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In this paper, we propose a susceptible-infected-susceptible (SIS) epidemic model with demographics on heterogeneous met-
apopulation networks. We analytically derive the basic reproduction number, which determines not only the existence of endemic
equilibrium but also the global dynamics of the model. )e model always has the disease-free equilibrium, which is globally
asymptotically stable when the basic reproduction number is less than unity and otherwise unstable. We also provide sufficient
conditions on the global stability of the unique endemic equilibrium. Numerical simulations are performed to illustrate the
theoretical results and the effects of the connectivity and diffusion. Furthermore, we find that diffusion rates play an active role in
controlling the spread of infectious diseases.

1. Introduction

In real life, the spread of infectious diseases is always affected
by the flow of population. In order to study the impact of
demographics and the flow of population, we will focus on
an epidemic model with demographics on metapopulation
networks. As Masuda [1] mentioned, underlying contact
networks are considered to be static on the time scale of
epidemics, whereas underlying humans’ social networks of
prevailing infectious diseases such as influenza are pre-
sumably dynamic even during one day. )e dynamics of
networks are induced by diffusion of individuals among
residences, workplaces, places for social activities, and so on.
As a simple framework within which the role of spatial
processes in disease transmission can be examined, meta-
population models have been introduced to describe epi-
demics and ecological invasion in such a situation [1–3]. A
node in such a model represents a metapopulation or a
habitat and not an individual. A link represents a physical
pathway connecting a pair of metapopulations. Individuals
travel from one node to another. Simultaneously, interac-
tions between individuals, such as infection, can occur in
each metapopulation.

In recent years, the effect of diffusion on disease spread
has caught the attention of many researchers [4–8]. Luca
et al. [9] considered that metapopulation epidemic models
can describe the spatial spread of an infectious disease
through a spatially structured host population [10, 11].)ese
models consist of patches or subpopulations of the system,
connected through a coupling process generally character-
izing hosts’ mobility [9, 12]. When the diffusion was first
considered, the reaction-diffusion equation was regarded as
a two-step process, and the reaction-diffusion was assumed
to occur simultaneously to obtain the reaction-diffusion
processes. Saldaña [13] derived continuous-time equations
governing the limit dynamics of discrete-time reaction-
diffusion processes defined on heterogeneous meta-
populations, and the spread of infectious diseases under two
different transmission mechanisms was considered. Juher
et al. [14] proposed a system of continuous-time equations to
analyze the spread of infectious diseases, which is based on
the limited transmission and nonlimited transmission of
diseases. Compared with reference [13], the authors studied
the stability of endemic equilibrium in uncorrelated net-
works with nonlimited transmission. )erefore, a certain
amount of diffusion is needed for the spread of diseases in
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metapopulation situation. After that, Masuda [1] investi-
gated the effect of diffusion rate on the spread of epidemics
in metapopulation networks. It can be seen from the above
work that diffusion can change the epidemic threshold in
many heterogeneous networks [1].

Based on previous work, we will investigate an epidemic
model with demographics in metapopulation networks.
Here the structure of patches (nodes) is made up of the
connectivity (degree) distribution. Moreover, each patch
contains two types of individuals: susceptible and infected
individuals. Within each patch, transmission or recovery
(reaction processes) occurred between individuals of dif-
ferent types. )e diffusion of individuals takes place at once
among patches (diffusion process) at constant rates. In fact,
reaction and diffusion processes can be considered to take
place simultaneously. With this idea, many epidemic models
have been proposed to describe the dynamics of disease
spread among patches. )e model of this paper is a de-
scription of an SIS metapopulation model at the node level
with birth and death. Based on the model in [1], we consider
the model with node-based birth and death. Wang et al. [15]
made use of a mean-field approximation, and this model has
birth and death, but its birth and death do not change with
the change of degree. In some models, in order to facilitate
calculation, the elements of the connectivity matrix A are
given by aii′ � ip(i′)/〈i〉. In this paper, we will analyze the
model without using the mean-field approximation and
transforming the elements of the adjacency matrix, and we
study it in an arbitrary network.

