1
μi(ξ(k|k))μj(ξ(k|k))S

− 1
ij x(k|k)≤ c. (32)

Moreover, input and state constraints are
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E ua(k + s|k)
����

����2 ≤ u, a � 1, 2, . . . , nu, (33)

E (ζx(k + s + 1|k))a

����
����2 ≤x, a � 1, 2, . . . , nx, (34)

where ua(k + s|k) and xa(k + s + 1|k) are the ath compo-
nent of the vector u(k + s|k) and x(k + s + 1|k), respectively.

Can be solved by the following theorem.

Theorem 2. Consider the uncertain fuzzy NCS (26) and
assume that the communication link parameter ω and
quantization density ρ are known. Be non-PDC state
feedback control law (25) can guarantee the robust asymp-
totically stability of the closed-loop fuzzy system if there exist
scalars c, ηij, ηij, ηijlm, and ηijlm, positive-definite matrices Sij,
Slm, and Glm

ij , and any matrices Kj, Qj, Glm
ij � (Glm

ji )T, and
Ulm � (Uml)

T(m> l) such that the following minimization
problem is feasible:

min
c,ηij ,ηijlm,ηij,ηijlm,Sij,Slm,Glm

ii ,Glm
ij ,Qj,Kj,Ull ,Ulm,N,O,T

c,
(35)

subject to

1 ∗

x(k|k) Sij

⎡⎣ ⎤⎦≥ 0, i, j ∈ 1, 2, . . . , r{ }, (36)

Ψlm
ii ≤ − G

lm
ii , i, l, m ∈ 1, 2, . . . , r{ }, (37)

Ψlm
ij + Ψlm

ji ≤ − G
lm
ij − G

lm
ji , j> i, i, j, l, m ∈ 1, 2, . . . , r{ },

(38)

ϕll ≥ 0, l ∈ 1, 2, . . . , r{ }, (39)

ϕlm + ϕml ≥ 0, m> l, l, m ∈ 1, 2, . . . , r{ }, (40)

where

Ψlm
ij �

m1 ∗ ∗

m2 m3 ∗

m4 m5 m6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (41)

ϕlm �

G
lm
11 − Ulm G

lm
12 − Ulm · · · G

lm
1r − Ulm

G
lm
21 − Ulm G

lm
22 − Ulm · · · G

lm
2r − Ulm

⋮ ⋮ ⋱ ⋮
G

lm
r1 − Ulm · · · · · · G

lm
rr − Ulm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, l, m ∈ 1, 2, . . . , r{ }, (42)

m1 �

m1 ∗ ∗
AiQj + ωBiKj m2 ∗

κBiKj ωκBiτNτB
T
i m3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

m2 �

E1iQj + ωE2iKj ω2
E2iτNτB

T
i ωκE2iτNτB

T
i

0 ηijlmD
T 0

κE2iKj ωκE2iτNτB
T
i κ2E2iτNτB

T
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

m3 �

m4 ∗ ∗
0 − ηijlmI ∗

ωκE2iτNτE
T
2i 0 m5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

m4 �

0 0 ηijlmD
T

W
1/2

Qj 0 0

ϱKj ω ϱτNτB
T
i κϱτNτB

T
i

Kj 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

m5 �

0 0 0
0 0 0

ω ϱτNτE
T
2i 0 κϱτNτE

T
2i

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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m6 �

− ηijlmI ∗ ∗ ∗

0 − cI ∗ ∗

0 0 − cI + ϱ2τNτ ∗

0 0 0 − N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

m1 � Sij − Qj − Q
T
j ,

m2 � − Slm+ + ω2
BiτNτB

T
i ,

m3 � − Slm+ + κ2BiτNτB
T
i ,

m4 � − ηijlmI + ω2
E2iτNτE

T
2i,

m5 � − ηijlmI + κ2E2iτNτE
T
2i,

U11 U12 · · · U1r

U21 U22 · · · U2r

⋮ ⋮ ⋱ ⋮

Ur1 Ur2 · · · Urr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0.

(43)

Proof. See Appendix B for details. □ 'en, we handle the input constraint (33). For any
ΔAi ΔBi  ∈ Ω, i ∈ 1, 2, . . . , r{ }, we have

maxs≥0E ua(k + s|k)



2

 

� max
s≥0

E ((ω + ω − ω)(I + ς(k))KhQ
− 1
h x(k + s|k)

a




2

 

≤ max
x(k+s|k)∈ε Shh( 

ω(I + ς(k))KhQ
− 1
h

S
1/2
hh 

a

������

������

2

2
S

− (1/2)

hh x(k + s|k) 
a

������

������

2

2

≤ ω(I + ς(k))KhQ
− 1
h

S
1/2
hh 

a

������

������

2

2
, a ∈ 1, 2, . . . , nu .

(44)

If there exists a symmetric matrix X that satisfies

X − ω2
(I + ς(k))KhQ

− 1
h

Shh (I + ς(k))KhQ
− 1
h 

T
≥ 0

Xaa ≤ u
2
a,max, a ∈ 1, 2, . . . , nu .

