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Decomposition-based evolutionary multiobjective algorithms (MOEAs) divide a multiobjective problem into several sub-
problems by using a set of predefined uniformly distributed reference vectors and can achieve good overall performance especially
in maintaining population diversity. However, they encounter huge difficulties in addressing problems with irregular Pareto
fronts (PFs) since many reference vectors do not work during the searching process. To cope with this problem, this paper aims to
improve an existing decomposition-based algorithm called reference vector-guided evolutionary algorithm (RVEA) by designing
an adaptive reference vector adjustment strategy. By adding the strategy, the predefined reference vectors will be adjusted
according to the distribution of promising solutions with good overall performance and the subspaces in which the PF lies may be
further divided to contribute more to the searching process. Besides, the selection pressure with respect to convergence per-
formance posed by RVEA is mainly from the length of normalized objective vectors and the metric is poor in evaluating the
convergence performance of a solution with the increase of objective size. Motivated by that, an improved angle-penalized
distance (APD) method is developed to better distinguish solutions with sound convergence performance in each subspace. To
investigate the performance of the proposed algorithm, extensive experiments are conducted to compare it with 5 state-of-the-art
decomposition-based algorithms on 3-, 5-, 8-, and 10-objectiveMaF1–MaF9.,e results demonstrate that the proposed algorithm
obtains the best overall performance.

1. Introduction

In the real world, decision makers often encounter some
problems with more than one objective to be solved si-
multaneously. ,ese problems are called multiobjective
optimization problems (MOPs), and if the number of ob-
jectives is larger than 3, they are termed as many-objective
optimization problems (MaOPs). An MOP or MaOP can be
formulated as follows:

minF(x) � f1(x), f2(x), . . . , fM(x) ,

s.t.x ∈ Ω,
(1)

where Ω ⊂ Rn denotes the decision space and F is a map
from Rn to RM, i.e., from the decision space to the objective
space. fi(x) is the ith objective value of the problem and M

is the number of objectives. Mostly, the objectives of an
MOP or MaOP are contradictory to each other and thus
there rarely exists a solution that can surpass all the other
solutions on each objective. As a result, a set of solutions
representing the trade-off among all the objectives, called
Pareto-optimal solutions, can be achieved and pursued by
researches. ,e Pareto-optimal solutions are known as
Pareto front (PF) in the objective space and Pareto set (PS) in
the decision space, respectively.

To address the multiobjective problems (MOPs) and
many-objective problems (MaOPs) appearing in many real-
world industries, e.g., data mining [1], airline crew roster
recovery [2], and software engineering [3], multiobjective
evolutionary algorithms (MOEAs) and many-objective
evolutionary algorithms (MaOEAs) are seen as the major
methods for approximating PF of MOPs because of its
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population-based nature. During the past decades, a large
number of algorithms have been developed such as Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [4],
multiobjective evolutionary algorithm based on decompo-
sition (MOEA/D) [5], and so on [6]. According to their
environmental selection strategies, the existing algorithms
can be roughly divided into four categories: (1) Pareto-
dominance-based; (2) decomposition-based; (3) indicator-
based; and (4) others. Pareto-dominance-based algorithms
[4, 7, 8] often divide solutions into different nondominated
levels and use a second criterion to select solutions in the last
level; decomposition-based MOEAs [9–13] decompose the
original MOP intomultiple subproblems and solve them in a
cooperative way; for indicator-based MOEAs and MaOEAs,
such as hypervolume-based many-objective (HypE) [14] and
indicator-based multiobjective evolutionary algorithm with
reference point adaptation (AR-MOEA) [15], it tends to
develop an indicator to evaluate the overall performance and
sort the individuals according to their indicator values.

Among the four categories, a branch of decomposition-
based MOEAs and MaOEAs divides the whole objective
space into a number of subspaces by a set of predefined
uniformly distributed reference vectors or reference weights,
such as RVEA [16] and MOEA/D-M2M [17]. ,is branch
shows promising performance in maintaining population
diversity. However, there are still some shortcomings in this
branch of algorithms. Firstly, when the MOP owns irregular
PF, e.g., degenerated or disconnected, the PF is not uni-
formly distributed in the objective space, and thus the
predefined reference vectors are not able to evenly divide the
PF which may affect the final quality of the output pop-
ulation. ,e PFs of 3-objective DTLZ7 and MaF6 are shown
in Figure 1 where the PF of DTLZ7 is disconnected and that
of MaF6 is degenerated.

Besides, although the PFs of the above two problems are
irregular, the PF of 2 or 3 objectives can still be divided to
some degree of satisfaction because the objective space is not
large and the predefined reference vectors can still be densely
distributed in the area where the PF is located. However,
with the increase of the number of objectives, the objective
space expands sharply and the distribution of reference
vectors in the objective space is very sparse. As a result,
sometimes the PF is divided by few reference vectors. To
visually describe this phenomenon, an example about the
optimization of 10-objective MaF1 by RVEA is shown in
Figure 2.

In RVEA, a reference vector is called active when at least
one candidate solution is associated with it. Figure 2 shows
the proportion of active reference vectors among all the
predefined reference vectors during the searching process,
and the population size is set as 275.We can see that only less
than 10% of the predefined reference vectors are working.

To cope with the above issues, a new decomposition-
based evolutionary algorithm is proposed in this paper. In
the newly proposed algorithm, a new definition termed as
angle position is developed to evaluate the position of a
candidate solution in the objective space (the new algorithm
is thus called AP-RVEA). ,en, the reference vectors are
adaptively adjusted according to the distribution of the

candidate solutions on the basis of the definition of angle
position. ,e inactive reference vectors will be deleted and
some candidate solutions will be constructed into new
reference vectors according to their positions relative to the
active reference vectors in the objective space. In this way,
the subspaces in which the true PF lies will be further
divided.

Besides, the metric in APD value (the selection indicator
used in RVEA) responsible for evaluating the convergence of
solutions is the length of the normalized objective vector.
,is metric is poor at posing enough selection pressure in
terms of convergence performance with the increase of the
objective size. To fix the above issue, an improved APD value
is proposed in AP-RVEA to keep promising solutions in
problems with many objectives.

,e main contributions of this paper can be summarized
as follows:

(1) A novel adaptive reference vector adjustment
strategy based on the positions of candidate solutions
in the objective space relative to the current active
reference vectors is proposed. With the strategy, the
predefined reference vectors will be adjusted
according to the distribution of promising solutions,
which can be considered as an approximation of the
true PF in some way. During each generation that
runs the strategy, the subspaces in which the true PF
lies may be further divided into more subspaces and
contribute more to that final result.

(2) To cope with the poor selection pressure in terms of
convergence performance posed by APD value, an
improved APD value method is designed to better
evaluate the convergence performance of solutions
in each subspace.

,e rest of this paper is organized as follows. Section 2
gives a survey of strategies about reference vector adjust-
ment. Section 3 introduces some basic definitions of the
proposed AP-RVEA. In Section 4, the details of the proposed
AP-RVEA are described. Section 5 presents the experimental
results of AP-RVEA and other 5 algorithms onMaF [18] test
suite. Finally, the conclusion and future work are covered in
Section 6.

2. Related Studies

Reference vector-based MOEAs or MaOEAs are efficient in
maintaining population diversity when dealing with MOPs
or MaOPs [19, 20]. However, since the shape of PF is un-
known in advance for most MaOPs, using predefined ref-
erence vectors to acquire a set of evenly distributed solutions
might not be feasible especially when the problem has an
irregular PF. As a result, some research studies about the
adjustment of reference vectors have been developed in
recent years.