)e remaining of this paper is organized as follows. In
Section 2, we firstly present the model and then study the
existence of equilibria and their stability. )ere exist
threshold dynamics that are determined by the basic re-
production numberR0.)e theoretical results and the effects
of connectivity and diffusion are demonstrated by numerical
simulations in Section 3. )e paper concludes with a
summary and a brief discussion in last section.

2. Main Results

2.1. 'e Model. For a metapopulation network, each node
stands for a metapopulation or patch. Let N be the number
of nodes; the N × N adjacency matrix, denoted by A, is
defined by

Aji �
0, if j � i or j and i are not adjacent when j≠ i,

1, if j≠ i and j and i are adjacent.


(1)

Clearly, A is symmetric. )e model is an extension of the
following one mentioned in Masuda [1]:

dρS,i

dt
� −βρS,iρI,i + cρI,i − DSρS,i + DS 

N

j�1

Aji

kj

ρS,j,

dρI,i

dt
� βρS,iρI,i − cρI,i − DIρI,i + DI 

N

j�1

Aji

kj

ρI,j,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where ρS,i(t) and ρI,i(t) represent the number of susceptible
and infected individuals at node i and at time t, respectively,
DS and DI are the diffusion rates for the susceptible and
infected individuals, respectively, β is the transmission rate, c

is the recovery rate, and ki is the degree of the node i. For (2),
it is shown that diffusion increases the epidemic threshold of
the SIS dynamics in arbitrary heterogeneous networks.

In this paper, we incorporate demographics into (2), and
the model is as follows:

dρS,i

dt
� bi − βρS,iρI,i + cρI,i − DSρS,i + DS 

N

j�1

Aji

kj

ρS,j − μρS,i,

dρI,i

dt
� βρS,iρI,i − cρI,i − DIρI,i + DI 

N

j�1

Aji

kj

ρI,j − μρI,i,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where bi is the birth rate at node i and μ is the natural death rate
of individuals (whose meaning is different from that in (2)).

It is easy to see that (3) is well posed, that is, for any given
nonnegative initial condition, it has a unique and global
solution through it. Moreover, the solution is also non-
negative. Let b � 

N
i�1 bi and H � 

N
i�1(ρS,i + ρI,i). Adding up

all equations of (3) yields

dH(t)

dt
� b − μH(t), (4)

which implies that limsupt⟶∞H(t)≤ (b/μ). )us, the
feasible region of (3) can be chosen as

Γ � ρS,1, . . . , ρS,N, ρI,1, . . . , ρI,N  ∈ R
2N
+ | 

N

i�1
ρS,i + ρI,i ≤

b

μ
⎧⎨

⎩

⎫⎬

⎭. (5)

It can be verified that Γ is attractive and positively in-
variant with respect to (3) (see [16]). Let�Γ denote the interior
of Γ and zΓ denote the boundary of Γ.

2.2. Existence of Disease-Free Equilibria. We start the analysis
of (3) with the existence of disease-free equilibria. At a disease-
free equilibrium of (3), we have the following linear system [17]:

bi − DSρS,i + DS 

N

j�1

Aji

kj

ρS,j − μρS,i � 0, i � 1, 2, . . . , N, (6)

which can be written in the matrix form

LS � B, (7)

where

L �

DS + μ −DS

A21

k2
· · · −DS

AN1

kN

−DS

A12

k1
DS + μ · · · −DS

AN2

kN

⋮ ⋮ ⋱ ⋮

−DS

A1N

k1
−DS

A2N

k2
· · · DS + μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

2 Complexity



S � ρS,1, ρS,2, . . . , ρS,N 
T
,

B � b1, b2, . . . , bN( 
T
. (8)

As L is a column diagonal dominant matrix with positive
diagonal elements and negative off-diagonal elements, L is
nonsingular and any element of L

− 1 is positive [18].)us, (6)
has a unique positive solution, which has the following
result.

Proposition 1. System (3) always has a unique disease-free
equilibrium, denoted by E0 � (ρ0S,1, . . . , ρ0S,N, 0, . . . , 0).