(45)

By applying the Schur complement and QT
h S− 1

h Qh ≥Qh +

QT
h − Sh [52], (45) becomes

Sij − Qj − Q
T
j ∗

ω(I + ς(k))Kj − X
⎡⎢⎣ ⎤⎥⎦≤ 0, Xaa ≤ u

2
a,max, a ∈ 1, 2, . . . , nu , (46)

8 Complexity



which equals to

Sij − Qj − Q
T
j ∗

ωKj − X
⎡⎢⎣ ⎤⎥⎦ +

0

ω
 ς(k) Kj 0  +

K
T
j

0
⎡⎣ ⎤⎦ς(k) 0 ω ≤ 0. (47)

Using Lemma 2 and Schur complement, it yields

Sij − Qj − Q
T
j ∗ ∗

ωKj − X + ωτOτω ∗

Kj 0 − O

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0, (48)

where O is a positive-definite matrix. In consequence, (33) is
guaranteed by (49) through the convex feature of μi and μj.

In addition, we deal with the state constraint (34). For
any ΔAi ΔBi  ∈ Ω, i ∈ 1, 2, . . . , r{ }, we can achieve

maxs≥0E (ζx(k + s + 1|k))a



2

 

� max
s≥0

E ζa
Ah + ωBh(I + ς(k))KhQ

− 1
h + ω(k + s|k) × Bh(I + ς(k))KhQ

− 1
h x(k + s|k) 

a




2

 

≤ max
x(k+s|k)∈ε Shh( 

ζa
Ah + ωBh(I + ς(k))KhQ

− 1
h S

1/2
hh 

a

������

������

2

2
S

− (1/2)

hh x(k + s|k) 
a

������

������

2

2

≤ ζa
Ah + ωBh(I + ς(k))KhQ

− 1
h S

1/2
hh 

a

������

������

2

2
.

(49)

If there exists a symmetric matrix Z that satisfies

Z − ζ AhQh + ωBh(I + ς(k))Kh Q
− 1
h

ShhQ
− T
h

AhQh + ωBh(I + ς(k))Kh 
T
ζT ≥ 0

Zaa ≤x
2
a,max, a ∈ 1, 2, . . . , nx .

(50)

Using Lemmas 1 and 2 and Schur complement, (50)
holds if

Sij − Qj − Q
T
j ∗ ∗ ∗

ζ AiQj + ωBi(I + ς(k))Kj  − Z ∗ ∗

E1iQj + ωE2i(I + ς(k))Kj 0 − ηijI ∗

0 ηijD
TζT 0 − ηijI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0,

Zaa ≤ x
2
a,max, a ∈ 1, 2, . . . , nx ,

(51)

for all F(k + s|k) satisfying F(k + s|k)TF(k + s|k)≤ I.
Equation (52) can be transformed into

Sij − Qj − Q
T
j ∗ ∗ ∗

ζ AiQj + ωBiKj  − Z ∗ ∗

E1iQj + ωE2iKj 0 − ηijI ∗

0 ηijD
TζT 0 − ηijI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

0

ζωBi

ωE2i

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ς(k)

KT
j

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

+ Kj 0 0 0 
T
ς(k) 0 ζωBi( 

T ωE2i( 
T 0 ≤ 0.

(52)
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According to Lemma 1 and utilizing Schur complement,
the following inequality is obtained:

Sij − Qj − Q
T
j ∗ ∗ ∗ ∗

ζ AiQj + ωBiKj  m18 ∗ ∗ ∗

E1iQj + ωE2iKj ωE2iτTτ ζωBi( 
T

− ηijI + ωE2iτTτ ωE2i( 
T ∗ ∗

0 ηijD
TζT 0 − ηijI ∗

Kj 0 0 0 − T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0, (53)

where m18 � − Z + ζωBiτTτ(ζωBi)
T and T is a positive-

definite matrix. We can conclude that (34) is guaranteed by
(53). 'e proof is completed.

Based on the above discussions, the solution of (35)
can be obtained by solving the following optimization
problem:

min
c,Ω

c

subject to(27) − (34) and (44),

(54)

where Ω � ηij, ηij, ηijlm, ηijlm, Sij,
Slm, Glm

ii , Glm
ij , Qj, Kj,

Ull, Ulm, X, Z, N, O, T}. At time instant k≥ 0, optimization
problem (54) is solved online and we can get optimal control
sequence u(k + s|k), s≥ 0. 'en, only the first control input
u(k|k) is implemented.

'e implementation steps of designing RMPC are
summarized in Algorithm 1.

'e complexity of solving the LMI optimization problem
is polynomial time, which (regarding the fastest interior-point
algorithms) is proportional to K3L, where K is the total
number of scalar variables and L is the total row size of the LMI
system. For the optimization problem which is described by
(54), the total number of scalar variables isK � 1 + 2r2+ 2r4 +

nx(nx + 1) r2 + rn2
x + rnxnu + (1/2)nx (nx + 1) + 2nu (nu +

1) + (8nx + 2nu)(8nx + 2nu + 1)(r4 + r2) and the total row
size of the LMI system is L � (8nx + 2nu)(3/4)r4 + (8nx+

2nu)r3 + (6nx + 3nu + 1)r2, where r is the number of infer-
ence rules. It can be seen that the increase in r, nx, and nu

will increase the computational complexity exponentially.
Let r � nx � nu and take the most influential parts of K

and L, respectively. 'en, the computational complexity is
(15/2)n24

x .