Jiang et al. [21] proposed a asymmetric Pareto-adaptive
(apa) scheme for MOEA/D [5] to deal with problem with
symmetric and asymmetric Pareto fronts. ,e apa scheme
was useful when the PF of the problem satisfied that
f

p
1 + f

p
2 + · · · + f

p
M � 1, where p is a parameter to estimate
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the shape of the PF and M is the number of objectives. In
EMOSA [22], a set of Q evenly distributed weight vectors
(reference vectors) and a set of Cm− 1

H+M− 1 predefined candidate
wight vectors P∗ are maintained during the optimization
process, where H denotes a positive integer and
Cm− 1

H+M− 1≫Q. For a solution x1 (associated with λ1), its
closest nondominated neighbor x2 (associated with λ2) is
labeled. ,e new weight vector λ is chosen from P∗ and λ1 is
replaced if and only if (1) dist(λ1, λ2)< dist(λ, λ2)) and (2)
dist(λ, λ1)≤ dist(λ, P∗).

In RVEA∗ [16], for each inactive subspace (empty
subspace), the corresponding reference vector would be
deleted and replaced by a unit vector that was randomly
generated inside the range of the minimum and maximum
value. Wang et al. [23] also proposed an algorithm called
PICEA-w where weights were co-evolved with candidate
solutions during the optimization process. As a result,
suitable weights could be adaptively constructed and guide
the candidate solution to the true Pareto front (PF)
effectively.

In Qi et al. [24], an improved MOEA/D with adaptive
weight vector adjustment was proposed to handle problems
with irregular PFs. During the searching process, the weights
were periodically adjusted to redistribute the weights of the

subproblems so as to obtain better uniformity of solutions.
In Jiang [25], new reference vectors were chosen from the
combination of parent population and offspring according
to their distances to the current reference vectors. In the first
step of the algorithm, all the extreme solutions would be
selected into the empty reference vector set.

Liang et al. [26] developed two reference vector adap-
tation strategies called scaling of reference vectors (SRV) and
transformation of solutions location (TSL) for many-ob-
jective evolutionary algorithms. SRV introduced a center
vector and adjusted the other reference vectors around by a
scaling function; TSL transformed the promising solutions
in the current generation into a set of new reference vectors.
Cai et al. [27] also proposed a decomposition-based MaOEA
with two types of adjustments for direction vectors where a
Pareto-dominance-based mechanism was used to evaluate
the effectiveness of each direction vector and the ineffective
direction vectors would be adjusted to better fit the shape of
the true PF.

Asafuddoula et al. [28] proposed an enhanced decom-
position-based evolutionary algorithm with adaptive refer-
ence vectors called G-DBEA. In G-DBEA, two types of
reference vectors called active and inactive reference vectors
were maintained. During the search process, if an offspring
preferred an inactive reference vector, the vector would be
removed from the set of inactive reference vectors and the
corresponding reference vector of the offspring would be
deleted from the set of active reference vectors. At the same
time, if a reference vector was not associated with any
nondominated solutions in a certain period, it will be deleted
from the set of active reference vectors and the solution with
the smallest perpendicular distance to the reference vector
would be constructed as a new reference vector.

Zhao et al. [29] proposed a modified decomposition-
based many-objective ant colony optimization (ACO) al-
gorithm and employed an adaptive reference point mech-
anism that chooses the ideal point or nadir point as the
reference point according to the distribution of the candi-
date solutions. Zhou et al. [30] developed a novel entropy-
based evolutionary algorithm with adaptive reference points
called EARPEA where entropy computed based on reference
points and a learning period are employed to control ad-
aptation of the reference points. Wang et al. [31] gave a new
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Figure 1: ,e true PFs of DTLZ7 and MaF6.
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preference-based MOEAs called MOEA/D-AWV in which
the weight vectors are generated adaptively by the decision
maker’s preference and finally guide the solutions to con-
verge to a preferred distribution.

In Deb et al. [32], reference points with no associated
solution would be directly deleted and a simplex of M

reference points around a remaining reference point would
be added. In Cheng et al. [33], a solution that had the least
similarity from active reference vectors was found and
normalized, and then an inactive reference vector would be
randomly deleted and replaced by the normalized solution.
Liu et al. [34] used the growing neural gas network to learn
the distribution of the reference vectors, thus achieving
automatic yet stable adaptation.

In the proposed AP-RVEA, inactive reference vectors
will be deleted after a period of generations. Besides, the
newly defined angle position works to evaluate the position
of solutions with promising performance against the ref-
erence vectors. ,en, new reference vectors will be chosen
on the basis of the information given by angle position. ,e
core idea of the AP-RVEA is to adaptively adjust the ref-
erence vectors to further divide the subspaces where the true
PF may lie. Furthermore, an improved version of APD
method called F-APD based on the fractional dominance
relation is developed to distinguish the convergence per-
formance of the solutions.,ey cooperate with each other to
achieve promising convergence and diversity and sound
balance between them.

3. Background

3.1. )e Objective Space Decomposition Strategy. In this
section, an objective space decomposition strategy is shown
to divide the objective space into a set of subspaces [17]. Each
subspace owns a set of solutions and can be seen as a
subproblem. In other words, a population is divided into a
set of subpopulations to maintain diversity for the whole
population. In each generation, all the subpopulations are
optimized together.

Definition 1 (subspace). At first, N uniformly distributed
unit vectors: u1, u2, . . . , uN, are predefined to divide the
objective space into N subspacesΩ1,Ω2, . . . ,ΩN. ,en, each
solution will be associated with an subspace according to
their acute angles between the solution and unit vectors.
Ωi � v|〈v, ui〉≤ 〈v, uj〉,∀j ∈ 1, 2, . . . , N , where 〈v, ui〉

denotes the acute angle between v and ui. According to the
definition of subspace, a vector v belongs toΩi, if and only if
v has the smallest angle to ui compared to other unit vectors.
Each solution is to be associated with an unit vector and in a
subspace during the optimization process. ui is the corre-
sponding reference vector of all the solutions in Ωi and the
acute angle of v to Ωi is the acute angle of v to ui.

Definition 2 (neighborhood subspace). Let K be the size of
neighborhood spaces. For subspace Ωi(i � 1, 2, . . . , N{ }), its
neighborhood subspaces are defined as NSi � Ωi1 , . . . ,ΩiK ,
where ∀Ωj ∈ NSi,∀Ωk ∉ NSi , 〈uj, ui〉≤ 〈uk, ui〉. In other
words, the neighborhood subspaces of subspace Ωi are the

union of subspaces whose unit vectors have the first K

smallest acute angles to ui among all the unit vectors.

3.2. RVEA. On the basis of the above objective space de-
composition strategy, RVEA [16] aims to maintain a sound
balance between convergence and diversity for the pop-
ulation. It adopts the acute angles between solutions and the
reference vectors and the length of the objective vectors to
assess the overall performance of solutions by using the
following formula called angle-penalized distance (APD):

dt,i,j � 1 + P θt,i,j   · ft,i
′

����
���� , (2)

where P(θt,i,j) and ‖ft,i
′‖ measure the diversity performance

and convergence performance, respectively, θt,i,j is the acute
angle between the ith objective vector and ui, andP(θt,i,j) is a
penalty function related to θt,i,j:

P θt,i,j  � M ·
t

tmax
 

α

·
θt,i,j

cut,j

,

cut,j
� min〈ui

, u
j〉, i ∈ 1, 2, . . . , N, i≠ j ,

(3)

where N denotes the population size and M is the objective
number. cut,j

is the minimum angle between ui and other
reference vectors. ,e value of α controls the changing rate
of P(θt,i,j) and a larger α means that more emphasis will be
allocated to the convergence performance compared to the
diversity performance.

In the environmental selection of RVEA, a solution will
be selected from each subspace, and among all the solutions
in a subspace, the solution being assigned with the minimum
APD method will be selected.

3.3.)e Definition of Angle Position. In this paper, we try to
further divide the active subspaces during the optimization
of algorithms with the objective space decomposition
strategy. Consequently, it is essential to know the accurate
position of a solution to the active reference vectors. For this
purpose, the definition of angle position is proposed.

