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With the rapid development of sensor technology for automated driving applications, the fusion, analysis, and application of multimodal
data have become the main focus of different scenarios, especially in the development of mobile edge computing technology that provides
more efficient algorithms for realizing the various application scenarios. In the present paper, the vehicle status and operation data were
acquired by vehicle-borne and roadside units of electronic registration identification of motor vehicles. In addition, a motion model and an
identification system for the single-vehicle lane-change process were established by mobile edge computing and self-organizing feature
mapping. Two scenarios were modeled and tested: lane change with no vehicles in the target lane and lane change with vehicles in the
target lane. It was found that the proposed method successfully identified the stochastic parameters in the process of driving trajectory
simulation, and the standard deviation between simulation and the measured results obeyed a normal distribution. The proposed methods
can provide significant practical information for improving the data processing efficiency in automated driving applications, for solving
single-vehicle lane-change applications, and for promoting the formation of a closed loop from sensing to service.

1. Introduction

With the development of automated driving technologies,
especially the onset of 5G technology, the demand for traffic
data collection in the field of intelligent networking has
increased significantly. Conventional driving environment
detection technologies use road monitoring equipment with
different traffic sensing technologies including video, GPS,
geomagnetism, and radar. These devices are installed on
roads by local public security agencies to ensure a safe and

smooth traffic flow, thus strengthening the law enforcement
against traffic violations and the intelligent control of city-
level transportation. However, these driving environment
detection technologies cannot satisfy automated driving
communication requirements of short time delay, high
reliability, wide coverage, and vehicle-to-vehicle commu-
nication. Under this backdrop, the application of electronic
registration identification of motor vehicles has been pro-
posed and promoted on a national level through such
measures as establishing national standards. Electronic
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registration identification of motor vehicles have been
promoted in a few cities and applied to several areas such as
smart parking [1, 2], intelligent signal control [3, 4], intel-
ligent connected vehicles [5], special vehicle traffic man-
agement and special vehicle identification monitoring [6],
and traffic operation supervision and environmental pro-
tection restrictions [7]. However, as a means of law en-
forcement, the application of vehicle interactions is still
lacking due to different technical problems; thus, it is dif-
ficult to achieve the required accuracy for vehicle driving
trajectory identification. Hence, researchers have proposed
different identification methods to solve this problem; for
example, grid-based methods have been successfully used in
multiobjective optimization algorithms [8-10], such as the
positioning of driverless cars [11-13]. Grewe et al. [14]
explored a series of MEC-enabled, high-quality, and reliable
vehicle-borne services (such as electronic horizon, which
assist vehicle movement), summarized the challenging
problems encountered in the application of MEC technology
to the network of vehicles, and proposed some potential
solutions. Truong et al. [15] advocated the use of a com-
bination of software-defined networking and MEC tech-
nology to address the problems of existing vehicle-borne
self-organizing networks, such as inadequate coverage of
communication range, unscalable network communication
capacity, and a management that lacks intelligence and
flexibility. They designed an edge computing network
framework (dubbed FSDN) for the Internet of vehicles and
MEC server that acts as a distributed zone controller to
provide different local services, such as streaming of media
content distribution and vehicle lane-change prompts,
aimed at providing excellent decision-making capabilities.
Real-time and accurate traffic information is the prerequisite
for an improved urban traffic efficiency; Dikaiakos et al. [16]
proposed the vehicle information transmission protocol
(VITP) and implemented dynamic route planning using the
forward traffic status and roadside points of interest ob-
tained from query requests to downstream vehicles through
the geographic routing protocol. Dombush and Joshi [17]
studied the automatic discovery mechanism of traffic con-
gestion and the distributed clustering of abnormal traffic
flow and achieved the aggregation of perceived data through
interactive sensing between vehicles. Zhang and Zhao [18]
constructed a mathematical model to automatically collect,
aggregate, process, and transmit traffic information and
dynamically update the traffic coverage of the entire road
network. Gramaglia et al. [19] used external data sources
such as vehicle beacon messages and weather conditions to
detect the degree of traffic congestion through complex
event processing. Terroso-Saenz et al. [20] and Li et al. [21]
detected traffic congestion from intervehicle collaboration
where each vehicle used the collected beacon messages to
estimate the surrounding traffic congestion using fuzzy logic
and then corrected the individual estimation error through
consultation. Bauza et al. [22] conducted traffic condition
sensing through VANET collaboration and made short-term
traffic condition forecasts using a linear least squares
method. However, these studies have only solved the
problems of cooperative traffic condition sensing and
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neither consider implementation issues in automated
driving scenario nor analyze important driving trajectories
in vehicle-to-vehicle communication. In the present paper,
based on electronic registration identification of motor
vehicles and readers, a closed loop from perception to service
was formed using mobile edge computing and self-orga-
nizing feature mapping to identify stochastic parameters for
driving trajectory simulation processes and solve different
application problem of lane-change scenarios in automated
driving.