5. The Analysis of Feasibility and Stability

5.1. Be Analysis of Feasibility

Theorem 3. Consider the uncertain fuzzy NCS (26), if any
feasible solution is achieved from the optimization problem
(55) at time k, then the optimization problem (55) is feasible
for all time t> k.

Proof. See Appendix C for details. □

5.2. Be Analysis of Stability

Theorem 4. Consider the uncertain fuzzy NCS (26). Be
control input u(k), which is applied in a receding horizon way
by solving optimization problem (55), robustly asymptotically
stabilizes the closed-loop fuzzy NCSs.

Proof. See Appendix D for details. □

6. Simulation Example

In this section, the following example of a continuous stirred
tank reactor (CSTR) is given to illustrate the effectiveness of
the proposed method.

Example 1. As shown in Figure 2, consider the nonlinear
model of CSTR which has been described in [11].

Assuming constant liquid volume, the CSTR liquid
volume, the CSTR for an exothermic, irreversible reaction,
i.e., A⟶ B, is presented by the following dynamic model
based on a component for reactant A and an energy balance:

_CA �
q

V
CAf − CA  − k0 exp −

E/R
T

 CA.

_T �
q

V
Tf − T  −

(− ΔH)

ρCp

k0 exp −
E/R
T

 CA +
UA

VρCp

Tc − T( ,

(55)

where CA, T, and Tc denote the concentration of A in the
reactor, the reactor temperature, and temperature of the
coolant stream, respectively.

'e aim of using CSTR is to regulate T by manipulating
Tc, satisfying the constraint Tl

c ≤Tc ≤Tu
c . 'e system state

and input variables are set as x � [CA − C
eq
A T − Teq]T,

u � Tc − T
eq
c . In addition, let y � x2. In this example, we

choose x2 as the premise variable of the fuzzy system and
x2 ≤ x2 ≤x2, where x2 � Tl − Teq and x2 � Tu − Teq. 'en,
the following equations are defined:
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g1 x2(  � k0exp −
E/R

x2 + T
eq ,

g
0
1 �

g1 x2(  + g1 x2(  

2
,

g2 x2(  � k0 exp −
E/R

x2 + T
eq  − exp −

E/R
T
eq C

eq
A

1
x2

,

g
0
2 �

g2 x2(  + g2 x2(  

2
,

ϖ1 x2(  � g1 x2(  − g
0
1,

ϖ2 x2(  � g2 x2(  − g
0
2.

(56)

'e membership functions are described as

μ1 x2(  �
1
2
ϖ1 x2(  − ϖ1 − x2( 

ϖ1 x2(  − ϖ1 x2( 
,

μ2 x2(  �
1
2
ϖ1 x2(  − ϖ1 x2( 

ϖ1 x2(  − ϖ1 x2( 
,

μ3 x2(  �
1
2
ϖ2 x2(  − ϖ2 x2( 

ϖ2 x2(  − ϖ2 x2( 
,

μ4 x2(  �
1
2
ϖ2 x2(  − ϖ2 x2( 

ϖ2 x2(  − ϖ2 x2( 
.

(57)

'us, (55) can be transformed into the following T-S
fuzzy model:

(1) Set the communication link parameter ω and quantization density ρ
(2) At time k≥ 0, solve the optimization problem (54) and get c, ηij, ηij, ηijlm, ηijlm, Sij,

Slm, Glm
ii , Glm

ij , Qj, Kj, Ull, Ulm, X, Z, N, O, T

(3) Using (25), calculate the optimal control sequence u(k + s|k), s≥ 0
(4) Quantize and transmit the first control input u(k|k) into the communication network
(5) Update time to k + 1 and then return to step (2)

ALGORITHM 1: Robust constrained model predictive control.

CAf, Tf, q

TC

A → B

CA, T

Figure 2: Structure of the continuous stirred tank reactor.
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A1c �

−
q

V
− g

0
1 − 2ϖ1 x2(  − g

0
2

(− ΔH)

ρCp

g
0
1 + 2

(− ΔH)

ρCp

ϖ1 x2(  −
q

V
−

UA

VρCp

+
(− ΔH)

ρCp

g
0
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A2c �

−
q

V
− g

0
1 − 2ϖ1 x2(  − g

0
2

(− ΔH)

ρCp

g
0
1 + 2

(− ΔH)

ρCp

ϖ1 x2(  −
q

V
−

UA

VρCp

+
(− ΔH)

ρCp

g
0
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A3c �

−
q

V
− g

0
1 − g

0
2 − 2ϖ2 x2( 

(− ΔH)

ρCp

g
0
1 −

q

V
−

UA

VρCp

+
(− ΔH)

ρCp

g
0
2 + 2

(− ΔH)

ρCp

ϖ2 x2( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A4c �

−
q

V
− g

0
1 − g

0
2 − 2ϖ2 x2( 

(− ΔH)

ρCp

g
0
1 −

q

V
−

UA

VρCp

+
(− ΔH)

ρCp

g
0
2 + 2

(− ΔH)

ρCp

ϖ2 x2( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B1c � B2c � B3c � B4c �

0

UA

VρCp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(58)

Choose sampling period Ts � 0.06min. 'e values and
meaning of other parameters are given in Table 2.