Definition 3 (neighborhood reference vector). At first, the
definition of neighborhood reference vectors of a solution is
defined. Let M, the objective number, be the size of
neighborhood reference vectors. For one solution xi, its
neighborhood reference vectors is defined as
NRVi � ui,1, ui,2, . . . , ui,M where for each uj ∉ NRVi and
each uk ∈ NRVi, 〈xi, uj〉< 〈xi, uk〉. In other words, the
neighborhood reference vectors of xi are the reference
vectors with the first M smallest acute angle to xi among all
the reference vectors.

Definition 4 (angle position). ,e definition of angle posi-
tion is designed to determine the spatial position of one
solution relative to the reference vectors around it. For a
solution xi, NRVi is the set of its neighborhood reference
vectors. If M � 2, the angle position of xi is defined as
APi � |〈xi,NRVi

1〉 − 〈xi,NRVi
2〉|. Generally speaking, the
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angle position of a solution with biobjectives is the absolute
value of the difference between the solution and its two
neighborhood reference vectors. If APi � 0, it means that the
vector of the solution is in the middle of its two neigh-
borhood reference vectors and the space between the two
neighborhood reference vectors can be evenly divided by the
vector of xi. If M> 2, APi � Var(NRVi

1,NRV
i
2, . . . ,NRVi

M),
the variance of the angles between Xi and its neighborhood
reference vectors. Similarly, the vector of the solution with a
smaller value of angle position is able to divide the space
among the neighborhood reference vectors of the solution
more evenly.

,e definition of neighborhood reference vector is
designed for a solution while the definition of neigh-
borhood subspace is for a subspace. To visually describe
the two definitions and the difference between them, a
simple example is given. As can be seen in Figure 3, V1, V2,
V3, V4, and V5 are 5 reference vectors; X and Y are 2
solutions. A, B, C, and D are the angles between solutions
and reference vectors. It is apparent that A is smaller than
B and D is smaller than C; as a result, X is associated with
V2 and Y is associated with V4. ,e neighborhood spaces
of the subspace of V2 are the corresponding subspaces of
V1 and V3. ,e neighborhood reference vectors of X are
V2 and V3. ,e angle position value of X is |A − B| and that
of Y is |C − D|. It is obvious that |A − B|< |C − D| and the
space between V2 and V3 can be more evenly divided by X

when it is compared with the space between x and V4
divided by Y.

4. The Proposed AP-RVEA

In this section, the details of the proposed AP-RVEA will be
given. ,e overall framework of AP-RVEA is presented at
first, followed by its main components.

4.1. )e Main Framework of AP-RVEA. ,e pseudocode of
the proposed AP-RVEA is shown in Algorithm 1. As shown
in Algorithm 1, 4 parameters are first initialized in lines
1–4: (1) a set of uniformly distributed reference vectors V;
(2) a population with N individuals; (3) the number of
function evaluations: FEs; and (4) an archive in which elite
individuals will be stored and will be updated in each
generation. ,en, the main loop of AP-RVEA is given in
lines 5–12. In lines 6–7, the offspring population is gen-
erated and the FEs will be updated. Q is combination of the
parent population and offspring population. In lines 9–10,
when half of the optimization process pasts, the reference
vectors will be adaptively adjusted via function
ReferenceVector Adjustment. ,e adjusted reference vec-
tor and the archive of elite individuals will be used to select
promising individuals from the combined population Q. In
line 12, the new archive of elite solutions will be generated
according to the current archive and the new parent
population P. ,e environmental selection strategy and the
reference vectors adjustment strategy are the two main
contributions of this paper and will be detailed in the
following section.

4.2. Reference Vector Adjustment. ,e pseudocode of
function ReferenceVector Adjustment is described in Al-
gorithm 2. In this function, the inactive reference vectors (no
solution exists in its corresponding subspace) will be deleted
and new promising reference vectors will be generated from
archive, the combination of elite solutions.,e inputs of this
function are current reference vectors V, the set of elite
individuals archive, and the combine population Q. ,e
output of this function refers to the updated reference
vectors V.

At first, individuals in archive are normalized according
the following equations:

archive(i) �
archive(i) − Z

min

Z
max

− Z
min , (4)

where Zmin � Zmin1 , Zmin2 , . . . , ZminM  and Zmax � Zmax1 ,{

Zmax2 , . . . , ZmaxM } and Zmini , i ∈ 1, 2, . . . , M{ }, and Zmaxi ,

i ∈ 1, 2, . . . , M{ }, are the minimum value and maximal value
of the ith objective among archive, respectively. ,e nor-
malized archive(i) ranges from 0 to 1. After that, new
reference vector is constructed as

newA(i) �
archive(i)


M
j�1 archive(i)j

, (5)

and through this transformation, 
M
i�1 newA(i)i � 1.

,en, each individual in Q will be associated with an unit
reference vector in V, i.e., each will lie in a subspace. In lines 6-
7, the neighborhood reference vectors of each individual in
newA are obtained and stored in NRV. In lines 8–10, the
inactive reference vectors will be deleted from the current
reference vectors. ,e addition of new reference vectors are
described in lines 11–17. Since the new reference vectors are
chosen from newA and the maximal number of reference
vectors is N, once |newA| is 0 or |V| is larger than N, the
process will stop. In line 12, the AP (angle position) value of
each individual in newA is initialized. In lines 13-14, the AP
values of all the individuals will be calculated and stored.
Among those individuals, the individual with the smallest AP
value will be chosen as a new reference vector. Next, individuals

X

Y

X

Y

V1
V2

V3

V4

V5

A

B
C

D

O

Figure 3: An example showing the definitions of subspace.
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that have the same neighborhood reference vectors will be
removed from newA. ,at is to say, through each iteration, a
new reference vector will be chosen and some individuals will
be removed from newA, and once V has N reference vectors
or newA is an empty set, this procedure will stop. It should be
noted that removing some individuals from newA is a pe-
nalization mechanism. To visually show the detailed mecha-
nism of this function, a simple example is plotted.

As can be seen in Figure 4(a), V1, V2, V3, V4, and V5
denote the predefined unit reference vectors, and A, B, C, D,
E, andF represent 6 solutions.,e arrows in Figure 4(a) point
from the solutions to their associated reference vectors, e.g., A
is associated with V1 and C is associated with V2. At first, the
AP values of the six solutions are calculated and the solution
with the least AP value will be selected as the first new ref-
erence vector. In Figure 4(b), the solution A is chosen as the
first new reference vector and there is no solution with the
same neighborhood reference vectors as A that need to be
removed (line 17 in Algorithm 2). ,en, in Figure 4(c), the

solution B is selected as the second new reference vector. In
Figure 4(d), as the solution B and the solutionC own the same
neighborhood reference vectors (V2 and V3), solution C is
removed from the candidate solution set. In Figure 4(e), the
solutions E and D are selected or removed in the same way.
Figure 4(f) shows the final result of the reference vectors after
being modified by the reference vector adjustment strategy. It
is obvious that the active subspace is further divided by the
new reference vectors and may contribute more for the di-
versity performance of the population in the following en-
vironmental selection method. Besides, for a solution, its
position in the objective space instead of corresponding
reference vector matters whether it can be constructed as a
new reference vector.

4.3. Environmental Selection. ,e environmental selection
strategy of RVEA has two obvious weaknesses. (1) In
dt,i,j � (1 + P(θt,i,j)) · ‖ft,i

′‖, |ft,i
′| works to distinguish the

Input: population Size N; objective size M; the maximal function evaluations (MFEs);
Output: final population P;

(1) Generate a set of unit reference vectors V � v1, v2, . . . , vN ;
(2) Generate a population P←Initialtization(N);
(3) Initialize function evaluations FEs←N;
(4) archive←∅;
(5) while FEs<MFEs do
(6) P′←GenerateOffspring;
(7) FEs←FEs + N;
(8) Q←P∩P′;
(9) if (FEs/MFEs)> 50% then
(10) V←ReferenceVector Adjustment(V, Q, archive);
(11) P←Environmental Selection(V, Q, N);
(12) archive←ArchiveUpdat(P, archive);

ALGORITHM 1: ,e main procedure of AP-RVEA.