2. Driving Behavior, Speed, and Trajectory
Calculation Based on Electronic Registration
Identification of Motor Vehicles

The vehicle data collection method integrated with electronic
registration identification of motor vehicles reads the vehicle
information of the vehicle from the on-board unit with the
electronic registration identification of motor vehicles reader
installed on the gantry frame. The collected information is then
uploaded to the comprehensive sensing base station on the test
section of the road for edge computing. The overall deployment
of the comprehensive sensing base station can complete data
collection, verification, transmission, and processing in actual
applications. The overall layout and actual installation are
shown in Figure 1:

The main method of acquiring the driving speed of a
vehicle with an electronic registration identification of
motor vehicles reader uses the UHF radio frequency
identification technology. The directional horizontally-po-
larized UHF antenna of the registration reader interacts with
the unit installed on the front windshield of the vehicle and
calculates the speed of the vehicle by measuring the time
difference for the vehicle to pass through a fixed distance in
the identification zone. Specifically, the positions of the
vehicle at different times are calculated from RSSI values
returned by the electronic registration identification of
motor vehicles reader at different times, and the travel speed
can then be calculated from the time differences. By ana-
lyzing RSSI values returned by the vehicle after entering the
identification cross-section, it can be determined whether
the location of the vehicle is at the boundary between the
direct illumination zone and the blind zone or at the farthest
point in the reflection zone; subsequently, the vehicle speed
is calculated by the formula V = §/(T, - T)).

3. Mobile Edge Computing and Self-Organizing
Feature Mapping

3.1. Mobile Edge Computing. The fundamental concept of
mobile edge computing is to move the cloud computing
platform to the edge of the mobile access network in an
attempt to deeply integrate a cellular network of conven-
tional telecommunication with Internet services and also to
reduce the end-to-end delay of mobile service delivery. It
changes the state of a separate network in conventional
wireless communication systems by exploiting the inherent
capabilities of wireless networks and improves the user
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Figure 1: Comprehensive layout diagram and actual installation figure.

experience. By adding mobile edge computing platform
network elements to a conventional wireless network, a
business platform including contents, services, and appli-
cations, can be lowered to the edge of a mobile network to
provide computing and data storage services to users. The
basic characteristics of mobile edge computing include
service localization, short-distance, low time-delay service
delivery, user location awareness, and other network service
capabilities. It can, therefore, bring new changes to the mode
of operation for telecom operators and establish a new
ecosystem of industrial chains and networks.

The edge computing architecture relies on the com-
munication infrastructure and services provided by Edge
Cloud Collaboration and LET/5G. The edge side mainly
includes vehicle-borne edge computing units and RSU or
MEC servers. Vehicle units depend on the cooperation of
RSU or MEC servers. On the vehicle side, the control sys-
tems of intelligent networked vehicles are becoming in-
creasingly complex with the use of Al and V2X applications.
Load integration and simplified control systems are used to
integrate different systems into HMI, and complex vehicle-
borne information services including ADAD, IVI, digital
instruments, and HUD are made to run on the same
hardware platform through simulation technology. More-
over, load integration based on virtualization and the
hardware abstraction layer HAL are more amenable to
flexible business orchestration, deep learning model update,
and software and firmware upgrade for a cloud-based vehicle
driving system.

Due to several hardware constraints, the generation of a
large amount of V2X data, and the imbalance of task pro-
cessing, real-time scheduling is necessary for computing
tasks. In the present work, a hybrid critical computing task
scheduling technique was employed. The proposed method
is linearly complex but is low cost and highly schedulable
and can lower the time consumption of a system by reducing
the number of repeated calculations in the passive delay
priority updating. By establishing a more accurate upper
bound of the peak period based on the quantitative rela-
tionship between the task number and the peak period, the
spatial overhead of the system can be reduced and the
scheduling performance can be improved.