A1d �
0.7899 − 0.0020

7.1638 0.9232
 ,

A2d �
0.9588 − 0.0022

− 0.8035 0.9326
 ,

A3d �
0.8678 − 0.0035

3.4932 0.9951
 ,

A4d �
0.8728 − 0.0007

3.2519 0.8650
 ,

B1d � − 0.0001 0.1208 
T
,

B2d � − 0.0001 0.1212 
T
,

B3d � − 0.0002 0.1254 
T
,

B4d � − 0.000048 0.1169 
T
.

(59)

In this section, for simplicity, we adopt the following T-S
fuzzy model:

x(k + 1) � 
2

i�1
μi x2(k)(  Aix(k) + Biu(k)( , (60)

with

μ1 x2(k)(  � μ1 x2(k)(  + μ3 x2(k)( ,

μ2 x2(k)(  � μ2 x2(k)(  + μ4 x2(k)( ,

A1 �
1
2

A1d + A3d( ,

A2 �
1
2

A2d + A4d( ,

B1 �
1
2

B1d + B3d( ,

B2 �
1
2

B2d + B4d( .

(61)

According to the above discussion, the T-S fuzzy model
can be summarized as

Rule 1: IFx2(k) is Γ11,THEN

x(k + 1) � A1 + ΔA1(k)( x (k) B1 + ΔB1(k)( ( u(k),

Rule 2: IFx2(k) is Γ21,THEN

x(k + 1) � A2 + ΔA2(k)( x (k) B2 + ΔB2(k)( ( u(k),

(62)

with

A1 �
0.8288 − 0.0027

5.3285 0.9592
 ,

A2 �
0.9158 − 0.0014

1.2242 0.8988
 ,

B1 � − 0.0002 0.1231 
T
,

B2 � − 0.0001 0.1191 
T
.

(63)

Considering the uncertainty of the T-S fuzzy system, the
following conditions must be satisfied:

ΔA1(k) � DF(k)E11,

ΔA2(k) � DF(k)E12,

ΔB1(k) � DF(k)E21,

ΔB2(k) � DF(k)E22,

(64)

Table 2: 'e operating parameters of CSTR.

Parameter Description Value Unit
q Process flow rate 100 L/min
Tf Actual feed temperature 350 K
CAf Feed concentration 1 mol/L
V Reactor volume 100 L
ρ Liquid density 1000 g/L
Cp Heat capacity 0.239 J/g K
ΔH Heat of reaction − 120,000 J/mol
E/R Activation energy 8750 K
k0 Reaction rate constant 7.2 × 1010 min− 1

UA Heat transfer coefficient 50,000 J/minK
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with D � I, E11 � diag 0.01; 0.001{ }A1, E12 � diag 0.01;{

0.001}A2, E21 � diag 0.05; 0.005{ }B1, andE22 � diag 0.01;{

0.001}B2. For more rational analysis, we assume that F(k) is
norm-bounded and satisfies F(k) � sin(k), F(k)TF(k)≤ I.

'e control input and state constraints must satisfy
|u(k)|≤ 3.5K, |x2(k)|≤ 10K, s≥ 0. We choose the initial
conditions as x(0) � [− 0.01425; − 0.60872] and
u(0) � − 0.14. Let W � diag 0.5; 0.5{ } and R � 1I. Assume

Table 3: 'e comparison of different methods.

Methods Sate feedback gain at k � 1 Performance costs J

'eorem 2, δ � 0.0191 [–6.90906, –0.47676] 0.6686
'eorem 2, δ � 0.6567 [–6.94362, –0.48018] 0.6575
Corollary 7 in [43] [–3.2213, –0.169] 0.7075

Theorem 2, δ = 0.6567,
x1
Theorem 2, δ = 0.6567,
x2

Corollary 7 in [43],
x1
Corollary 7 in [43],
x2

×10−3
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Theorem 2, τ = 0.6567, γ1

Corollary 7 in [43], γ2
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Figure 5: c(k) trajectory.

Theorem 2, τ = 0.0191,
x1
Theorem 2, τ = 0.0191,
x2

Corollary 7 in [43],
x1
Corollary 7 in [43],
x2

×10−3

5 10 15 20 25 30 350
Step k

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

St
at

e r
es

po
ns

es

29
.7

29
.5

5
29

.6
29

.6
5

29
.5

29
.4

5

−6
−4
−2

0
2
4

Figure 6: State trajectory.

Theorem 2, δ = 0.0191, u1

Corollary 7 in [43], u2
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�eorem 2, τ = 0.0191, γ1
Corollary 7 in [43], γ2
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Figure 8: c(k) trajectory.

Theorem 2, τ = 0.6567, x
Corollary 7 in [43], x
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ω � 0.3. 'e comparison in this example is made in the view
of 'eorem 2 with quantization density τ � 0.6567 and τ �

0.0191 and the method in [43], which provided a designing
approach of MPC for fuzzy NCSs with data loss. 'e state
feedback gains at k � 1, and the performance costs for
different methods are shown in Table 3. As we can see from
Figures 3–5 and Figures 6–8, the state, upper bound c of the
objective function and control input all converge to zero as
k⟶∞. However, some differences can be found from
these figures. 'e convergence speed of 'eorem 2 in this
paper is faster than that of the method in [43]. Further, the
control performance of the system in this paper is better than
that in [43]. Figures 9 and 10 show the state trajectories and
invariant sets of these two methods which show the supe-
riority of the presented approach. It is obvious that the
recursive feasibility and asymptotic stability of the closed-
loop T-S fuzzy system can be guaranteed, which illustrates
the effectiveness of our method.