Input: V; archive; the combined population Q;
Output: updated V;

(1) for i � 1⟶ |archive| do
(2) archive(i)←(archive(i) − Zmin/(Zmax − Zmin));
(3) for i � 1⟶ |archive| do
(4) newA(i)←(archive(i)/

M
j�1 archive(i)j);

(5) Associate each solution in Q with an unit reference vector in V according to Definition 2;
(6) for i � 1⟶ |newA| do
(7) Find the neighborhood reference vectors of newAi among V and store as NRVi;
(8) For i � 1⟶ |V| do
(9) if no solution is associated to Vi then
(10) V←V/Vi;
(11) while |newA|> 0 and |V|<N do
(12) AP←01,|newA|;
(13) for i � 1⟶ |newA| do
(14) APi← Calculate angle position value for newAi;
(15) k←argminAPi, i ∈ 1, 2, . . . , |newA|{ };
(16) V←V∪ newAk

(17) Remove all the solutions that own the same neighborhood reference vectors with newAk in newA;

ALGORITHM 2: Reference vector adjustment.
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convergence performance of a solution. However, when the
number of objectives increases, the length of the objective
vector is poor at posing enough selection pressure to the
candidate population and selecting solutions with promising
convergence performance. (2) After the APD method of
each solution is calculated, RVEA selects one solution from
each subspace to maintain sound diversity for the new
population, while it is hard to guarantee that each reference
vector can be associated with one or more solutions, es-
pecially with the increase of the number of objectives. To
cope with the above two issues, the proposed AP-RVEA
offers two methods.

We choose to construct a new parameter to replace ft,i
′ to

evaluate the convergence performance in dt,i,j. As can be seen
in Algorithm 3, all the solutions in Q are first normalized in
lines 1–4. ,en, each solution is associated with a subspace in
lines 5–7. Pi means the solutions in the ith subspace. Inspired
by fractional dominance relation [35], if xi lies in Pj, the new
parameter can be constructed as follows:

fv(i) � 

Pj




k�1


M

q�1
| q  |x

q
i <P

q

j,k|,

fv′(i) �
fv(i)


Pj




g�1 fv Pj,g 

,

(6)

where Pj,k means the kth solution in Pj and P
q

j,k means the
qth objective of Pj,k. fv(i) denotes the sum of the number of
objectives on which xi surpasses each solution that lies in the
same subspace with xi. fv′(i) is a normalized value of fv(i)

and ranges from 0 to 1. For two solutions xi and xj in the

same subspace, if fv′(i)>fv′(j), xi surpasses xj in terms of
convergence performance. It is worth noting that the cal-
culation of fv′ in different subspaces is independent of each
other and thus offers a good way to guarantee that solutions
with good convergence performance in each subspace can be
found and selected. ,e improved APD can be calculated as
dt,i,j
′ � (1 + P(θt,i,j)) · (1/fv′(t, i)), where |ft,j

′|, the length of
the normalized solution, is replaced by the aforementioned
new parameter. With the improved APD method, the
shortage of the original APDmethod that it is poor at posing
enough selection pressure can be filled.

Tomake the definition of fv(i) more clear, an example is
shown to make the readers easily understand fv(i). x1, x2,
x3, x4, and x5 are 5 objective vectors. x1, x2, and x3 lie in the
first subspace, and x4 and x5 are in the second subspace. x1
surpasses x2, x3, x4, and x5 on 3, 4, 2, and 6 objectives,
respectively. ,en, the value fv(x1) is 7, the sum of the
objective on which x1 surpasses x2 and x3. ,e number of
the objectives on which x1 surpasses x4 and x5 is not used in
the calculation of fv(x1) because x4 and x5 lie in different
subspaces with x1. ,e same way can be used to calculate
fv(x2), fv(x3), fv(x4), and fv(x5).

After the improved APD methods of population Q are
calculated in line 8 in Algorithm 3, the method tailored
for addressing the second issue mentioned above is de-
scribed in lines 9–13. ,e loop will continue till the
population size increases to N: in line 12, one solution
will with the least improved APD method will be selected
into P in each subspace and these solutions will be re-
moved from Q in line 13; then, if the size of P still less
than N, the remaining solutions in Q will be selected into
P in the same way as the selected solutions until |P| � N.
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Figure 4: An example of the reference vector adjustment strategy.
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4.4. Archive Update. ,e pseudocode of function
ArchiveUpdate is shown in Algorithm 4. ,e inputs of this
function are the current archive, population size N, and the
new parent population P. In line 1, the dominated solutions
in P will be filtered out and the remaining solutions will be
stored in PND. If |archive| + |PND| is larger than N, some
solutions in the current archive will be removed until the size
of combination of archive and PND is equal to the population
size, the predefined size of archive. If the size of the com-
bination of PND and the current archive is less than N, all
solutions in PND will be absorbed into archive. ,e updated
criterion is that nondominated solutions in current gener-
ation are superior to the nondominated solutions in the last
generation, so the excess nondominated solutions in last
generation will be randomly removed. In each generation,
archive will be updated.

5. Experimental Studies and Discussion

To test the performance of the proposed AP-RVEA, we
compare it with 5 state-of-the-art algorithms: A-NSGA-III
[32], MOEA/D [5], RVEA∗ [16], MaOEA-IT [36], and
MOEA/D-PaS [37]. ,e proposed AP-RVEA and the
comparative algorithms are all encoded in MATLAB and
embedded in PlatEMO [38], which is free to public. All the
experiments are run on MATLAB R2018a.

5.1. Experimental Settings

5.1.1. Benchmark Problems. ,e performance of the six
algorithms is compared in the context of MaF1 to MaF9
taken fromMaF test suite [18], with 3, 5, 8, and 10 objectives.
,ese 9 benchmarks contain various properties, e.g., dis-
connected, multimodal, irregular PF, deceptiveness, etc. In
this section, a benchmark with a specific number of objective
is referred to as a test instance.

5.1.2. Performance Indicator. ,e hypervolume [39] (HV)
and inverted generational distance [40] are chosen to
evaluate the final population output by the six algorithms.

(1) ,e HV is the volume of the space consisting of a
reference point and a set of solutions and is widely
used to reflect the performance of a population in
terms of both convergence and diversity. A pop-
ulation with a larger HV value tends to own better
overall performance. In this paper, the reference
point used to calculate the HV value of a population
on each test instance is embedded in PlatEMO.
Besides, in this paper, all the HV values are nor-
malized to [0, 1].

(2) IGD evaluates the overall performance of a pop-
ulation by calculating the distance between the
population and the true Pareto front. During the
process, the true Pareto front is represented by a
set of solutions lying in it and the number in
PlatEMO is set to 10,000. ,e IGD can be calcu-
lated as follows:

IGD P
∗
, P(  �

v∈P∗Dmin(v, P)

P
∗


, (7)

where P∗ is a set of reference points and P denotes the
objective vectors of a population. Dmin(v, P) represents the
minimum Euclidean distance from the point v to all the
points in P.

5.1.3. Termination Condition. ,e maximal number of
function evaluations (MFEs) is adopted as the termination
condition for the six algorithms. For MaF1–MaF9 with 3, 5,
8, and 10 objectives, the MFEs is set to 100,000.