3.2. Stochastic Parameter Identification Method Based on Self-
Organizing Feature Mapping. According to the current
practice of data optimization through neural networks, a
self-organizing feature map (SOFM) was used in the current
work to perform data optimization. Self-organizing feature
map (SOFM) is a neural network with a clustering function
[23]. Self-organizing mapping is a multidimensional scaling
method, which can map any dimensional data in the input
space to an output space of lower dimension. A self-orga-
nizing map (SOM) is an array of neurons at a regular lo-
cation. Neurons can be placed on grid nodes in one, two, or
higher dimensions, however usually in a one-dimensional or
two-dimensional grid.

The operation of a SOFM network can be divided into
two stages: training and work [24, 25]. In the training stage,
samples from the training set are randomly fed into the
network. For a specific input mode, the output layer
generally has a neuron that produces the largest response
to win. At the beginning of the training phase, it is
uncertain which neuron in the output layer will respond
most to the input mode. When the input mode changes to
a different category, the winning neuron in the two-di-
mensional plane also changes. Neurons surrounding the
winner neuron have a greater response due to the lateral
mutual excitation. Therefore, weight vectors connected
to the winner neuron and its surrounding neurons adjust
in different degrees to the direction of the input vector.
The degree of adjustment gradually diminishes as the
distance from the winner neuron to its surrounding
neurons increases. The network adjusts weights in a self-
organizing manner by a large number of training sam-
ples. Finally, each neuron in the output layer becomes a
sensitive neuron for a specific mode, and the corre-
sponding inner weight vector becomes the center vector
of each input mode. When the features of two input
modes approach each other, neurons representing these
two mode categories also approach each other, resulting
in the formation of an ordered feature map reflecting the
distribution of sample modes in the output layer.

After the completion of SOFM training, the specific
relationship between each neuron in the output layer and
each input mode category is completely determined, to use



the network as a mode classifier. At each input mode, the
specific neuron in the output layer of the network generates
the maximum response and automatically classifies the
input. It should be noted that when the input mode of the
network does not belong to any of the modes of the training
set, SOFM can only assign it as belonging to the closest mode
category. The classification process is performed by the
following steps [24, 25].

In the first step, the winner neuron is found, the dot
product of the input mode and the weight vector are cal-
culated, and the winner neuron with the largest dot product
is selected.

In the second step, the winning neighborhood is defined
and the weight adjustment domain at time ¢ centered around
the winner neuron is determine. Generally, the initial
neighborhood N is larger and gradually shrinks with the
increase of the training time during the training process.

In the third step, the weights of all neurons in the
winning neighborhood are adjusted by the following
formula:

w,; (E+1) =w,; () +1(6N)[x] —w, ; (1], 0
i=1,2,...

,njEN;- (1),
where 7 (t, N) is a function of the training time ¢ and the
topographical distance N between neuron j and the winner
neuron j* in the neighborhood.

Many functions can meet the above rules, for example,
the following function can be constructed:

n(t,N) =n(t)e ™. (2)

The fourth step is the termination of the inspection.
Unlike a BP network, the concept of output errors does not
exist during the training of a SOFM network. As it is an
unsupervised training, the training ends when the rate of
learning # (t)decays to zero or a certain preset positive small
number. If the condition is not met, the process returns to
step 1.

Kalman filter, based on the model of a state space, es-
timates the recursive relationship of an algorithm for a given
process of filtering the state vector and constructs a mea-
surement function (structural parameter or state) as an
independent variable for an unknown quantity. It therefore
derives an estimate of the unknown quantity from the
measurement data. Kalman filter is widely applied to system
identification. The conventional linear Kalman filter gen-
erally suffers from several shortcomings, such as low ac-
curacy, poor stability, and slow response to target maneuver.
In the application, the nonlinear motion equation of motion
of the estimated dynamic system can be linearized and
applied to the convergence of Kalman filter estimation.
Furthermore, considering the nonlinear characteristics of
the dynamic system near the reference trajectory and the
comparison between strategically estimated algorithms, the
real system can be described by a linearized equation.

