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4Institute for Integrative Biology, ETH, Zurich, Switzerland
5Swiss Institute of Bioinformatics, Lausanne, Switzerland

Correspondence should be addressed to M. G. Cosenza; mario.cosenza@gmail.com

Received 10 August 2020; Revised 19 January 2021; Accepted 3 February 2021; Published 15 February 2021

Academic Editor: Lucia Valentina Gambuzza

Copyright © 2021M. G. Cosenza et al.)is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We show that dynamical clustering, where a system segregates into distinguishable subsets of synchronized elements, and chimera
states, where differentiated subsets of synchronized and desynchronized elements coexist, can emerge in networks of globally
coupled robust-chaos oscillators.We describe the collective behavior of a model of globally coupled robust-chaos maps in terms of
statistical quantities and characterize clusters, chimera states, synchronization, and incoherence on the space of parameters of the
system. We employ the analogy between the local dynamics of a system of globally coupled maps with the response dynamics of a
single driven map. We interpret the occurrence of clusters and chimeras in a globally coupled system of robust-chaos maps in
terms of windows of periodicity andmultistability induced by a drive on the local robust-chaos map. Our results show that robust-
chaos dynamics does not limit the formation of cluster and chimera states in networks of coupled systems, as it had been
previously conjectured.

1. Introduction

Many smooth nonlinear dynamical systems possess chaotic
attractors embedded with a dense set of periodic orbits for
any range of parameter values. )erefore, in practical sys-
tems operating in chaotic mode, a slight perturbation of a
parameter may drive the system out of chaos. Alternatively,
there exist dynamical systems that exhibit the property of
robust chaos [1–6]. A chaotic attractor is said to be robust if,
for its parameter values, there exists a neighborhood in the
parameter space where windows of periodic orbits are absent
and the chaotic attractor is unique [1].

Robust chaos constitutes an advantageous feature in
applications that require reliable functioning in a chaotic
regime, in the sense that the chaotic behavior cannot be
removed by arbitrarily small fluctuations of the system
parameters. For instance, networks of coupled maps with
robust chaos have been efficiently used in communication
and encryption algorithms [7] and they have been investi-
gated for information transfer across scales in complex

systems [8]. In addition, the existence of robust chaos allows
for heterogeneity in the local parameters of a system of
coupled oscillators, while guaranteeing the performance of
all the oscillators in a chaotic mode.

On the other hand, systems possessing robust chaos may
present limitations in the types of collective behaviors that
they can achieve, in comparison with systems displaying
periodic windows. For example, it has been conjectured that
the phenomenon of dynamical clustering in globally coupled
networks (where the system segregates into distinguishable
subsets of synchronized elements) is only found when stable
periodic windows are present in the local elements [9–11].
Recently, it has also been argued that chimera states (i.e.,
coexistence of subsets of oscillators with synchronous and
asynchronous dynamics) cannot emerge in networks of
coupled oscillators having robust chaotic attractors [12, 13].

)e phenomenon of dynamical clustering is relevant as it
can provide a simple mechanism for the emergence of
differentiation, segregation, and ordering of elements in
many physical and biological systems [14, 15]. Clustering has
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been found in systems of globally coupled Rössler oscillators
[16], neural networks [17], and biochemical reactions [18]
and has been observed experimentally in arrays of globally
coupled electrochemical oscillators [19] and globally cou-
pled salt-water oscillators [20]. In addition, the study of
chimera states currently attracts much interest (for reviews
see [21, 22]). Chimera states have been found in networks of
nonlocally coupled phase oscillators [23, 24], in systems with
local [25–28] and global [29–34] interactions, and in net-
works of time-discrete maps [35–38]. )ese states have been
investigated in a diversity of contexts [39–47]. Chimera
states have been observed in experimental settings, such as
populations of chemical oscillators [48], coupled lasers [49],
optical light modulators [50], and electronic [51] and me-
chanical [52, 53] oscillator systems. It has been shown that
clustering is closely related to the formation of chimera
states in systems of globally coupled periodic oscillators [31].