5.1.4. Population Size. For MOEA/D [5] and other de-
composition-based algorithms, the population size is largely
determined by the total number of reference points in an
M-objective problem. For problems with M> 8, a two-layer
vector generation strategy can be employed to generate
reference (or weight) vectors not only on the outer
boundaries but also on the inside layers of the Pareto fronts
[7]. ,erefore, the population sizes of the six algorithms on

Input: V; population size N; the combined population Q;
Output: new population P;

(1) P←∅
(2) Calculate the ideal point Zmin for Q

(3) for i � 1⟶ |Q| do
(4) fi←fi − Zmin

(5) for i � 1⟶ |Q| do
(6) k←argminj∈ 1,2,...,|V|{ }〈Qi, Vj〉

(7) Pk←Pk ∪Qi

(8) Calculate the improved APD method for each solution in Pk, k � 1, 2, . . . , |V|{ }

(9) while |P|<N do
(10) for i � 1⟶ |V| do
(11) if |Pi|> 0 then
(12) Selected the solution with the minimum improved APD method into P;
(13) Remove the solution from Pi;

ALGORITHM 3: Environmental selection.
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MaF1–MaF9 are set according to the number of objectives,
that is, 100, 212, 156, and 275 for 3, 5, 8, and 10 objectives,
respectively.

5.2. Environmental Results and Analyses. All the test in-
stances are run 30 times, and the Wilcoxon rank-sum test
with α � 0.5 is applied to test the significant differences
between the HV indicators of populations output by the six
algorithms. ,e mean and standard deviation of HV values
and IGD values are shown in Tables 1 and 2, respectively.
,e symbols − , +, and ≈ in the two tables mean that the
corresponding HV values or IGD values are worse than,
better than, and equal to that of AP-RVEA. In the bottom of
Tables 1 and 2, the number of test instances on which each
comparative algorithm behaves worse than, better than, and
equal to AP-RVEA is counted.

As can be seen in Table 1, the proposed AP-RVEA
surpasses all the comparative algorithms on 17 out of 36 test
instances, while the numbers of that of A-NSGA-III, MOEA/
D, RVEA∗, MaOEA-IT, and MOEA/D-PaS are 5, 3, 7, 0, and
4. Besides, AP-RVEA outperforms the five comparative
algorithms on 23, 23, 20, 36, and 23 test instances in terms of
HV metric, respectively. In summary, the proposed AP-
RVEA shows the best overall performance among the six
algorithms. With respect to the results measured by IGD
metric shown in Table 2, although the specific statistic are
different from that of Table 1, it is also obvious that the
proposed AP-RVEA shows promising overall performance.
Inmore detail, AP-RVEA performs better than A-NSGA-III,
MOEA/D, RVEA∗, MaOEA-IT, and MOEA/D-Pas on 23,
22, 21, 32, and 27 test instances in all, respectively.

,e reason why there exist some differences between
Tables 1 and 2 may lie in the way the two metrics are cal-
culated. HV metric evaluates the overall performance of a
population according to the volume of the space decided by a
predefined reference point and the nondominated solutions
in the population. Consequently, the HV value is affected by
the convergence of each solution in the population on each
objective. Generally, it is a concrete value rather than a
relative value, while IGD metric assesses the overall per-
formance of a population by calculating the distance be-
tween the population and the true Pareto front. During the
process, a set of uniformly distributed reference points is
used to work as an approximation of the true PF during the
calculation of IGD results. When the number of objectives is
small, the reference points can be seen as a good

approximation of the true PF with respect to uniformity and
density; however, when the number of objectives increases,
the objective space grows rapidly and the number of the
reference points (in PlatEMO, the number is 10,000) is not
enough to represent the whole PF of the problems. As a
result, some errors may appear during the calculation
process of IGD values. For example, if a few solutions in a
population happen to lie very close to some reference points,
then their contribution to the population IGD value will also
be greater than some solutions with good convergence but
far away from the reference point. After all, the objective
space of MaOPs is very large. It is difficult or even impossible
to guarantee that 10,000 reference points can be densely and
evenly distributed on the entire PF to fairly evaluate the
overall performance of a population by calculating the
distances between it and the reference points. Furthermore,
howmany points can be said to be densely distributed on the
real PF of a many-objective problem is still a problem.

Considering the above issues, the IGD and HV metrics
may show contradictions in some test instances. However,
the overall results shown by the two metrics are consistent,
that is, the proposed AP-RVEA obtains themost competitive
performance.

Such superior performance of AP-RVEA can be at-
tributed to the following facts. Firstly, the reference vectors
are adaptively adjusted according to the obtained solutions
with promising performance, i.e., the approximated PF of
the MaOP, and thus sound diversity of the obtained pop-
ulation can be achieved. Besides, after the reference vectors
are adjusted, the convergence performance of the solutions
in each subspace can be more accurately evaluated by an
improved APD method compared with the original APD
method. Generally, the reference vector adjustment strategy
and the improved APD method work together to get the
whole performance of AP-RVEA.

In order to visually show the comparison among the six
algorithms, their output populations with the largest HV
values among the 30 runs on 10-objective MaF1 and 8-
objective MaF5 are plotted in the parallel coordinates.
Figure 5 gives the comparison results of 10-objective MaF1,
and Figure 6 shows the results of 8-objective MaF5.

MaF1 is a linear problem where no single optimal so-
lution lies in any subset of objectives [18]. For 10-objective
MaF1, the value of each objective ranges in [0, 1]. As can be
seen in Figure 5(c), we can find that only a few solutions are
output by RVEA∗. For A-NSGA-III and MOEA/D-Pas, they
fail to converge to the true PF on some objectives. In the

Input: archive; population size N; selected population P;
Output: updated archive;

(1) Filter out the dominated solutions in P and store the remaining solutions into PND
(2) if |archive| + |PND|>N then
(3) k←|archive| + |PND| − N;
(4) Randomly delete k solutions from archive; archive←archive∪PND
(5) else
(6) archive←archive∪PND

ALGORITHM 4: Archive update.
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Table 1: HV results of the 6 algorithms on benchmarks MaF–MaF9.

M A-NSGA-III [32] MOEA/D [5] RVEA∗[16] MaOEA-IT [36] MOEA/D-PaS [37] AP-RVEA

MaF1

3 2.0353e − 1
(1.24e − 3) −

1.9823e − 1
(1.76e − 6) +

2.1216e − 1
(1.81e − 3) −

8.0588e − 2
(4.47e − 2) −

1.8407e − 1
(1.07e − 3) −

2.1699e − 1
(5.89e − 4)

5 8.3089e − 3
(1.82e − 4) +

1.1127e − 2
(3.73e − 4) +

4.0294e − 3
(4.33e − 4) −

2.6586e − 3
(2.46e − 3) −

5.4484e − 3
(1.01e − 4) −

6.1155e − 3
(5.10e − 4)

8 1.1271e − 5
(3.71e − 6) −

3.1161e − 6
(9.84e − 7) −

7.0858e − 7
(4.00e − 7) −

7.5799e − 7
(1.56e − 6) −

2.6431e − 5
(1.73e − 6) −

2.6546e − 6
(1.19e − 6)

10 7.9566e − 9
(4.94e − 9) −

1.3977e − 8
(1.82e − 9) −

5.7247e − 9
(3.03e − 9) −

2.6723e − 9
(5.03e − 9) −

2.3472e − 8
(3.55e − 8) −

6.4159e − 8
(1.93e − 8)

MaF2

3 2.2882e − 1
(5.62e − 4) −

2.3886e − 1
(7.14e − 4) +

2.4321e − 1
(9.30e − 4) +

1.3382e − 1
(1.83e − 2) −

2.3105e − 1
(1.28e − 3) +

2.2968e − 1
(1.52e − 3)

5 1.8268e − 1
(1.23e − 3) −

1.8704e − 1
(4.46e − 4) −

1.7520e − 1
(1.92e − 3) −

1.3101e − 1
(3.22e − 2) −

9.2288e − 2
(6.42e − 3) −

1.9060e − 1
(1.74e − 3)