7. Conclusion

In this paper, the robust constrained MPC scheme with
quantization and data loss for the uncertain fuzzy system has
been studied. Compared with other documents, the key idea
of our approach is that the non-PDC control law and
nonquadratic Lyapunov function are employed in the case of
taking the problem of NCSs into consideration. Based on the
nonquadratic Lyapunov function, the new conditions for
stability related to slack and collectionmatrices are obtained.
Further, the fuzzy controller is designed, and online syn-
thesis of MPC for fuzzy NCSs is presented by solving the
optimization problem in view of non-PDC control law and
an extended nonquadratic Lyapunov function, respectively.
In future work, we will focus on reducing the impact of
network-induced delay through the MPC method or study
the problem of reducing computational burden of the
networked MPC method.

Appendix

A. Proof of Theorem 1

Consider the nonquadratic Lyapunov function

V(x(k)) � x(k)
T



r

i�1
μi(f(k))Si

⎛⎝ ⎞⎠

− 1

,

x(k) � x(k)
T
S

− 1
h x(k),

(A.1)

where Si > 0 and μ(f(k))> 0 are in a convex sum property
for all f(k), i ∈ 1, 2, . . . , r{ }. 'en, the following condition
must be satisfied:

E V(x(k + 1)) − V(x(k)){ }

� E x
T
(k) Ah + ωBh(I + ς(k))KjQ

− 1
j + ω(k)

× Bh(I + ς(k))KjQ
− 1
j 

T
S

− 1
h+

Ah + ωBh(I + ς(k))KjQ
− 1
j

+ ω(k)Bh(I + ς(k))KjQ
− 1
j  − S

− 1
h x(k)≤ 0.

(A.2)

'e following condition is put forward, so the asymp-
totic stability of (3) is guaranteed:

Ah + ωBh(I + ς(k))KjQ
− 1
j 

T
S

− 1
h+

Ah + ωBh(I + ς(k))KjQ
− 1
j 

+ κ2 Bh(I + ς(k))KjQ
− 1
j 

T
S

− 1
h+

Bh(I + ς(k))KjQ
− 1
j  − S

− 1
h ≤ 0,

(A.3)

where κ2 � E ω(k)ω(k){ } � ω(1 − ω). Premultiplying and
postmultiplying (A.3) by QT

h and Qh and utilizing the in-
equality QT

h S− 1
h Qh ≥Qh + QT

h − Sh, inequality (A.3) is turned
into

AhQh + ωBh(I + ς(k))Kh 
T
S

− 1
h+

AhQh + ωBh(I + ς(k))Kh 

+ κ2 Bh(I + ς(k))Kh 
T
S

− 1
h+

Bh(I + ς(k))Kh  − Qh + Q
T
h − Sh ≤ 0.

(A.4)

Using Schur complement, we can see that (A.4) becomes

Sh − Qh − Q
T
h ∗ ∗

AhQh + ωBh(I + ς(k))Kh − Sh+ ∗

κBh(I + ς(k))Kh 0 − Sh+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0. (A.5)

Using (2), we have

16 Complexity



Sh − Qh − Q
T
h ∗ ∗

AhQh + ωBh(I + ς(k))Kh − Sh+ ∗

κBh(I + ς(k))Kh 0 − Sh+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0

D

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦F(k)

× E1hQh + E2hω(I + ς(k))Kh 0 0  + E1hQh + ωE2h(I + ς(k))Kh 0 0 
T

× F(k)
T

0

D

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

+

0

0

D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦F(k) κE2h(I + ς(k))Kh 0 0 

+ κE2hQh(I + ς(k))Kh 0 0 
T
F(k)

T

0

0

D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

≤ 0.

(A.6)

Applying Lemma 2, inequality (A.6) holds for all ad-
missible uncertainties F(k) satisfying F(k)TF(k)≤ I if and
only if there exist some constants ηij and ηij such that

Sh − Qh − Q
T
h ∗ ∗

AhQh + ωBh(I + ς(k))Kh − Sh+ ∗

κBh(I + ς(k))Kh 0 − Sh+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ηij

0

D

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 0 D
T 0 

+ η− 1
ij

E1hQh + E2hω(I + ς(k))Kh( 
T

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
E1hQh + E2hω(I + ς(k))Kh(  0 0 

+ ηij

0

0

D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 0 0 D
T  + η− 1

ij

κE2hQh(I + ς(k))Kh( 
T

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× κE2hQh(I + ς(k))Kh(  0 0 ≤ 0.