In this paper, we investigate the occurrence of dynamical
clustering and chimera states in systems of coupled robust-
chaos oscillators. In Section 2, we describe the character-
ization of synchronization and cluster and chimera states in
globally coupled systems. In Section 3, we consider a net-
work of globally coupled robust-chaos maps and show that
cluster and chimera states can actually emerge in this system
for several values of parameters. In Section 4, we employ the
analogy between the local dynamics of the globally coupled
system with the response dynamics of a single driven map.
We interpret the occurrence of clusters and chimeras in the
globally coupled system in terms of windows of periodicity
induced by the drive on the local robust-chaos map. Con-
clusions are presented in Section 4.

2. Methods

A global interaction in a system can be described as a field or
influence acting on all the elements in the system. As a
simple model of an autonomous dynamical system subject to
a global interaction, we consider a system of Nmaps coupled
in the form

x
i
t+1 � (1 − ε)f x

i
t􏼐 􏼑 + εht x

j
t |j ∈ S􏼐 􏼑, (1)

where xi
t(i � 1, 2, . . . , N) describes the state variable of the

ith map in the system at discrete time t, the function f

expresses the local dynamics of the maps, the function ht

represents a global field that depends on the states of the
elements in a given subset S of the system, at time t, and the
parameter ε measures the strength of the coupling of the
maps to the field. )e form of the coupling in equation (1) is
assumed in the commonly used diffusive form.)e function
ht may not depend on all the elements, but it must be shared
by all the elements of the system to be a global interaction.

A collective state of synchronization or coherence takes
place in system equation (1) when xi

t � x
j
t , ∀i, j for asymptotic

times. A desynchronized or incoherent state corresponds to
xi

t ≠ x
j
t , ∀i, j for all times. Dynamical clustering occurs when

the system segregates into a number of K distinct clusters or
subsets of elements such that elements in given subset are
synchronized among themselves. In other words, xi

t � x
j
t �

X
ξ
t , ∀i, j in the ξth cluster, where X

ξ
t denotes the value of xi

t in
that cluster, with ξ � 1, . . . , K. If nξ is the number of elements
belonging to the ξth cluster, then its relative size is pξ � nξ/N.
In general, the number of clusters, their size, and their dy-
namical evolution (periodic, quasiperiodic, or chaotic) depend
on the initial conditions and parameters of the system. A
chimera state consists of the coexistence of one or more clusters
and a subset of desynchronized elements. If there areK clusters,
the fraction of elements in the system belonging to clusters is
p � 􏽐

K
ξ�1 nξ/N while (1 − p) is the fraction of elements in the

desynchronized subset.
In practical applications, we consider that two elements i

and j belong to a cluster at time t if the distance between
their state variables, defined as

dij(t) � x
i
t − x

j
t

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (2)

is less than a threshold value δ, i.e., if dij < δ. )e choice of δ
should be appropriate for achieving differentiation between
closely evolving clusters. )en, we calculate the fraction of
elements that belong to some cluster at time t as [16]

p(t) � 1 −
1
N

􏽘

N

i�1
􏽑
N

j�1,j≠i
Θ dij(t) − δ􏽨 􏽩, (3)

whereΘ(x) � 0 for x< 0 andΘ(x) � 1 for x≥ 0. We refer to
p as the asymptotic time average of p(t). )en, a clustered
state in the system can be characterized by the value p � 1,
while an incoherent state in the system corresponds to
p⟶ 0.)e values pmin <p< 1 characterize a chimera state,
where pmin is the minimum cluster size to be taken into
consideration.

A synchronization state corresponds to the presence of a
single cluster of size N and has also the value p � 1. To
distinguish a synchronization state from a multicluster state,
we calculate the asymptotic time average 〈σ〉 as

〈σ〉 �
1

T − τ
􏽘

T

t�τ
σt, (4)

where τ is the number of discarded transients, T is a suf-
ficiently large time, and σt is the instantaneous standard
deviation of the distribution of state variables defined by

σt �
1
N

􏽘

N

i�1
x

i
t − xt􏼐 􏼑

2
⎡⎣ ⎤⎦

1/2

, (5)

where

xt �
1
N

􏽘

N

j�1
x

j
t . (6)

Statistically, a synchronization state is characterized by
the values 〈σ〉 � 0 and p � 1, while a cluster state corre-
sponds to 〈σ〉> 0 and p � 1. Chimera states are charac-
terized by 〈σ〉> 0 and pmin <p< 1, and desynchronization is
described by 〈σ〉> 0, p<pmin. In this paper, we set δ � 10− 6

and pmin � 0.05.
Note that, in systems with local or long-range interac-

tions where there is a natural spatial ordering, the
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synchronized and desynchronized domains for chimera
states are localized in space. In contrast, globally coupled
systems lack the notion of spatial order. )us, the chimera
and cluster states in our system are characterized in terms of
the statistical quantities 〈σ〉 and p, not by the spatial lo-
cation of the synchronized and the desynchronized domains.