8 2.0533e − 1
(3.14e − 3) +

2.0719e − 1
(6.02e − 4) +

1.7835e − 1
(5.28e − 3) ≈

1.4836e − 1
(3.23e − 2) −

7.4638e − 2
(1.84e − 2) −

1.7799e − 1
(4.91e − 3)

10 1.0651e − 1
(9.50e − 3) −

1.7083e − 1
(7.94e − 4) −

1.0762e − 1
(9.34e − 3) −

9.2650e − 2
(1.41e − 2) −

4.3372e − 2
(3.33e − 4) −

1.7975e − 1
(7.45e − 3)

MaF3

3 9.5716e − 1
(6.89e − 4) −

9.5491e − 1
(1.13e − 3) −

9.6108e − 1
(8.13e − 4) +

8.4815e − 2
(2.60e − 1) −

7.1020e − 1
(3.76e − 1) −

9.5871e − 1
(1.76e − 3)

5 9.4447e − 1
(2.12e − 1) −

9.8725e − 1
(1.44e − 3) −

8.2530e − 1
(3.35e − 1) −

0.0000e+ 0
(0.00e+ 0) −

2.1056e − 1
(3.80e − 1) −

9.9929e − 1
(3.38e − 4)

8 7.8110e − 1
(3.94e − 1) −

9.6767e − 1
(2.78e − 3) −

9.9682e − 1
(3.04e − 4) −

0.0000e+ 0
(0.00e+ 0) −

9.5248e − 3
(2.85e − 2) −

9.9939e − 1
(2.13e − 2)

10 9.99454e − 1
(1.28e − 2) +

9.4948e − 1
(2.78e − 3) +

9.9851e − 1
(4.61e − 4) +

0.0000e+ 0
(0.00e+ 0) −

2.8415e − 3
(1.56e − 2) −

9.1280e − 1
(2.72e − 1)

MaF4

3 5.2149e − 1
(6.16e − 3) +

5.0055e − 1
(3.40e − 3) ≈

5.2054e − 1
(2.85e − 3) +

4.6992e − 2
(1.37e − 1) −

4.2732e − 1
(1.80e − 1) ≈

4.5632e − 1
(8.95e − 2)

5 5.8544e − 2
(5.49e − 3) ≈

7.4840e − 3
(2.94e − 3) −

3.4932e − 2
(1.10e − 2) −

0.0000e+ 0
(0.00e+ 0) −

4.2368e − 2
(2.20e − 2) −

6.0373e − 2
(1.06e − 2)

8 3.8552e − 5
(1.55e − 5) +

2.5638e − 6
(3.90e − 7) −

3.9599e − 5
(3.54e − 5) +

0.0000e+ 0
(0.00e+ 0) −

2.8057e − 3
(1.47e − 4) +

1.7934e − 5
(1.69e − 5)

10 3.0500e − 8
(2.50e − 8) −

1.4597e − 8
(1.86e − 9) −

2.8142e − 7
(2.42e − 7) +

1.1961e − 7
(6.55e − 7) −

2.0046e − 4
(4.62e − 5) +

1.8383e − 7
(1.28e − 7)

MaF5

3 4.9687e − 1
(9.09e − 2) −

4.7843e − 1
(1.35e − 1) −

4.5833e − 1
(1.72e − 1) −

1.0907e − 1
(3.90e − 2) −

4.5198e − 1
(1.56e − 1) −

5.5958e − 1
(3.09e − 5)

5 7.3778e − 1
(2.33e − 2) −

4.4689e − 1
(1.05e − 1) −

8.1174e − 1
(4.40e − 4) +

1.2033e − 1
(9.19e − 2) −

7.4462e − 1
(3.40e − 2) −

8.0819e − 1
(2.53e − 2)

8 8.2333e − 1
(1.43e − 2) −

3.5794e − 1
(8.63e − 2) −

8.9065e − 1
(4.49e − 2) −

2.5990e − 2
(4.18e − 2) −

8.9836e − 1
(6.10e − 3) ≈

8.9915e − 1
(6.73e − 3)

10 8.7108e − 1
(2.20e − 2) +

2.5125e − 1
(7.94e − 2) −

8.2530e − 1
(9.06e − 2) ≈

6.7036e − 2
(4.50e − 2) −

8.7214e − 1
(1.21e − 1) +

8.0365e − 1
(2.30e − 2)

MaF6

3 1.9257e − 1
(1.19e − 3) +

1.8185e − 1
(5.24e − 6) +

1.8865e − 1
(1.50e − 3) +

4.6163e − 2
(1.07e − 2) −

1.8937e − 1
(8.73e − 4) +

1.7995e − 1
(1.09e − 3)

5 1.2878e − 1
(4.32e − 4) −

1.1532e − 1
(3.49e − 2) −

1.0692e − 1
(1.46e − 2) −

1.0711e − 1
(4.43e − 2) −

1.0778e − 1
(8.34e − 4) −

1.3141e − 1
(9.79e − 3)

8 7.5412e − 2
(4.26e − 2) −

9.5638e − 2
(2.45e − 2) −

9.4549e − 2
(3.40e − 3) −

8.3754e − 2
(3.75e − 2) −

6.3906e − 2
(3.70e − 2) −

9.5782e − 2
(1.33e − 3)

10 8.4470e − 2
(5.98e − 3) −

7.1992e − 2
(4.28e − 2) ≈

9.4688e − 2
(1.14e − 3) ≈

9.0951e − 3
(2.77e − 2) −

8.1006e − 2
(2.76e − 2) ≈

8.5933e − 2
(1.23e − 2)

MaF7

3 2.5256e − 1
(5.32e − 3) −

2.5331e − 1
(1.38e − 2) ≈

2.6855e − 1
(1.22e − 2) +

1.2596e − 1
(3.78e − 2) −

2.1428e − 1
(9.79e − 2) ≈

2.5443e − 1
(5.81e − 3)

5 2.1329e − 1
(8.04e − 3) −

1.4613e − 1
(1.31e − 2) −

2.2129e − 1
(3.85e − 3) −

4.9265e − 3
(9.10e − 3) −

2.1578e − 1
(6.01e − 2) −

2.4446e − 1
(2.11e − 3)

8 9.2868e − 2
(1.71e − 2) −

3.9645e − 3
(1.39e − 2) −

1.8451e − 1
(2.99e − 3) +

0.0000e+ 0
(0.00e+ 0) −

1.8405e − 1
(7.74e − 3) +

1.2609e − 1
(1.95e − 2)

10 1.3202e − 1
(1.55e − 2) +

5.3985e − 5
(1.47e − 4) −

1.0158e − 1
(4.76e − 2) +

0.0000e+ 0
(0.00e+ 0) −

1.5212e − 3
(8.33e − 3) −

6.6357e − 2
(1.80e − 2)
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Table 1: Continued.

