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)e electroencephalogram (EEG) is the most common method used to study emotions and capture electrical brain activity
changes. Long short-term memory (LSTM) processes the temporal characteristics of data and is mostly used for emotional text
and speech recognition. Since an EEG involves a time series signal, this article mainly studied the introduction of LSTM for
emotional EEG recognition. First, an ALL-LSTM model with a four-layered LSTM network was established in which the average
accuracy rate for emotional classification reached 86.48%. Second, four EEG characteristics were extracted via the wavelet
transform (WT) using the LSTM-based sentiment classification network. )e experimental results showed that the best average
classification accuracy of these four features was 73.48%. )is was 13% lower than in the ALL-LSTM model, indicating that
inappropriate feature extraction methods could destroy the timing of EEG signals. LSTM can be used to thoroughly examine EEG
signal timing and preprocessed EEG data.)e accuracy and stability of the ALL-LSTMmodel are significantly superior to those of
theWT-LSTMmodel. )e result showed that the process of emotion generation based on EEG is sequential. Compared with EEG
emotion extraction using WT, the raw EEG signal’s timing is more suitable for the LSTM network.

1. Introduction

Suppose a high level of human-computer interaction is to be
achieved. In that case, it is essential for computers to ef-
fectively recognize human emotions, which is significantly
useful for realizing a brain-computer interface and intelli-
gent machines.

People expect computers that are easier to control and
anticipate a gradual change from human-operated com-
puters to computer-aided people, signaling a transition from
passive cognitive to active. )e concept of affective com-
puting was proposed by Professor Picard of the MIT Media
Lab in 1997. She indicated [1] that sentiment calculation
involves certain techniques to classify and interpret emo-
tions according to specific data. Zhou [2] believes that the
purpose of emotional computing is to establish a harmo-
nious human-machine environment by providing com-
puters with the ability to recognize, understand, express, and
adapt to human emotions, equipping computers with higher
and comprehensive intelligence.

Scientific evidence shows that the appearance and de-
velopment of emotions occur parallel to the brain’s evolu-
tion, while brain development corresponds with the
differentiation and development of facial expressions [3].
Together, the nervous and endocrine systems determine the
physiological changes in the human body, the signals of
which are challenging to control artificially. Many methods
are employed for emotion recognition, such as those based
on facial expressions and physiological signals.

Using physiological signals for the recognition of
emotions usually yields accurate and objective results.
Furthermore, this technique aids in the safety improvement
of equipment used by reducing the security risks associated
with emotional factors. As a specific physiological modality,
EEG signals are exceptionally valuable in emotional clas-
sification, and this method has been extensively studied. )e
EEG detection instrument is inexpensive and exhibits a high
time resolution and a bearable space resolution. Besides
these advantages, an EEG obtains more detailed, complex
information in a noninvasive manner for emotion
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recognition. )e data cannot be deliberately modified or
concealed, making EEG-based emotion recognition more
effective and reliable [4].

Human-computer emotional interaction can render
many computer applications more convenient and feasible.
)e computer can use human physiological signals to make
judgments without the need for cumbersome behavioral
responses. )is is of considerable significance to people with
disabilities involving the facial muscular system or limbs.

Many machine-learning and pattern-recognition algo-
rithms are applied to EEG-based emotion recognition, but
the generation of emotions remains a complex cognitive
activity. )e mechanism and process of emotion generation
are still being investigated, and applying EEG signals for
emotion calculation shows significant potential.

Since EEG signals are nonstationary and highly random,
it is challenging to extract EEG features related to a par-
ticular cognitive task. An essential feature of the extraction
method is to minimize the loss of the raw signal and simplify
the raw dataset. )erefore, feature extraction aims to reduce
the complexity of the application to render information
processing more cost-efficient. Since Dietch first used a
Fourier transform for EEG analysis in 1932, classical
methods, such as frequency domain analysis, time-domain
analysis, and WT, were introduced [5, 6]. Because WT is
more suitable for analyzing nonstationary signals, as well as
the signal in the time and frequency domain, it can be used
to resolve the contradiction between the time and frequency
resolutions [7].