3. Results and Discussion

3.1. Chimeras and Clusters in Globally Coupled Robust-Chaos
Maps. Let us consider a network of globally coupled maps
described by the equations [14]

x
i
t+1 � (1 − ε)f x

i
t􏼐 􏼑 +

ε
N

􏽘

N

j�1
f x

j
t􏼐 􏼑, (7)

where the global interaction function is the mean field of the
system, and

ht �
1
N

􏽘

N

j�1
f x

j
t􏼐 􏼑. (8)

As local dynamics exhibiting robust chaos, we consider
the following smooth, unimodal map defined on the interval
x ∈ [0, 1] [54]:

xt+1 � f xt( 􏼁 �
1 − b

1− xt( )xt

1 − b
1/4 , (9)

which is chaotic with no periodic windows on the parameter
interval b ∈ [0, 1]. On this interval, the Lyapunov exponent
of map equation (9) has the constant value λ � ln 2. )e
bifurcation diagram of map equation (9) in Figure 1 shows
the absence of periodicity in the interval b ∈ [0, 1].

Figure 2 shows the asymptotic temporal evolution of the
states of system equations (7) and (9), for different values of
parameters. Since the system is globally coupled, there is no
natural spatial ordering. For visualization purposes, the indexes
i are ordered at time t � 104 such that i< j if xi

t < x
j
t and kept

fixed afterwards. )e values of the states xi
t are represented by

distinct color coding; two elements i, j share the same color if
xi

t � x
j
t . A desynchronized state is displayed in Figure 2(a) and a

complete synchronization state occurs in Figure 2(d), while a
chimera state and a two-cluster state are visualized in
Figures 2(b) and 2(c), respectively.

Figure 3 shows the collective states arising in system
equations (7) and (9) on the space of parameters ε, b, char-
acterized through the quantities p and 〈σ〉. Labels indicate the
regions where these behaviors occur: CS: complete synchro-
nization; C: cluster states; Q: chimera states, and D:
desynchronization.

)e linear stability analysis for the complete synchro-
nization state in globally coupled system equation (7) shows
that this state is stable if the following condition is satisfied
[14]:

(1 − ε)eλ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< 1, (10)

where λ is the Lyapunov exponent for the local map f(x). For
map equation (9), we obtain that the completely synchronized

state is stable for 1/2< ε< 3/2, which agrees with the numerical
characterization for this state performed in Figure 3. Figure 3
reveals that both cluster and chimera states can arise in globally
coupled map networks for appropriate values of parameters,
even when the individual maps lack periodic windows. Clusters
and chimera state regions occur adjacent to each other for an
intermediate range of values of the coupling parameter ε on the
phase diagram of Figure 3. In fact, chimeras and clusters are
closely related collective states in systems subject to global
interactions [30]. Chimera states appear to mediate between
dynamical clustering and incoherence.

Multicluster chimera states are also possible in systems
of globally coupled robust-chaos maps. As an illustration,
consider the smooth unimodal map [55]

f xt( 􏼁 � sin2 r arcsin
��
xt

√
( 􏼁( 􏼁, (11)

defined on the interval xt ∈ [0, 1] for parameter values r> 1.
Figure 4 shows the bifurcation diagram of the iterates of map
equation (11) as a function of the parameter r. )e dynamics
of the map displays robust chaos with no periodic windows
for r> 1. )e Lyapunov exponent is λ � ln r [55].

Figure 5 shows the temporal evolution of the states of
globally coupled system equation (7) with local map
equation (11), for different values of parameters. A chi-
mera state with multiple clusters occurs in Figure 5(a),
while a two-cluster state is shown in Figure 5(b). Mul-
tichimera states or multiheaded chimeras (coexistence of
multiple localized domains of incoherence and coher-
ence) have been reported in systems with long-range
interactions [56]. However, those states are not equivalent
to a chimera state with multiple clusters in a globally
coupled system, such as Figure 5(a), where there is no
notion of locality.