M A-NSGA-III [32] MOEA/D [5] RVEA∗[16] MaOEA-IT [36] MOEA/D-PaS [37] AP-RVEA

MaF8

3 2.5863e − 1
(2.33e − 3) +

2.5984e − 1
(6.33e − 3) +

2.6481e − 1
(2.65e − 3) +

2.4228e − 2
(3.38e − 2) −

0.0000e+ 0
(0.00e+ 0) −

2.4098e − 1
(3.60e − 3)

5 1.0867e − 1
(1.69e − 3) −

1.1426e − 1
(2.34e − 3) −

8.8484e − 2
(5.55e − 3) −

6.8305e − 3
(1.08e − 2) −

0.0000e+ 0
(0.00e+ 0) −

1.1673e − 2
(5.91e − 3)

8 2.4678e − 2
(6.97e − 4) +

2.2108e − 2
(4.52e − 4) +

1.1092e − 2
(3.72e − 3) −

8.5991e − 4
(1.66e − 3) −

0.0000e+ 0
(0.00e+ 0) −

1.5505e − 2
(1.89e − 3)

10 3.8703e − 3
(7.50e − 4) −

6.2901e − 3
(2.08e − 4) −

2.6006e − 3
(8.94e − 4) −

4.9137e − 5
(1.52e − 4) −

0.0000e+ 0
(0.00e+ 0) −

7.9081e − 3
(2.71e − 4)

MaF9

3 8.3695e − 1
(1.26e − 3) −

8.3183e − 1
(1.52e − 2) −

8.4344e − 1
(9.81e − 4) −

9.9304e − 3
(5.44e − 2) −

7.7608e − 1
(1.48e − 1) −

8.5828e − 1
(4.12e − 2)

5 2.8542e − 1
(3.37e − 3) +

3.1093e − 1
(2.91e − 3) +

2.3391e − 1
(1.09e − 2) −

0.0000e+ 0
(0.00e+ 0) −

2.3636e − 1
(5.28e − 2) ≈

2.5743e − 1
(1.39e − 2)

8 3.3482e − 2
(5.60e − 3) +

4.1322e − 2
(5.03e − 4) +

2.2144e − 2
(2.52e − 3) +

0.0000e+ 0
(0.00e+ 0) −

4.4560e − 2
(3.99e − 4) +

1.9959e − 2
(2.68e − 3)

10 6.2283e − 3
(1.26e − 3) −

1.1816e − 2
(2.24e − 3) −

4.6773e − 3
(1.18e − 3) −

0.0000e+ 0
(0.00e+ 0) −

1.2047e − 2
(2.47e − 3) ≈

1.2064e − 2
(4.20e − 4)

− /+/ ≈ 23/12/1 23/10/3 20/13/3 36/0/0 23/7/6

Table 2: IGD results of the 6 algorithms on benchmarks MaF–MaF9.

M A-NSGA-III [32] MOEA/D [5] RVEA∗ [16] MaOEA-IT [36] MOEA/D-PaS [37] AP-RVEA

MaF1

3 6.2920e − 2
(1.58e − 3) +

7.0475e − 2
(7.51e − 7) +

5.3794e − 2
(2.18e − 3) +

2.8372e − 1
(1.02e − 1) −

9.0179e − 2
(1.35e − 3) −

8.0285e − 2
(1.44e − 3)

5 2.5753e − 1
(1.67e − 2) −

1.2684e − 1
(5.62e − 3) +

1.8403e − 1
(1.53e − 2) −

3.1034e − 1
(9.67e − 2) −

2.2529e − 1
(1.48e − 3) −

1.6647e − 1
(3.70e − 3)

8 3.5534e − 1
(3.65e − 2) −

4.6348e − 1
(2.69e − 2) −

5.9242e − 1
(6.12e − 2) −

5.5330e − 1
(1.21e − 1) −

5.0319e − 1
(6.46e − 2) −

2.7481e − 1
(8.18e − 3)

10 6.1235e − 1
(7.22e − 2) −

5.4023e − 1
(1.77e − 2) −

6.3868e − 1
(7.02e − 2) −

6.0878e − 1
(1.39e − 1) −

3.3410e − 1
(1.03e − 2) +

4.3303e − 1
(2.73e − 2)

MaF2

3 3.6496e − 2
(3.86e − 4) +

3.8937e − 2
(5.45e − 4) +

2.8213e − 2
(6.58e − 4) +

1.4382e − 1
(3.30e − 2) −

5.4623e − 2
(1.56e − 3) −

4.2871e − 2
(1.24e − 3)

5 1.1526e − 1
(8.77e − 4) −

1.1107e − 1
(2.19e − 4) −

8.7126e − 2
(1.47e − 3) −

1.3455e − 1
(5.03e − 2) ≈

2.2794e − 1
(1.03e − 2) −

6.1168e − 2
(1.19e − 3)

8 1.9101e − 1
(4.89e − 3) +

2.1724e − 1
(3.90e − 4) +

1.7075e − 1
(4.24e − 3) +

3.1336e − 1
(5.46e − 2) +

2.1058e − 1
(2.56e − 3) +

7.8364e − 1
(3.26e − 2)

10 3.9322e − 1
(7.91e − 2) −

2.6599e − 1
(1.11e − 3) −

2.1699e − 1
(5.71e − 2) −

4.4354e − 1
(5.77e − 2) −

8.6610e − 1
(1.65e − 3) −

2.1087e − 1
(5.37e − 3)

MaF3

3 4.7122e − 2
(5.65e − 4) −

5.1895e − 2
(1.84e − 3) −

4.1828e − 2
(1.24e − 3) ≈

3.8136e+ 2
(1.48e+ 3) −

1.5467e+ 2
(8.31e+ 2) −

4.2030e − 2
(2.13e − 3)

5 8.7541e − 1
(2.03e+ 0) −

1.0687e − 1
(4.15e − 3) −

6.9057e − 1
(1.97e − 3) −

1.5492e+ 4
(7.55e+ 4) −

2.0454e+ 3
(5.63e+ 3) −

1.3820e − 1
(2.61e − 1)

8 9.3781e − 1
(2.79e+ 0) −

1.6283e − 1
(1.88e − 3) −

1.0497e − 1
(1.47e − 2) −

2.0367e+ 7
(8.77e+ 7) −

1.2781e − 1
(4.10e − 2) −

1.0014e − 1
(1.65e+ 4)

10 1.0131e − 1
(2.33e − 2) +

1.3934e − 1
(1.33e − 3) +

9.6908e − 2
(4.41e − 3) +

3.0285e+ 8
(1.10e+ 9) −

1.5765e+ 8
(5.03e+ 8) −

2.2075e − 1
(3.61e − 1)

MaF4

3 4.0702e − 1
(1.50e − 2) ≈

6.7751e − 1
(2.65e − 2) −

3.3615e − 1
(1.11e − 2) +

5.0300e+ 1
(1.15e+ 2) −

9.9331e − 1
(1.74e+ 0) ≈

5.5332e − 1
(3.32e − 1)

5 3.4214e+ 0
(1.07e+ 0) −

1.0289e+ 1
(7.60e − 1) −

2.8889e+ 0
(4.54e − 1) −

4.3480e+ 2
(8.85e+ 2) −

1.4022e+ 1
(3.01e+ 1) −

2.4721e+ 0
(9.11e − 2)

8 3.0978e+ 1
(3.13e+ 0) ≈

1.1789e+ 2
(6.00e+ 0) −

3.4092e+ 1
(1.45e+ 0) −

2.0335e+ 3
(3.12e+ 3) −

5.1337e+ 1
(1.53e+ 1) −

2.9338e+ 1
(1.04e+ 0)

10 2.5694e+ 2
(6.10e+ 1) −

5.3290e+ 2
(4.20e+ 1) −

1.0044e+ 2
(9.25e+ 0) +

8.8107e+ 3
(1.43e+ 4) −

1.2975e+ 2
(2.65e+ 1) +

1.9903e+ 2
(3.41e+ 1)

MaF5

3 6.4826e − 1
(6.61e − 1) −

8.5931e − 1
(1.24e+ 0) −

1.1243e+ 0
(1.62e+ 0) −

4.6662e+ 0
(3.11e − 1) −

9.8315e − 1
(1.17e+ 0) −

2.5976e − 1
(2.71e − 5)

5 1.9720e+ 0
(4.73e − 3) +

8.1263e+ 0
(1.43e+ 0) −

1.7716e+ 0
(1.22e − 1) +

1.0212e+ 1
(2.46e+ 0) −

2.5855e+ 0
(2.42e − 1) ≈

2.4960e+ 0
(6.21e − 2)

8 3.0063e+ 1
(1.81e+ 0) −

8.3568e+ 1
(1.46e+ 0) −

2.2528e+ 1
(2.63e+ 0) −

8.9764e+ 1
(5.22e+ 1) −

2.6183e+ 1
(3.39e+ 0) −

2.1817e+ 1
(9.14e − 1)

10 1.3002e+ 2
(3.12e+ 1) −

3.0356e+ 2
(1.66e+ 0) −

1.1822e+ 2
(2.80e+ 1) −

2.3986e+ 2
(4.90e+ 1) −

1.4810e+ 2
(2.51e+ 1) −

1.0322e+ 2
(1.15e+ 1)
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Table 2: Continued.