)e EEG classification challenge is essentially a pattern-
recognition problem. )e current methods used for clas-
sifying EEG signals include linear discriminant analysis,
support vector machine (SVM), and deep learning models
[8, 9]. Deep learning is a general term for this type of neural
network learning algorithm depth and has attracted sig-
nificant attention in recent years [10]. Deep learning
models, such as the autoencoder (AE), deep belief networks
(DBN), convolutional neural networks (CNN), and re-
current neural networks (RNN), are widely used [11–13].
An unsupervised DBN was applied for the depth level
feature extraction from fused observation signals. Exper-
iments involving a public multimodal physiological signal
dataset show that these models significantly increase the
emotion recognition rate accuracy [14]. A novel computer
model [15] is presented for the EEG-based screening of
depression using a CNN.)e algorithm attained 93.5% and
96.0% accuracy using EEG signals from the left and right
hemispheres, respectively. Results reveal that the EEG
signals from the right hemisphere are more distinctive than
those from the left hemisphere in depression. A compact
CNN is introduced for EEG-based brain-computer inter-
face (BCI) [16], allowing for EEG feature extraction.
EEGNet can better generalize across paradigms than the
reference algorithms when only limited data is available
across all tested programs while achieving comparable high
performance. )ese techniques and others have been ap-
plied to explore EEG in machine learning and deep
learning, achieving positive results. However, EEG signals
are composed of multilead signals and contain important

time-frequency information. Without sufficient time and
frequency domain information, it is difficult to obtain a
good classification result. )e recurrent structure of the
RNN can be used to obtain contextual information about
the time series [17]. However, when the training sequence
is too long, the traditional RNN faces the problem of
gradient disappearance or explosion due to its structural
design. )erefore, this paper proposes a new emotion
recognition model based on the LSTM network to resolve
this issue. Compared with standard RNN, LSTM performs
better in longer sequences and can be applied widely in the
technology field. LSTM-based systems can perform image
analysis, speech recognition, and disease prediction
[18, 19]. However, establishing an LSTM emotion model
based on EEG and its application in emotion recognition
requires further study.

)e emotion recognition method based on EEG gen-
erally proceeds as follows. First, the EEG signals induced by
specific images or videos corresponding to emotions are
read. Second, models are established by learning the EEG
samplings. Finally, the models are applied to the real
systems.

In conclusion, one of the most critical factors of emotion
recognition based on EEG is acquiring EEG ground truth
data for training the models, substantially affecting the
accuracy rate and stationary ability regardless of which
model is adopted. Furthermore, according to the temporal
characteristics of emotion induction, it can improve emo-
tion classification accuracy by constructing an emotion
recognition system with a sequential effect.

)is paper aims to establish a corresponding neural
network based on the experimental EEG data, fully utilizing
the sequential information implicit in the EEG signals, and
building a suitable deep learning neural network. )e
method proposed in this paper mainly solves two problems:
one is the effect of the feature extraction of the preprocessed
EEG signal on emotion recognition before establishing a
related model and the other is the influence of the model on
emotion recognition compared with existing research.

)e remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 discusses the
overall framework design, experimental dataset, experi-
mental environment, and classification. Sections 4 and 5
discuss the results for different models and compare them.

2. Related Work

2.1. Emotion Features Based on the EEG Signal. )e EEG
signals exhibit various frequencies. Neuroscientists have
divided them into frequency bands, each of which is re-
sponsible for specific brain activity. )e different brainwaves
and the activity responsible for them are as follows:

Delta (0.5–4Hz): its amplitude is about 0–200 μV,
which only occurs during sleep, deep anesthesia,
hypoxia, or brain lesions.
)eta (4–8Hz): its amplitude is about 100–150 μV,
which appears during drowsiness and corresponds to
daydreaming, drowsiness, or sleep.
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Alpha (8–12Hz): its amplitude is about 5–20 μV,
corresponding to the resting state of the brain.
Beta (12–30Hz): it is associated with active, task-ori-
ented, busy or anxious thinking, and active
concentration.
Gamma (>30Hz): it occurs when different populations
of neurons work together to perform demanding
cognitive or motor functions.

)e methods for EEG signal feature extraction are rel-
atively mature. )e common emotional features include the
following three categories: the time-domain features, such as
the mean, standard deviation, skewness, peak amplitude,
variance, skewness, and kurtosis. )e second is the fre-
quency domain features, including the features extracted via
the Fourier transform and those extracted via the parameter
model (such as AR, Ma, ARMA, and the harmonic signal
model). Finally, there are the time-frequency features, such
as the short-time Fourier transform, WT, and nonlinear
dynamic features.

)e WT decomposes the input signals into various
constituting small range frequency bands. )is is done by
obtaining the approximation and detail coefficients via
multiple-level decomposition.

)e key to the efficient extraction of EEG features is to
choose the appropriate wavelet base. Standard wavelet bases
include Daubechies (dbN) wavelet, Symlets (symN) wavelet,
and Coiflet (coifN) wavelet. )ere is no unified standard for
the selected wavelet base and it primarily relies on the
classification accuracy. During early research, EEG emotion
classification involving different wavelet bases was shaped
according to CNN [20]. )e results show that the Sym8
wavelet could better classify emotion based on the raw EEG
signal. )erefore, this study used Sym8 wavelet for further
experimentation.