Kalman filter can be divided into two parts: state pre-
diction equation (state prediction) and state correction
equation (observation update). The state prediction equation
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is responsible to predict current state variables and estimate
the error covariance in a timely manner to construct a priori
estimate for the next time state. The state correction
equation is responsible for giving feedback and combines the
a priori estimate and the new observed variable to construct
an improved a posteriori estimate.

Let the following equations describe an n-dimensional
linear dynamic system and an m-dimensional linear ob-
servation system [26-28]:

X = Ax; +w;,

(3)

z; = Hxjy + v

where x;,, is ann-dimensional vector that represents the
state of the system at the time instance i — 1 andAisanxn
ordered matrix, which becomes the state transition matrix of
the system, and reflects the state transition of the system
from the ith sampling time to the i + st sampling time. wj is
an n-dimensional vector and represents the random inter-
ference acting on the system at the time instance i + 1, and it
is assumed that w; is a Gaussian white noise sequence with a
known zero mean and a covariance matrix Q;, z; is an
m-dimensional observation vector, and H is am X n ordered
observation matrix and represents the transition from the
state x;,, to the observation vector z;. For the m-dimensional
observation noise v;, it is also assumed that v; is a Gaussian
white noise sequence with a known zero mean and a co-
variance matrix R;.

Therefore, the following recursive formula of the filter
can be obtained:

K,=DH"(HBH" +R)
P, = AP, A" +Q,
P=(I _KiH)pv

X1 = Xjp1 Ki (Zi - Hxi+1)’

(4)

where Q; is an n X n-ordered covariance matrix of the model
noise w;, R; is the m x m-ordered covariance matrix of the
observed noise v;, K; is the n x m-ordered gain matrix, x;,,is
an n-dimensional vector and represents the estimated value
after filtering at the time instancei + 1, and P; is the esti-
mated error covariance matrix of order n x n.

According to the calculation method described above,
one can start with x, and a given P, and then recursively
calculate the estimate of each time state by the known
matrices Q;, R;, H, and A and the observation value z; at the
time i. If the linear system is stationary, then A and H are
both constant matrices. If the model noise w; and the ob-
servation noise v; are stationary random sequences, then Q;
and R; are constant matrices. Under such conditions, the
constant gain discrete Kalman filter becomes asymptotically
stable.

4. Tests and Results

In the present work, a single-vehicle changing lane was
used as the main application scenario to establish a motion
model and perform system identification. The single-
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vehicle lane-change process was further divided into two
scenarios: (i) lane change with no vehicle in the target lane
and (ii) lane change with vehicles in the target lane. The
trajectory of the lane-change execution phase began as the
vehicle started to move from the initial lane to the target
lane, and it proceeds to cross the lane line and reaches the
target lane. In the entire process of crossing the lane line,
any turning movement of the vehicle was considered as a
failure of the execution of the lane-change operation. As the
lane line information and the motion trajectory in the
environment were acquired by vehicle-borne units and
roadside units and calculated by edge computing, the
distance between the vehicle and the lane line was calcu-
lated directly at any time.

The vehicle trajectory was expressed by the mathematical
expression #(t) = (X (t),Y (t),dX/dt(¢),dY/dt(t)) to in-
clude the horizontal and vertical positions and speed in-
formation of the vehicle in the observation geodetic
coordinate system, where X,Y, and t represent, respectively,
the horizontal coordinate, vertical coordinate, and sampling
time. The schematic diagram of a lane-change process is
shown in Figure 2.

Let ¢, be the running speed of the vehicle at time v,; then,
its lateral displacement and longitudinal position are, re-
spectively, L, = vyt cos0 and Lz = vyt,sinfl. Starting from
the initial moment of the trajectory, a search could find two
points with the smallest time intervals on both sides of the
lane line. Now, setting them to ¢, and t,, respectively, the
time for lane change can be obtained by the following
formula:

Bty = Fo, (X (t) Y (1) - fr, (X (t2). Y (22))- (5)

According to the above definition, >0 indicates a left lane
change and <0 indicates a right lane change.