Since the adjacency matrix Aji is randomly given, the
disease-free equilibrium E0 given in Proposition 1 does not
have an explicit expression. )us, we calculate it in specific
network: globally coupled network. In a globally coupled
network,

A �

0 1 · · · 1
1 0 · · · 1
⋮ ⋮ ⋱ ⋮
1 1 · · · 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

)en,

L �

DS + μ −
DS

N − 1
· · · −

DS

N − 1

−
DS

N − 1
DS + μ · · · −

DS

N − 1

⋮ ⋮ ⋱ ⋮

−
DS

N − 1
−

DS

N − 1
· · · DS + μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

By complex calculations, we get

L
− 1

�

(N − 1)μ + DS

NμDS + μ2(N − 1)

DS

NμDS + μ2(N − 1)
· · ·

DS

NμDS + μ2(N − 1)

DS

NμDS + μ2(N − 1)

(N − 1)μ + DS

NμDS + μ2(N − 1)
· · ·

DS

NμDS + μ2(N − 1)

⋮ ⋮ ⋱ ⋮

DS

NμDS + μ2(N − 1)

DS

NμDS + μ2(N − 1)
· · ·

(N − 1)μ + DS

NμDS + μ2(N − 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

and hence

ρ0S,i �
(N − 1)μ + DS bi + DS −bi + 

N
j�1 bj 

NμDS + μ2(N − 1)
, for i � 1, 2, . . . , N.

(12)

In particular, if b1 � b2 � · · · � bN � b, then ρ0S,i � (μ/b)

and the disease-free equilibrium is E0 � ((μ/b), . . . , (μ/b)
√√√√√√√√√√√√

N

,

0, . . . , 0).

2.3. Stability of the Disease-Free Equilibrium. Before con-
sidering the stability of the disease-free equilibrium of (3),
we introduce the basic reproduction number.

Linearizing (3) at the disease-free equilibrium E0, we can
get

dI(t)

dt
� MI(t), (13)

where I(t) � (ρI,1(t), ρI,2, . . . , ρI,N(t))T and

M �

βρ0S,1 − c − μ − DI DI

A21

k2
· · · DI

AN1

kN

DI

A12

k1
βρ0S,2 − c − μ − DI · · · DI

AN2

kN

⋮ ⋮ ⋱ ⋮

DI

A1N

k1
DI

A2N

k2
· · · βρ0S,N − c − μ − DI

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)
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)en, s(M) is a simple eigenvalue of M with a positive
eigenvector. Let Fi(I) denote the rate of appearance of new
infections in node i, V+

i (I) be the transfer rate of infected

individuals into node i by all other means, and V−
i (I) be the

transfer rate of infected individuals out of node i. )en, we
can choose

F �

βρ0S,1 0 · · · 0

0 βρ0S,2 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · βρ0S,N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

V �

V
−
1(I) − V

+
1(I)

V
−
2(I) − V

+
2(I)

⋮
V

−
N(I) − V

+
N(I)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

μ + DI + c −DI

A21

k2
· · · −DI

AN1

kN

−DI

A12

k1
μ + DI + c · · · −DI

AN2

kN

⋮ ⋮ ⋱ ⋮

−DI

A1N

k1
−DI

A2N

k2
· · · μ + DI + c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

We call FV− 1 the next generation matrix for (3), and the
basic reproduction number R0 is defined as

R0 � ρ FV
− 1

 , (17)

where ρ(FV− 1) denotes the spectral radius of the matrix
FV− 1 (see [19] for details). Note thatR0 is simply the product
of the infection rate and the mean duration of the infection
[15]. In a globally coupled network, the basic reproduction
number is R0 � (bβ/μ(c + μ)). Refer to [19] for )eorem 1.

Theorem 1. 'e following statements on (3) are true.

(i) R0 > 1 if and only if s(M) > 0 and R0 < 1 if and only if
s(M)< 0.

(ii) IfR0 < 1, then the disease-free equilibrium E0 is locally
asymptotically stable while it is unstable if R0 > 1.

Now, we establish the global stability of the disease-free
equilibrium.

Theorem 2. Assume R0 < 1. Suppose that A is irreducible.
'en, the disease-free equilibrium E0 of (3) is globally as-
ymptotically stable in R2N

+ .