3.2. Dynamics of Clusters and Chimera States with Global
Interactions. Consider a chimera state consisting of K

clusters and a desynchronized subset in the system of
globally coupledmap equation (1).)e dynamics of this state
can be described by the equations

X
ξ
t+1 � (1 − ε)f X

ξ
t􏼐 􏼑 + εht, ξ � 1, . . . , K,

x
j
t+1 � (1 − ε)f x

j
t􏼐 􏼑 + εht, j � 1, . . . , (1 − p)N.

(12)

)e mean field equation (8) in a chimera state can be
expressed as the sum of two contributions

ht � hC + hI, (13)

where

hC � 􏽘
K

ξ�1
pξf X

ξ
t􏼐 􏼑,

hI �
1
N

􏽘

(1−p)N

j�1
f x

j
t􏼐 􏼑.

(14)

)e term hC is the contribution to the mean field cor-
responding to elements belonging to clusters, whereas hI is
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Figure 1: Bifurcation diagram of map equation (9) as a function of the parameter b.
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Figure 2: Asymptotic evolution of the states xi (horizontal axis) as a function of time (vertical axis) for system equations (7) and (9) with size
N � 100 and fixed b � 0.5, for different values of the coupling parameter. Random initial conditions are uniformly distributed in the interval
[0, 1]. After discarding 104 transients, 100 iterates t are displayed. Ordering of the map indexes is explained in the text. Color code: two
elements i, j share the same color if xi

t � x
j
t . (a) Incoherent or desynchronized state, ε � 0.15. (b) Chimera state, ε � 0.2. (c) Two-cluster state,

ε � 0.39. (d) Synchronization, ε � 0.6.
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the average of the states of the elements belonging to the
incoherent subset.

Figure 6 shows the temporal behavior of both contri-
butions hC and hI in a chimera state for globally coupled
autonomous system equations (7) and (9). )e time evo-
lution of the cluster contribution hC is chaotic, similar to that
of local map equation (9), but hC has a smaller amplitude. In
general, the form of hC can be approximated as
hC ≈ Af(yt), where A< 1 represents a modulation factor
reflecting the partition into several clusters. On the other
hand, Figure 6 reveals that the time series of hI fluctuates
about a mean value with a small dispersion, corresponding
to the superposition of the dynamics of many incoherent
chaotic elements. )us, for the given parameter values, the
incoherent contribution to the mean field for a large system

size can be expressed approximately as a constant, i.e.,
hI ≈ k.

)e dynamics of globally coupled system equation (1),
where each map is subject to a feedback field ht, can be
compared to that of a replica system of maps subject to a
global external drive g(yt) in the form

x
i
t+1 � (1 − ε)f x

i
t􏼐 􏼑 + εg yt( 􏼁,

yt+1 � g yt( 􏼁.
(15)

It has been shown that an analogy between autonomous
system equation (1) and driven system equation (15) can be
established when the time evolution of the field ht is identical
to that of the function g(yt) [9]. )en, the drive-response
dynamics at the local level in both systems is similar, and
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Figure 3: Phase diagram on the plane (ε, b) for autonomous system equations (7) and (9) with size N � 500. For each data point, the
quantities p and 〈σ〉 are obtained by averaging over 50 realizations of random initial conditions xi

0 uniformly distributed in the interval
[0, 1]. Labels indicate different collective states. CS: synchronization; C: cluster states; Q: chimera states; D: desynchronization.
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Figure 4: Bifurcation diagram of map equation (11) as a function of the parameter r.
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therefore their corresponding emerging collective states can
be equivalent for some appropriate parameter values and
initial conditions. In particular, chimera or cluster states in
system equation (15) should be induced by an external drive
function of the form g(yt) � Af(yt) + k, with A, k con-
stants, that imitates the mean field ht.)e realization of these
states depends on the parameters A and k of the drive and on
the coupling strength ε.