Similarly, when there are other vehicles in the target lane,
according to the principle of safe lane change, the speed and
distance of the lane-change vehicle must exceed those of the
vehicle in the target lane. Moreover, the lateral speed of the
lane-change vehicle must be greater than that of the vehicle
in the target lane, and the lateral distance difference of the
lane-change vehicle must be greater than twice the length of
the vehicle.

On this basis, lane-change experiments were carried out
for two different scenarios where vehicles were present and
absent in the target lane, and the lane-change states during a
left lane change and a right lane change were compared.
Figures 3 and 4, respectively, present the results of left lane
change and right lane change with no vehicles in the target
lane.

The curves in Figure 3 represent the simulated trajec-
tories obtained through system recognition, for three left
lane-change tests. The data labeled by o, x, and * indicate the
actual values of these three tests based on edge computing of
results acquired and obtained from vehicle-borne unit and
roadside units, and their corresponding relationships to
simulated trajectory curves are presented in blue, black, and

FIGURE 2: Schematic diagram of a lane-change process.
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FIGURE 3: Actual test data and simulation data of left lane change.
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FIGURE 4: Actual test data and simulation data of right lane change.
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FIGURE 5: Actual test data and simulation data of left lane change.

red, respectively. Figure 4 displays the results for three right
lane-change tests. Under standard operating conditions, the
standard deviations between the actual value and the sim-
ulated trajectory for the three left lane-change operations
were 0.78, 0.82, and 0.88, respectively, thus obeying a normal
distribution. The lateral displacements in right lane-change
operations were greater those in left lane-change operations,
and it can be attributed to the seat location of the driver. The
standard deviations for the three right lane-change tests were
0.92, 0.93, and 0.89 (slightly large than those of left lane-
change operations), thereby still obeying a normal distri-
bution despite slightly larger.

When there were other vehicles in the target lane, tests
were carried out in the same way. Figures 5 and 6, re-
spectively, present the results of left lane change and right
lane change with vehicles in the target lane and with tra-
jectory recognition based on actual data acquired from the
vehicle-borne unit and roadside units. The results are
compared with the actual data, as shown in Figure 5.

In comparison to the lane-change test results with no
vehicles in the target lane, the longitudinal distance for
completing the lane-change operation slightly increased
slightlyin this scenario. The average longitudinal distance for
completing a left lane change increased by 1.42 meters, whereas
the average lateral distance increased significantly (nearly 93.89
meters). It happened because the obtained results were affected
by an increased lane changing distance, the speed of vehicles in
the target lane, and a longer distance to ensure safety.

Under standard operating conditions, the standard de-
viations between the actual value and the simulated tra-
jectory for the three left lane-change tests were 1.12, 1.21, and
1.19, respectively, thus demonstrating a normal distribution.
The lateral distances in right lane-change operations were
greater than those in left lane-change operations, and it can
be ascribed to the seat position of the driver. The standard
deviations, for the three right lane-change tests were 1.36,
1.53, and 1.47, respectively (slightly larger than those of left
lane-change operations), thereby still conforming to a
normal distribution.
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5. Conclusion

The conventional automobile motion trajectory is mainly
constrained by the kinematic and dynamic characteristics and
real-time issues of a vehicle. In recent years, the research on
smart car movement trajectories has paid more attention to the
application of V2X communication among conventional au-
tomobiles. Transportation vehicles generally face a highly
complex and stochastic driving environment. In order to
strengthen the driving safety management, the present paper
considered the single-vehicle lane-change process as a research
topic. Based on electronic registration identification of motor
vehicles and the associated reader/writer, mobile edge com-
puting, and self-organizing feature mapping algorithms, a
stochastic parameter recognition method was proposed for the
driving trajectory simulation process, and its feasibility was
verified through testing. A vehicle trajectory data acquisition
method was first proposed based on electronic registration
identification of motor vehicles, and the detailed description
from the wiring and installation of the readers were then
provided to the acquisition, calibration, and application of data.
The lane-change process was mathematically modeled by
mobile edge computing and self-organizing feature mapping,
and the obtained simulation results were compared with actual
test data. It was found that the standard deviation between the
actual value of the lane-change operation and the simulated
trajectory conformed to a normal distribution. Therefore, the
proposed method can effectively improve the accuracy of in-
telligent vehicle trajectory planning and the driving safety
during lane-change operation.

Data Availability

The original data used to support the findings of this study are
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