(A.7)

Applying Schur complement, we have

Sh − Qh − Q
T
h ∗ ∗ ∗ ∗ ∗ ∗

AhQh + ωBh(I + ς(k))Kh − Sh+ ∗ ∗ ∗ ∗ ∗

κBh(I + ς(k))Kh 0 − Sh+ ∗ ∗ ∗ ∗

E1hQh + ωE2h(I + ς(k))Kh 0 0 − ηijI ∗ ∗ ∗

0 ηijD
T 0 0 − ηijI ∗ ∗

κE2hQh(I + ς(k))Kh 0 0 0 0 − ηijI ∗

0 0 − ηijD
T 0 0 0 − ηijI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0, (A.8)

which is equivalent to
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Sh − Qh − Q
T
h ∗ ∗ ∗ ∗ ∗ ∗

AhQh + ωBhKh − Sh+ ∗ ∗ ∗ ∗ ∗
κBhKh 0 − Sh+ ∗ ∗ ∗ ∗

E1hQh + ωE2hKh 0 0 − ηijI ∗ ∗ ∗

0 ηijD
T 0 0 − ηijI ∗ ∗

κE2hQhKh 0 0 0 0 − ηijI ∗

0 0 − ηijD
T 0 0 0 − ηijI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ n1ς(k)n2 + n
T
2 ς(k)n

T
1 ≤ 0,

(A.9)

where n1 � [0(ωBh)T(κBh)T(ωE2h)T0(κE2h)T0]T and n2 �

[Kh 0 0 0 0 0 0].
Utilizing Lemma 1, one can get

n1ς(k)n2 + n
T
2 ς(k)n

T
1 ≤ n1τYτn

T
1 + n

T
2 Y

− 1
n2. (A.10)

Condition (A.9) holds if

Sh − Qh − Q
T
h ∗ ∗ ∗ ∗ ∗ ∗

AhQh + ωBhKh − Sh+ ∗ ∗ ∗ ∗ ∗
κBhKh 0 − Sh+ ∗ ∗ ∗ ∗

E1hQh + ωE2hKh 0 0 − ηijI ∗ ∗ ∗
0 ηijD

T 0 0 − ηijI ∗ ∗
κE2hQhKh 0 0 0 0 − ηijI ∗

0 0 − ηijD
T 0 0 0 − ηijI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ n1τYτn
T
1 + n

T
2 Y

− 1
n2 ≤ 0.

(A.11)

By applying Schur complement, the following is
achieved:

d1 ∗ ∗
d2 d3 ∗
d4 d5 d6

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ � 

r

l�1
μ+

l 

r

i�1


r

j�1
μiμjΨ

l
ij

⎛⎝ ⎞⎠≤ 0, i, j, l ∈ 1, 2, . . . , r{ },

d1 �

Sh − Qh − Q
T
h ∗ ∗

AhQh + ωBhKh − Sh+ + ω2
BhτYτB

T
h ∗

κBhKh κωBhτYτB
T
h − Sh+ + κ2BhτYτB

T
h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

d2 �

E1hQh + ωE2hKh ω2
E2hτYτB

T
h ωκE2hτYτB

T
h

0 ηijD
T 0

κE2hQhKh ωκE2hτYτB
T
h κ2E2hτYτB

T
h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

d3 �

− ηijI + ω2
E2hτYτE

T
2h ∗ ∗

0 − ηijI ∗
ωκE2hτYτE

T
2h 0 − ηijI + κ2E2hτYτE

T
2h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

d4 �
0 0 − ηijD

T

Kh 0 0
 ,

d5 �
0 0 0
0 0 0

 ,

d6 �
− ηijI ∗
0 − Y

 .

(A.12)
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Equation (A.12) guarantees (24) on account of the
convex sum property of membership functions. Resorting to
(21) and (22), the above inequality yields



r

i

μ2iΨ
l
ii + 

r

i�1


r

j> i

μiμj Ψ
l
ij + Ψl

ji ≤ − 
r

i�1
μ2i G

l
ii + 

r

i�1


r

j> i

μiμjG
l
ij

⎛⎝ ⎞⎠. (A.13)

'erefore, there always exists



r

i�1
μ2i G

l
ii +

1
2



r

i�1


r

j> i

μiμjG
l
ij ≥ 0, l ∈ 1, 2, . . . , r, (A.14)

or equivalently

μ1I

⋮

μrI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T 2G
l
11 · · · G

l
1r

⋮ ⋱ ⋮

G
l
1r · · · 2G

l
rr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

μ1I

⋮

μrI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦≥ 0. (A.15)

It is obvious that the uncertain fuzzy system in (1) is
asymptotically stable via the fuzzy controller (13), and the
proof is completed.

B. Proof of Theorem 2

Set Sij � cSij. According to (32) and Schur complement, one
can get



r

i�1


r

j�1
μi(ξ(k|k))μj(ξ(k|k))

1 ∗

x(k|k) Sij

⎡⎣ ⎤⎦≥ 0, i, j ∈ 1, 2 . . . , r{ }.

(B.1)

Due to μ(f(k|k)) ≥ 0, (37) is achieved.
Considering (26), (28), and (29), we have

E x(k + s|k)
T Ah + ω Bh(I + ς(k))KhQ

− 1
h + ω(k + s|k) Bh(I + ς(k))KhQ

− 1
h 

T


× S
− 1
hh+

Ah + ω Bh(I + ς(k))KhQ
− 1
h ω(k + s|k) Bh(I + ς(k))KhQ

− 1
h  − S

− 1
hh

× x(k + s|k)≤E − x(k + s|k)
T

W + ω(k)(I + ς(k))KhQ
− 1
h 

T


× R ω(k)(I + ς(k))KhQ
− 1
h x(k + s|k).