Proof. As Γ is an attracting and positively invariant set, we
only need to show the global stability of E0 in Γ.

Let F and V be given by (15) and (16), respectively. Since
all off-diagonal entries of V are nonpositive and the sum of
the entries in each column of V is positive,V is a nonsingular
M-matrix. Also, V− 1 is irreducible. By the Perron–
Frobenius theorem ([18], p. 27), the nonnegative irreducible
matrix V− 1F has a positive left eigenvector (w1, w2, . . . , wN)

corresponding to the eigenvalue ρ(V−1F). Since F is a di-
agonal matrix, ρ(V−1F) � ρ(FV−1). Consequently, we have

w1, w2, . . . , wN( V
− 1

F � R0 w1, w2, . . . , wN( , (18)

or
1

R0
w1, w2, . . . , wN(  � w1, w2, . . . , wN( F

− 1
V. (19)

For i � 1, . . . , N, denote ci � (wi/βρ0S,i)> 0 and
I � (ρI,1, ρI,2, . . . , ρI,N)T. Consider the Lyapunov function

L � 
N

i�1
ciρI,i, (20)

and the derivative of L along the solutions of (3) is

dL

dt
|(2.2) � 

N

i�1
ci βρS,iρI,i − cρI,i − DIρI,i + DI 

N

j�1

Aji

kj

ρI,j − μρI,i
⎛⎝ ⎞⎠

≤ 
N

i�1
ci βρ0S,i − c − μ − DI ρI,i + DI 

N

j≠ i

Aji

kj

ρI,j

�
w1

βρ0S,1
,

w2

βρ0S,2
, . . . ,

wN

βρ0S,N

⎛⎝ ⎞⎠(F − V)I

� w1, w2, . . . , wN(  1 − F
− 1

V I

� w1, w2, . . . , wN(  1 −
1

R0
 I≤ 0.

(21)
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Since ci > 0 for all i, (dL/dt)|(2.2) � 0 implies that either
ρS,i � ρ0S,i or ρI,i � 0 for any 1≤ i≤N. When ρS,i � ρ0S,i, it
follows from the first equation of (3) that

0 �
dρ0S,i

dt
� bi − βρ0S,iρI,i + cρI,i − DSρ

0
S,i + DS 

N

j�1

Aji

kj

ρ0S,j − μρ0S,i.

(22)

Comparing this with (6) gives ρI,i � 0. )us, we have
shown that (dL/dt)|(2.2) � 0 which implies that ρI,i � 0 for all
i. By LaSalle’s invariance principle, we see that E0 is globally
asymptotically stable in Γ and hence in R2N

+ .
)e following result tells us that when R0 > 1, the disease

is persistent. □

Proposition 2 (see [17]). Suppose that A is irreducible. If
R0 > 1, then system (3) is uniformly persistent and there exists
an endemic equilibrium E∗ in �Γ.

)e proof of Proposition 2 is similar to the proof of
Proposition 3.3 in [20]. Using uniform persistence of (3)
and uniform boundedness of solutions in�Γ we can obtain
the existence of an equilibrium of (3) in �Γ(see )eorem
2.8.6 in [21]). In Proposition 2, the assumption that the
adjacency matrix A � (Aij) is irreducible is necessary. If
A � 0, then system (3) has an asymptotically stable
boundary equilibrium when R0 > 1, and thus the system is
not persistent [22].

2.4. 'e Global Stability of the Endemic Equilibrium. In this
section, we provide sufficient conditions on the global sta-
bility of the endemic equilibrium.)emethod of proof is the
graph-theoretical approach developed in [23–25].

Theorem 3. Assume that R0 > 1. Let
E∗ � (ρ∗S,1, . . . , ρ∗S,N, ρ∗I,1, . . . , ρ∗I,N) be an endemic equilib-
rium of (3). If A is irreducible and there exists λ> 0 such that
DS 

N
j�1(Aji/kj)ρ∗S,j � λDI 

N
j�1(Aji/kj)ρ∗I,j for all

1≤ i, j≤N, then the endemic equilibrium E∗ is globally as-
ymptotically stable in �Γ, and hence (3) only has a unique
endemic equilibrium.