Figure 7 shows the temporal evolution of the states of
driven system equation (15) with local map equation (9), for
some values of parameters. A chimera state with a single

cluster takes place in Figure 7(a) for parameter values (ε, b),
where chimera states also occur in the autonomous system
equations (7) and (9), as seen in the corresponding phase
diagram of Figure 3. Figure 7(b) shows a two-cluster state for
values (ε, b) located in the region corresponding to clustered
states in Figure 3. )e dynamics of the driven system
equations (15) shows multistability; depending on initial
conditions, chimeras with different partitions may be in-
duced for given parameters values (ε, b) in the region labeled
Q in Figure 3. Similarly, different initial conditions may
produce cluster states with different partition sizes for fixed
parameter values in region C of Figure 3.

System equation (15) can be considered as N realizations
for different initial conditions of a single driven map

xt+1 � (1 − ε)f xt( 􏼁 + εg yt( 􏼁,

yt+1 � g yt( 􏼁.
(16)

Analogously, each local map in globally coupled
system equation (7) can be seen as subject to a field ht that
eventually induces a collective state. Clustering in
globally coupled systems of identical elements has been
attributed to the existence of periodic windows in the
local dynamics [10]. On the other hand, clustering is
considered a prerequisite for the occurrence of chimera
states in globally coupled systems [31]. )us, to elucidate
the origin of clusters and chimeras in system equation (7)
with local robust chaos, one can explore the response
dynamics of the single driven map equation (16) with a
function of the form g(yt) � Af(yt) + k and f having
robust chaos. )en, if periodic windows are induced by
the drive on a single map, one may expect that clusters
and chimeras should arise in a globally coupled system of
those maps.
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Figure 5: Asymptotic states xi (horizontal axis) as a function of time (vertical axis) for system equation (7) with size N � 100 and local map
equation (11), for different values of parameters. Initial conditions and ordering of the maps are similar to those in Figure 2. Color code: two
elements i, j share the same color if xi

t � x
j
t . (a) Chimera state with two clusters, r � 3, ε � 0.235. (b) Two-cluster state, r � 3, ε � 0.272.
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Figure 6: Cluster hC (green line) and incoherent hI (red line)
contributions to the mean field of system equations (7) and (9), as
functions of time. Fixed parameters b � 0.5 and ε � 0.19, and size
N � 104.
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Even a trivial function g can modify the dynamics of a
driven robust-chaos map in equation (16) to produce
periodic windows. Figure 8(a) shows the bifurcation
diagram of xt in equation (16) versus ε for the map f

given by equation (9) with g(yt)⟶ 0, which is equiv-
alent to a rescaling of f. Periodic windows typical of
unimodal maps appear in the rescaled map
xt+1 � (1 − ε)f(xt). In general, the driven map equation
(16) represents a rescaling of the robust-chaos map f that
acquires periodic windows. Similarly, the periodic cluster
states arising in the globally coupled system equations (7)
and (9) are a consequence of the windows of periodicity
induced locally by the mean field ht, in analogy to the
periodic windows created by an external drive g acting on
a single map equation (9). Different initial conditions
may lead to different out-of-phase orbits with diverse
partitions that appear as clusters in the globally coupled
system. A synchronization state in system equations (7)
and (9) can be associated to the fixed point interval of the
bifurcation diagram of Figure 8(a), while a desynchro-
nization state in the globally coupled system is a mani-
festation of a chaotic regime as seen in Figure 8(a).
Nontrivial forms of the driving function can give rise to
multistable behavior besides periodic windows. For ex-
ample, we have verified that a drive such as

g(yt) � 0.48f(yt) + 0.4 in equation (16) induces a region
of bistability between chaotic attractors that expresses as
chimera states in the associated globally coupled system
equations (7) and (9).