(B.2)

Premultiplying and postmultiplying both sides of (B.2)
by QT

h and Qh and using the inequality
QT

h S− 1
h Qh ≥Qh + QT

h − Sh, we have

AhQh + ω Bh(I + ς(k))Kh 
T
S

− 1
hh+

AhQh + ω Bh(I + ς(k))Kh 

+ κ2 Bh(I + ς(k))Kh 
T
S

− 1
hh+

Bh(I + ς(k))Kh  − Qh + Q
T
h − Shh 

≤ − Q
T
h WQh + ω2

+ κ2  (I + ς(k))Kh( 
T
R(I + ς(k))Kh ,

(B.3)

where κ2 � E ω(k)ω(k){ } � ω(1 − ω). Because of the un-
certainty ΔAh,ΔBh of the fuzzy system and Shh � cShh, the
following inequality is obtained:
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Shh − Qh − Q
T
h ∗ ∗

AhQh + ωBh(I + ς(k))Kh − Shh+ ∗

κBh(I + ς(k))Kh 0 − Shh+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

0

D

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
F(k + s|k)

× E1hQh + ωE2h(I + ς(k))Kh 0 0  + E1hQh + ωE2h(I + ς(k))Kh 0 0 
T

× F(k + s|k)
T

0

D

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

+

0

0

D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
F(k + s|k) κE2h(I + ς(k))Kh 0 0 

+

κE2h(I + ς(k))Kh( 
T

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
F(k + s|k)

T

0

0

D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

≤ −
1
c

Q
T
h WQh + ω2

+ tκ2  (I + ς(k))Kh( 
T
R(I + ς(k))Kh .

(B.4)

Using Lemma 2 and Schur complement, if and only if
there are ηijlm and ηijlm satisfying

m7 ∗

m8 m9
 ≤ 0, (B.5)

where

m7 �

Shh − Qh − Q
T
h ∗ ∗ ∗

m6 − Shh+ ∗ ∗

κBh(I + ς(k))Kh 0 − Shh+ ∗

m7 0 0 − ηijlmI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

m6 � AhQh + ωBh(I + ς(k))Kh,

m7 � E1hQh + ωE2h(I + ς(k))Kh,

m8 �

0 ηijlmD
T 0 0

κE2h(I + ς(k))Kh 0 0 0

0 0 ηijlmD
T 0

W
1/2

Qh 0 0 0

R
1/2 ω2

+ κ2 
1/2

(I + ς(k))Kh 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

m9 � diag − ηijlmI, − ηijlmI, − ηijlmI, − cI, − cI .

(B.6)

Employing the similar method to deal with quantization
density in'eorem 1, the following inequality is established:

n3τNτn
T
3 + n

T
4 N

− 1
n4 +

m10 ∗

m11 m9
 ≤ 0, (B.7)
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where

m10 �

Shh − Qh − Q
T
h ∗ ∗ ∗

m8 − Shh+ ∗ ∗

κBhKh 0 − Shh+ ∗

m9 0 0 − ηijlmI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

m11 �

0 ηijlmD
T 0 0

κE2hKh 0 0 0

0 0 ηijlmD
T 0

W
1/2

Qh 0 0 0

R
1/2 ω2

+ κ2 
1/2

Kh 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

n4 � Kh 0 0 0 0 0 0 0 0 ,

n3 � 0 ωBh( 
T κBh( 

T ωE2h( 
T 0 κE2h( 

T 0 0 R1/2 ω2 + κ2( 
1/2

 
T

m8 � AhQh + ωBhKh,

m9 � E1hQh + ωE2hKh.

(B.8)

By utilizing Schur complement, one can get

m12 ∗ ∗

m13 m14 ∗

m15 m16 m17

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 
r

l�1

r

m�1
μ+

l μ
+
m 

r

i�1


r

j�1
μiμjΨ

lm
ij

⎛⎝ ⎞⎠≤ 0,

(B.9)

where

m12 �

m10 ∗ ∗

m11 m12 ∗

κBhKh ωκBhτNτB
T
h m13

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

m10 � Shh − Qh − Q
T
h ,

m12 � − Shh+ + ω2
BhτNτB

T
h ,

m13 � − Shh+ + κ2BhτNτB
T
h

m13 �

m14 ω2
E2hτNτB

T
h ωκE2hτNτB

T
h

0 ηijlmD
T 0

κE2hKh ωκE2hτNτB
T
h κ2E2hτNτB

T
h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

m11 � AhQh + ωBhKh,

m14 �

m15 ∗ ∗

0 − ηijlmI ∗

ωκE2hτNτE
T
2h 0 m16

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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m15 � − ηijlmI + ω2
E2hτNτE

T
2h,

m15 �

0 0 ηijlmD
T

W
1/2

Qh 0 0
ϱKh ωϱτNτB

T
h κϱτNτB

T
h

Kh 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

m16 � − ηijlmI + κ2E2hτNτE
T
2h,

m16 �

0 0 0
0 0 0

ωϱτNτE
T
2h 0 κϱτNτE

T
2h

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

m14 � E1hQh + ωE2hKh,

m17 � diag − ηijlmI, cI, − cI + ϱ2τNτ, − N ,

(B.10)