Proof. For each 1≤ i≤N, set

Vi ρS,i, ρI,i  � ρS,i − ρ∗S,i − ρ∗S,i ln
ρS,i

ρ∗S,i

+ ρI,i − ρ∗I,i − ρ∗I,i ln
ρI,i

ρ∗I,i

.

(23)

Noting

DSρ
∗
S,i � bi − βρ∗S,iρ

∗
I,i + cρ∗I,i + DS 

N

j�1

Aji

kj

ρ∗S,j − μρ∗S,i,

DI + μ( ρ∗I,i � βρ∗S,iρ
∗
I,i + DI 

N

j�1

Aji

kj

ρ∗I,j − cρ∗I,i,

(24)

we calculate the derivative of Vi along solutions of (3) as

dVi

dt
|(2.2) � bi − DSρS,i + DS 

N

j�1

Aji

kj

ρS,j − μρS,i − bi

ρ∗S,i

ρS,i

+ βρI,iρ
∗
S,i

− cρI,i

ρ∗S,i

ρS,i

+ DSρ
∗
S,i − DS 

N

j�1

Aji

kj

ρS,j

ρ∗S,i

ρS,i

+ μρ∗S,i − DIρI,i

+ DI 

N

j�1

Aji

kj

ρI,j − μρI,i − βρS,iρ
∗
I,i + cρ∗I,i + DIρ

∗
I,i + μρ∗I,i − DI 

N

j�1

Aji

kj

ρI,j

ρ∗I,i

ρI,i

� bi 1 −
ρS,i

ρ∗S,i

+ ln
ρS,i

ρ∗S,i

+ 1 −
ρ∗S,i

ρS,i

+ ln
ρ∗S,i

ρS,i

 

+ DS 

N

j�1

Aji

kj

ρ∗S,j 1 −
ρ∗S,iρS,j

ρS,iρ
∗
S,j

+ ln
ρ∗S,iρS,j

ρS,iρ
∗
S,j

⎡⎣ ⎤⎦

+ DS 

N

j�1

Aji

kj

ρ∗S,j

ρS,j

ρ∗S,j

+ ln
ρ∗S,j

ρS,j

−
ρS,i

ρ∗S,i

− ln
ρ∗S,i

ρS,i

⎡⎣ ⎤⎦

+ DI 

N

j�1

Aji

kj

ρ∗I,j 1 −
ρ∗I,iρI,j

ρI,iρ
∗
I,j

+ ln
ρ∗I,iρI,j

ρI,iρ
∗
I,j

⎡⎣ ⎤⎦
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+ DI 

N

j�1

Aji

kj

ρ∗I,j

ρI,j

ρ∗I,j

+ ln
ρ∗I,j

ρI,j

−
ρI,i

ρ∗I,i

− ln
ρ∗I,i

ρI,i

⎡⎣ ⎤⎦

+ cρ∗I,i 1 −
ρ∗S,iρI,i

ρS,iρ
∗
I,i

+ ln
ρ∗S,iρI,i

ρS,iρ
∗
I,i

  + cρ∗I,i ln
ρ∗I,i

ρI,i

− ln
ρ∗S,i

ρS,i

 

+ cρI,i 1 −
ρ∗I,iρS,i

ρI,iρ
∗
S,i

+ ln
ρ∗I,iρS,i

ρI,iρ
∗
S,i

  + cρI,i ln
ρI,i

ρ∗I,i

− ln
ρS,i

ρ∗S,i

 

≤DS 

N

j�1

Aji

kj

ρ∗S,j

ρS,j

ρ∗S,j

+ ln
ρ∗S,j

ρS,j

−
ρS,i

ρ∗S,i

− ln
ρ∗S,i

ρS,i

⎡⎣ ⎤⎦

+ DI 

N

j�1

Aji

kj

ρ∗I,j

ρI,j

ρ∗I,j

+ ln
ρ∗I,j

ρI,j

−
ρI,i

ρ∗I,i

− ln
ρ∗I,i

ρI,i

⎡⎣ ⎤⎦

+ cρ∗I,i ln
ρ∗I,i

ρI,i

− ln
ρ∗S,i

ρS,i

  + cρI,i ln
ρI,i

ρ∗I,i

− ln
ρS,i

ρ∗S,i

 