)ese results suggest that the emergence of cluster and
chimera states in a globally coupled system of robust-
chaos maps can be inferred from the occurrence of pe-
riodic windows in the response dynamics of a single map
subject to an appropriate drive, as a function of param-
eters. Figure 8(b) shows the corresponding bifurcation
diagram of xt+1 � (1 − ε)f(xt) versus ϵ for the map f

given by equation (11) which also has robust chaos. Again,
we see the emergence of periodic windows as the coupling
parameter is varied. A globally coupled system of these
maps also shows clusters and chimera states, as illustrated
in Figure 5. Figure 8(c) presents the bifurcation diagram
of xt+1 � (1 − ε)f(xt) versus ε for the logarithmic map
f � a + ln|x|, which possesses robust chaos on the pa-
rameter interval a ∈ [−1, 1] and its dynamics is un-
bounded [2]. In contrast to Figures 8(a)and 8(b), no
periodic windows appear on the dynamics of the driven
map equation (16) which remains unbounded; only
chaotic orbits and a fixed point attractor appear. As a
consequence, clusters and chimera states should not be
expected in a globally coupled system of logarithmic
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Figure 7: Asymptotic evolution of the states xi (horizontal axis) as a function of time (vertical axis) for driven system equation (15) with size
N � 100 and local map equation (9), for different values of the coupling parameter. Fixed values: A � 0.48, k � 0.4, b � 0.5. Random initial
conditions xi

0 are uniformly distributed in the interval [0, 1]. After discarding 104 transients, 100 iterates t are displayed. Ordering of the
maps is similar to that in Figure 2. Color code: two elements i, j share the same color if xi

t � x
j
t . (a) Chimera state, ε � 0.198. (b) Two-cluster

state, ε � 0.272.
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maps. In fact, only synchronization and nontrivial col-
lective behavior have been observed in such a system [57].

4. Conclusions

Networks of globally coupled identical oscillators are among
the simplest symmetric spatiotemporal systems that can
display clustering and chimera behavior. Previous works
have conjectured that these phenomena cannot occur when
the local oscillators possess robust-chaos attractors [9–13].
We have shown that the presence of global interactions can
indeed allow for emergence of both cluster and chimera

states in systems of coupled robust-chaos maps. Chimeras
appear as partially ordered states between synchronization
or clustering and incoherent behavior. We have found that
chimera states are associated to the formation of clusters in
these systems, a feature that has been observed in other
globally coupled systems [31].

)e existence of intrinsic periodic windows in the dynamics
of local oscillators, such as in logistic maps, is not essential for
the emergence of clusters with periodic behavior in a globally
coupled system of those oscillators. Windows of periodicity and
multistability can be induced in the dynamical response of a
robust-chaos map subject to an appropriate external forcing.
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Figure 8: Bifurcation diagrams of the driven map xt+1 � (1 − ε)f(xt) in equation (16) as a function of ϵ for different robust-chaos maps f.
(a) f(x) � (1 − b(1− x)x/1 − b1/4) with b � 0.5. (b) f(x) � sin2(r arcsin(

��
x

√
)) with r � 3. (c) f(x) � ln|x|.
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Because of the analogy between a single driven map and the
local dynamics of a globally coupled map system, the global
interaction field ht can also induce periodic windows and
multistability on local robust-chaos maps. )ose are the es-
sential ingredients for the occurrence of cluster and chimera
states in globally coupled systems. Since clustering is a pre-
requisite for chimeras [31], a single driven robust-chaos map
that develops periodic windows on some range of parameters
allows us to infer that a globally coupled system of such maps
shall also exhibit cluster and chimera states on some range of
parameters. Conversely, a robust-chaos map, such as the log-
arithmic or another singular map, which does not give rise to
periodic windows when subject to a drive, implies that a system
of globally coupled logarithmic or singular maps does not show
clusters nor chimera states.

Further extensions of this work include the investigation
of chimera states in networks of globally coupled contin-
uous-time dynamical systems possessing robust chaos or
hyperbolic chaotic attractors, the study of interacting
populations of robust-chaos elements, and the role of the
range of interaction in a network of dynamical robust-chaos
units.
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A. Zakharova, “Time-delayed feedback control of coherence
resonance near subcritical Hopf bifurcation: )eory versus
experiment,” Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 25, Article ID 33111, 2015.

[44] N. C. Rattenborg, C. J. Amlaner, and S. L. Lima, “Behavioral,
neurophysiological and evolutionary perspectives on uni-
hemispheric sleep,” Neuroscience & Biobehavioral Reviews,
vol. 24, no. 8, p. 817, 2000.

[45] A. Rothkegel and K. Lehnertz, “Irregular macroscopic dy-
namics due to chimera states in small-world networks of
pulse-coupled oscillators,” New Journal of Physics, vol. 16,
Article ID 55006, 2014.
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