where ϱ � R1/2(ω2 + κ2)1/2. Owing to 
r
l�1 

r
m�1


r
i�1 

r
j�1 μ

+
l μ

+
mμiμj � 1, (42) is guaranteed. Using the same

method which is described in [53, 54], based on (B.9), one
can get



r

l�1


r

m�1
μ+

l μ
+
m 

r

i�1
μ2iΨ

lm
ii + 

r

i�1


r

j> i

μiμj Ψ
lm
ij + Ψlm

ji ⎛⎝ ⎞⎠

≤ − 
r

l�1


r

m�1
μ+

l μ
+
m 

r

i�1
μ2i G

lm
ii + 

r

i�1


r

j> i

μiμj G
lm
ij + G

lm
ji ⎛⎝ ⎞⎠

� − 
r

l�1
μ+2

l G
ll

− 
r

l�1


r

m> l

μ+
l μ

l+
m G

lm
+ G

ml
 ,

(B.11)

where Gll � 
r
i�1 μ2i Gll

ii + 
r
i�1 

r
j> i μiμj(Gll

ij + Gll
ji), Glm �


r
i�1 μ

2
i Glm

ii + 
r
i�1 

r
j> i μiμj(Glm

ij + Glm
ji ), and Gml � 

r
i�1

μ2i Gml
ii + 

r
i�1 

r
j> i μiμj(Gml

ij + Gml
ji ).

Introducing matrices Ull, Ulm, and Uml, it yields

G
ll ≥Ull,

G
lm

+ G
ml ≥Ulm + Uml.

(B.12)

From (B.11) and (B.12), we can get


l

μ+2
l Ull + 

l


m> l

μ+
l μ

+
m Ulm + Uml( 

�

μ+
1I

μ+
2I

⋮

μ+
r I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⋮
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≥ 0.

(B.13)

Under the above discussion, (B.9) is established and the
stability of the T-S fuzzy system (15) is guaranteed. Obvi-
ously, (B.12) equals to

μ+
1I μ+

2I · · · μ+
r I ϕll μ+

1I μ+
2I · · · μ+

r I 
T ≥ 0,

μ+
1I μ+

2I · · · μ+
r I  ϕlm + ϕml(  μ+

1I μ+
2I · · · μ+

r I 
T ≥ 0.

(B.14)

'erefore, we can get (40) and (41). 'e proof is
completed.

C. Proof of Theorem 3

It is obvious that only (37) is related to state x(k|k); in other
words, we only need to prove that this LMI is still feasible for
all future measurable system states x(k + s|k + s), s≥ 1.

At time k, we assume that c∗k and Ω∗k are the optimal
solution which are derived from the optimization problem
(55). Since (37) is satisfied, we have

E x(k|k)
T
S
∗
(k|k)x(k|k) ≤ c, (C.1)

where S∗(k|k) � 
r
i�1 

r
j�1 μi(f(k|k))μj(f(k|k)) S∗− 1ij 

k
.

'en, a feasible solution c,Ω k+1 � c∗,Ω∗ k is established
at time k + 1. Referring to 'eorem 3, we can conclude that
x(k + 1|k + 1) ∈ ε(S

∗
hh) and

E x(k + 1|k + 1)
T

S
∗
(k|k)x(k + 1|k + 1) ≤ c. (C.2)

We infer that (37) is feasible at time k + 1. 'us, it can be
summarized that the optimization problem (55) is also
feasible for all times k + s, s≥ 1, and the proof is completed.

D. Proof of Theorem 4

In this paper, in order to guarantee the asymptotic stability of
the fuzzy system, we choose the extended nonquadratic Lya-
punov function. 'us, if we can guarantee that the extended
nonquadratic Lyapunov function is strictly decreasing, the
asymptotic stability of the fuzzy system is guaranteed.

According to'eorem 3, the feasibility of optimization is
guaranteed. At time k + 1, if we obtain the optimal solution
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c∗, S∗− 1ij 
k+1, it means that the solution at time k + 1 must

satisfy

E x(k + 1|k + 1)
T
S
∗
(k + 1|k + 1)x(k + 1|k + 1) 

≤E x(k + 1|k + 1)
T
S(k + 1|k + 1)x(k + 1|k + 1) ,

(D.1)

where S∗(k + 1|k + 1) � 
r
l�1 

r
m�1 μl(x(k + 1|k + 1))μm

(x(k + 1|k + 1)) S∗− 1ij 
k+1 and S(k + 1|k + 1) � 

r
l�1 

r
m�1

μl(x(k + 1|k + 1))μm(x(k + 1|k + 1)) S∗− 1ij 
k
. 'en, consid-

ering (29) and setting s � 0, we have

E x(k + 1|k)
T
S
∗
(k + 1|k)x(k + 1|k) <E x(k|k)

T
S
∗
(k|k)x(k|k) , (D.2)

with S(k + 1|k) � 
r
l�1 

r
m�1 μl(x(k + 1|k))μm(x (k + 1|k))

S∗− 1ij 
k

and S∗(k|k) � 
r
i�1 

r
j�1 μi(x(k|k))μj(x(k|k))

S∗− 1ij 
k
. Since x(k + 1|k + 1) � x(k + 1|k), we can get

E x(k + 1|k + 1)
T
S
∗
(k + 1|k + 1)x(k + 1|k + 1) <E x(k|k)

T
S
∗
(k|k)x(k|k) . (D.3)

In summary, the strictly decreasing of the extended
nonquadratic Lyapunov function is proofed except
x(k|k) � 0.'erefore, the closed-loop fuzzy system is robust
asymptotically stable, and the proof is completed.
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