� DS 

N

j�1

Aji

kj

ρ∗S,j

ρS,j

ρ∗S,j

+ ln
ρ∗S,j

ρS,j

−
ρS,i

ρ∗S,i

− ln
ρ∗S,i

ρS,i

⎡⎣ ⎤⎦

+ DI 

N

j�1

Aji

kj

ρ∗I,j

ρI,j

ρ∗I,j

+ ln
ρ∗I,j

ρI,j

−
ρI,i

ρ∗I,i

− ln
ρ∗I,i

ρI,i

⎡⎣ ⎤⎦

� DI 

N

j�1

Aji

kj

ρ∗I,j λ
ρS,j

ρ∗S,j

+ λ ln
ρ∗S,j

ρS,j

+
ρI,j

ρ∗I,j

+ ln
ρ∗I,j

ρI,j

⎛⎝ ⎞⎠

− DI 

N

j�1

Aji

kj

ρ∗I,j λ
ρS,i

ρ∗S,i

+ λ ln
ρ∗S,i

ρS,i

+
ρI,i

ρ∗I,i

+ ln
ρ∗I,i

ρI,i

 

� DI 

N

j�1

Aji

kj

ρ∗I,j Gj ρS,j, ρI,j  − Gi ρS,i, ρI,i  , (25)

where

Gi ρS,i, ρI,i  � λ
ρS,i

ρ∗S,i

+ λ ln
ρ∗S,i

ρS,i

+
ρI,i

ρ∗I,i

+ ln
ρ∗I,i

ρI,i

. (26)

Here we have used the fact that 1 − x + ln x≤ 0 for x> 0,
and the equality holds if and only if x � 1.

Consider a weight matrix W � (wij) with entries wij �

DI(Aji/kj)ρ∗I,j and denote the corresponding weighted di-
graph as (G, W). Let li � T∈T i

w(T)≥ 0 be the same as that
given in (A.1) in the Appendix associated with (G, W).)en,
by (A.2), the following identity holds:



N

i�1
li 

N

j�1
DI

Aji

kj

ρ∗I,j Gj ρS,j, ρI,j  − Gi ρS,i, ρI,i   � 0. (27)

Set

V ρS,1, ρI,1, . . . , ρS,N, ρI,N  � 

N

i�1
liVi ρS,i, ρI,i . (28)

)en, we obtain

dV

dt
|(2.2) � 

N

i�1
li
dVi

dt
|(2.2)

≤ 
N

i�1
li 

N

j�1
DI

Aji

kj

ρ∗I,j Gj ρS,j, ρI,j  − Gi ρS,i, ρI,i   � 0,

(29)

for all (ρS,1, ρI,1, . . . , ρS,N, ρI,N) ∈�Γ. Since A is irreducible, we
know that li > 0 for all i (see the Appendix), and thus
(dV/dt)|(2.2) � 0 implies that ρS,i � ρ∗S,i for all i. From the first
equation of (3), we obtain

0 � bi − βρ∗S,iρI,i + cρI,i − DSρ
∗
S,i + DS 

N

j�1

Aji

kj

ρ∗S,j − μρ∗S,i,

(30)

for i � 1, . . . , N, which implies that ρI,i � ρ∗I,i. )is means
that the largest invariant set in (dV/dt)|(2.2) � 0  is the
singleton E∗{ }. By LaSalle’s invariance principle, E∗ is
globally asymptotically stable in �Γ. □
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3. Numerical Simulations

)e results in the previous section presented the stability of
the disease-free and endemic equilibria. )rough numerical
simulations of infection dynamics, it is shown that the
connectivity between patches has a large effect on disease
dynamics. In this section, an Erdős–Rényi network with 100
nodes is established to study the influence of diffusion, and
the connection probability is 0.4. All parameters are positive.

It should be noted that we simulated the numerical solution
of themodel equation, notMonte Carlo (MC) simulations of
the metapopulation dynamics [14].