M A-NSGA-III [32] MOEA/D [5] RVEA∗ [16] MaOEA-IT [36] MOEA/D-PaS [37] AP-RVEA

MaF6

3 1.4787e − 2
(1.49e − 3) +

3.3929e − 2
(4.12e − 6) ≈

2.2360e − 2
(2.67e − 3) +

3.2842e − 1
(6.47e − 2) −

2.3682e − 2
(1.53e − 3) +

3.4808e − 2
(2.06e − 3)

5 7.5945e − 2
(8.31e − 3) −

5.4923e − 2
(9.94e − 2) −

2.2218e − 1
(2.66e − 1) −

7.6317e − 2
(1.65e − 1) −

9.6494e − 2
(1.53e − 2) −

9.1551e − 3
(3.10e − 3)

8 1.4803e − 1
(1.71e − 1) +

1.8737e − 1
(2.34e − 1) +

3.7356e − 1
(2.84e − 1) +

7.2548e − 2
(1.60e − 1) +

1.1124e − 1
(2.02e − 2) +

8.3171e − 1
(1.91e − 1)

10 1.5499e − 1
(4.34e − 2) ≈

2.6580e − 1
(2.54e − 1) ≈

2.3930e − 1
(2.27e − 1) ≈

4.4674e − 1
(6.27e − 2) −

2.4357e+ 1
(7.21e+ 1) −

1.7272e − 1
(1.26e − 1)

MaF7

3 1.0095e − 1
(4.88e − 2) +

1.9739e − 1
(1.64e − 1) −

1.2263e − 1
(1.04e − 1) −

5.2536e − 1
(1.64e − 1) −

1.1855e+ 0
(2.31e+ 0) −

1.1628e − 1
(7.04e − 3)

5 4.9241e − 1
(9.87e − 3) −

5.6292e − 1
(1.78e − 1) −

3.7725e − 1
(1.17e − 2) −

3.5548e+ 0
(2.52e+ 0) −

9.6303e − 1
(1.04e+ 0) −

3.7503e − 1
(1.42e − 2)

8 1.2508e+ 0
(7.13e − 2) +

1.7909e+ 0
(3.49e − 1) +

1.6928e+ 0
(1.78e − 1) +

2.2385e+ 1
(2.24e+ 0) −

1.8109e+ 0
(1.24e − 1) +

2.6202e+ 0
(5.54e − 1)

10 2.5671e+ 0
(3.68e − 1) −

2.7215e+ 0
(4.95e − 1) −

1.1068e+ 0
(1.01e − 1) +

3.6904e+ 1
(2.06e+ 0) −

1.9033e+ 1
(6.97e+ 0) −

1.7752e+ 0
(1.58e − 1)

MaF8

3 1.1078e − 1
(4.88e − 3) +

1.1047e − 1
(1.59e − 2) +

9.2711e − 2
(5.08e − 3) +

1.6084e+ 2
(2.85e+ 2) −

4.0405e+ 1
(2.44e+ 1) −

1.3668e − 1
(8.50e − 3)

5 2.6739e − 1
(2.24e − 2) −

2.0045e − 1
(3.08e − 2) −

2.9639e − 1
(7.17e − 2) −

6.5221e+ 1
(9.04e+ 1) −

2.8168e+ 1
(2.21e+ 1) −

1.6703e − 1
(1.08e − 2)

8 4.6062e − 1
(5.26e − 2) +

6.8716e − 1
(1.97e − 2) +

8.8528e − 1
(1.77e − 1) +

1.5075e+ 2
(1.87e+ 2) ≈

6.8703e − 1
(7.28e − 2) +

4.8632e+ 1
(3.46e+ 1)

10 9.4959e − 1
(1.21e − 1) −

9.6884e − 1
(2.09e − 2) −

1.1676e+ 0
(2.13e − 1) −

2.1211e+ 4
(1.34e+ 4) −

3.1499e+ 1
(2.91e+ 1) −

6.3354e − 1
(5.75e − 2)

MaF9

3 6.2530e − 2
(1.31e − 3) −

6.4715e − 2
(5.85e − 3) −

5.4752e − 2
(6.20e − 4) −

6.0017e+ 1
(7.30e+ 1) −

9.9649e − 1
(4.90e+ 0) −

5.0301e − 2
(7.12e − 2)

5 2.7053e − 1
(2.81e − 2) −

9.9632e − 2
(3.22e − 3) +

2.0823e − 1
(3.35e − 2) −

8.5660e+ 1
(1.37e+ 2) −

4.7588e − 1
(1.09e+ 0) −

1.6044e − 1
(8.21e − 3)

8 3.1743e − 1
(1.55e − 1) −

2.7830e − 1
(1.79e − 2) −

6.1440e − 1
(9.20e − 2) −

1.5605e+ 2
(1.05e+ 2) −

6.3322e − 1
(8.37e − 2) −

1.9853e − 1
(2.97e − 3)

10 8.3765e − 1
(1.55e − 1) −

6.5459e − 1
(5.98e − 1) −

9.8642e − 1
(1.79e − 1) −

3.9581e+ 2
(4.97e+ 2) −

8.1119e − 1
(1.95e+ 0) −

3.8017e − 1
(2.27e − 2)

− /+/ ≈ 23/10/3 22/12/2 21/13/2 32/2/2 27/7/2
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Figure 5: ,e best populations obtained by the six algorithms on 10-objective MaF1, shown by parallel coordinates.
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populations output by MaOEA-IT and MOEA/D, it is ob-
vious that some objectives of some solutions do not fall into
[0, 1]. ,e proposed AP-RVEA gains good balance between
convergence and diversity according to the figure of its
population. In summary, AP-RVEA possesses the best
overall performance on 10-objective MaF1.

,e output populations obtained by the six algorithms
on 8-objective MaF5 are plotted in Figure 6. MaF5 is a
concave and biased problem and has a badly scaled PF. Each
objective function of MaF5 is scaled to a substantially dif-
ferent range [18]. In Figures 6(a), 6(e), and 6(f ), A-NSGA-
III, MOEA/D-Pas, and AP-RVEA gain good approximations
of the true PF of 8-objective MaF5, while RVEA∗ fails to
converge on the third objective. For MaOEA-IT, we can see
that the range of its output population is [0, 500] instead of
[0, 250]. Besides, the population obtained by MOEA/D
seems to have a bad diversity as well as convergence
according to the messy line in Figure 6.,e results in Table 1
demonstrate that the proposed AP-RVEA shows the most
promising overall performance.

6. Conclusion and Future Works

In this paper, a novel adaptive reference vector adjustment
strategy is developed to adjust the predefined reference
vectors according to the distribution of current promising
solutions. ,en, an improved APD method is shown to pose
more selection pressure in terms of convergence perfor-
mance to the candidate population. On the basis of the above
two methods, an improved version of RVEA called AP-
RVEA is proposed to maintain sound population diversity
and converge efficiently to the true PF. ,e proposed AP-

RVEA is compared with five state-of-the-art decomposition-
based algorithms on 36 test instances taken from MaF test
suite. ,e HV results and IGD results give the conclusion
that AP-RVEA achieves the most competitive performance
among the six algorithms.

In the future, we hope that AP-RVEA can be used to
solve some real-world problems with irregular problems
instead of being limited to test problems. Besides, it may also
be meaningful to extend AP-RVEA to solve some constraint
problems with irregular PFs [41].
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available from the corresponding author upon request.
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