Figure 1 shows the average number of susceptible and
infected individuals with different initial values. )e pa-
rameters are used as N � 100, b � 1, μ � 0.00312, β � 0.125,
DS � 0.2, DI � 0.2, and c � 0.6. We select three different
initial conditions for simulation, and the three initial values
were C1: the ratio of susceptible number to infected number
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Figure 1: )e average number of susceptible and infected individuals with different initial values.
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Figure 2: )e impact of diffusion on the number of infected individuals at the endemic equilibria, and each line corresponds to the nodes
with degrees k of 1, 10, 26, and 66, respectively (from bottom to top). (a) Relationship between DS and ρ∗I,i. (b) Relationship between DI and
ρ∗I,i.
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is 1 : 9; C2: the ratio of susceptible number to infected
number is 1 :1; and C3: the ratio of susceptible number to
infected number is 9 :1. Susceptible and infected individuals
obey Poisson distribution in nodes. It can be seen in Figure 1
that under different initial conditions, both susceptible in-
dividuals and infected individuals converge to a unique
globally asymptotically stable endemic equilibrium.

In Figure 2, we consider the impact of diffusion on the
number of infected individuals at the endemic equilibrium.
For this purpose, we take N � 100, b � 6, μ � 0.00512,
β � 0.325, and c � 0.6. In Figure 2(a), we fix DI � 1. We
observe that ρ∗I,i increases as DS increases and for the same
DS, when i is larger, ρ∗I,i is also larger. In Figure 2(b), we take
DS � 2. It is observed that the same phenomena happen with
respect to DI and i with fixed DI.

)e relationship between β, DI, and R0 is simulated in
Figure 3(a), and the relationship between μ, DI, and R0 is
simulated in Figure 3(b). It can be seen from Figure 3 that
the influence of DI on R0 is greater than that of β and μ, so
the influence of the diffusion rates for the infected indi-
viduals on disease outbreak cannot be ignored.

4. Conclusion

In this paper, we formulated and analyzed an SIS model
with demographics and diffusion on metapopulation
networks. In this model, we solved the stability of the
disease-free equilibrium and deduced the basic repro-
duction number. We concluded that when R0 < 1, the
disease-free equilibrium is globally asymptotically stable;
otherwise, it is unstable. Next, we proved the existence and
stability of endemic equilibria. )e endemic equilibrium is
globally asymptotically stable when R0 > 1. Finally, we gave
some numerical simulations to illustrate the main results
and demonstrate the effects of connectivity and diffusion
on the number of infected individuals at the endemic
equilibrium. As the connectivity or diffusion is increasing,

the number of infected individuals is also increasing. )is
means that when an epidemic comes, the more people there
are and the greater the degree is, the more likely the disease
will break out. )erefore, we should pay attention to the
prevention and control of diseases and make plans in
advance.

)e research of this paper can be extended to the
following aspects: in this paper, the Erdős–Rényi network is
used to simulate, and the models based on other networks
can be analyzed; secondly, the infectious disease model
with heterogeneous diffusion rate can also be analyzed. It is
necessary to study the mathematical model under a specific
network in the future, so as to make the model more
realistic.

Appendix

A. Combinatorial Identity

Let (G, W) be a weighted digraph with N(> 2) vertices,
where W � (wij) is the weight matrix. A weight wij > 0 if the
directed arc (j, i) from vertex j to vertex i exists; otherwise,
wij � 0. Let T i be the set of all spanning trees of (G, W)

rooted at vertex i. For T ∈ T i, the weight of T, denoted by
w(T), is the product of weights on all arcs of T. Let

li � 
T∈T i

w(T), i � 1, 2, . . . , N.
(A.1)

)en, li ≥ 0 and



N

i,j�1
liwijGi xi(  � 

N

i,j�1
liwijGj xj , (A.2)

for any family of functions Gi(xi) 
N

i�1. If W � (wij) is ir-
reducible, then li > 0 for i � 1, 2, . . . , N. We refer readers to
[22] for the proof of (A.1).
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Figure 3: )e impact of diffusion and other parameters on R0. (a) Relationship between β, DI, and R0. (b) Relationship between μ, DI, and
R0.
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