After the WT of the EEG signal, the wavelet coefficients
of each layer of the frequency band were obtained. Still, the
wavelet coefficients cannot be sent directly to the classifier as
features and require further processing to extract the EEG
features. )e features selected in this paper include the band
energy (E), the band energy ratio (REE), the logarithm of the

band energy ratio (LREE), and the differential entropy (DE)
and are described below.

)e E refers to the energy of each frequency band afterWT
and is obtained by square-summing the coefficients of each
frequency band. )e solution formula is shown as follows:

Ei � 

ni

j�1
d
2
ij, (1)

where Ei is the energy of the i-th band, ni is the number of
coefficients decomposed by the i-th layer, and dij is the j-th
wavelet coefficient of the i-th layer.

)e REE refers to the ratio of each layer of energy to the
total energy and is expressed as follows:

REEi �
Ei


n
j�1 Ej

, (2)

where REEi is the band energy ratio of the i-th band and n is
the number of bands.

)e LREE for each band is based on 10 and is expressed
as follows:

LREEi � log10REEi, (3)

where LREEi represents the logarithm of the energy ratio of
the i-th band.

If the signal obeys a different distribution, the DE is
solved differently. It is assumed that the acquired EEG signal,
X, is affected by the Gaussian distribution, as shown in
equations (4)–(6):
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)e solution process of the DE is shown as follows:
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(7)

)is formula indicates that the key to solving DE is
acquiring the EEG signal variance, which is approximately
the same as the average of the energy of the EEG signal in
each band. In practical applications, the E value is com-
monly used as a logarithm instead of DE. )e simplified
formula for DE is expressed by equation (8):

DEi � log10Ei, (8)

where DEi represents differential entropy.

2.2.Deep Learning for EEGAnalysis. Over the past few years,
traditional machine learning technology (i.e., nondeep
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learning algorithm) has been the only feasible EEG analysis
option. It continues to be widely used in combination with
various feature extraction and feature selection algorithms
[21–24].

As a relatively new trend, the deep learning algorithm
has been applied in medical image and signal processing due
to the improvement and availability of computing power
and big data. In most cases, its performance exceeds the rates
that have been previously achieved with traditional machine
learning techniques [25].

Many methods have been proposed for studying ap-
propriate computational models for emotion recognition
using EEG signals. Various deep learning structures have
been used to classify EEG signals to solve different recog-
nition tasks. Generally, most existing EEG research based on
deep learning can be summarized into two categories. )e
first is based on EEG signals input to the network. )e
second type is based on features extracted from EEG signals
as input to the network.

An EEG analysis task requires the developed model to
capture private information from EEG signals. Traditional
machine learning methods need to design and extract the
features of EEG signals manually. )e redundancy of the
features is exceedingly high and does not consider the
temporal dynamics of the EEG signals crucial for emotion
recognition.

Tripathi et al. [26] proposed an emotion recognition
method based on CNN from EEG signals in the Database for
Emotion Analysis using Physiological Signals (DEAP)
dataset. )ey explored two different neural models: a simple
deep neural network and a CNN. )e performance of the
latter is 4.96% higher than that in state-of-the-art
techniques.

Shawky et al. [27] presented a three-dimensional CNN
approach for recognizing emotions from multichannel EEG
signals. )ey developed a data enhancement phase to im-
prove the performance of their 3D CNN model. )ey
achieved 87.44% accuracy for valence and 88.49% for
arousal.

Moon et al. [28] applied CNN to recognize emotion
based on EEG.)ey employed brain connectivity features to
explain the synchronous activation of different brain re-
gions, an approach that has not been used in previous
studies. )erefore, their method effectively captures the
asymmetric brain activity patterns, playing a vital role in
emotion recognition.

LSTM [29–31] is one form of RNN that overcomes the
problem of exploding and vanishing gradients. )e building
blocks of LSTM include a cell, an input gate, an output gate,
and a forget gate. )e cell is responsible for handling long-
term dependency while the three gates regulate the flow of
values between the different layers of the LSTM network.

)e innovation of LSTM networks compared to tradi-
tional RNNs is the inclusion of “gates” to solve the vanishing
gradient problem and allow the algorithm to control more
precisely what information needs to be retained in its
memory and what must be removed [32, 33]. By controlling
the learning rate with the three gates (i.e., input gate, forget
gate, and output gate), the LSTM network can better adjust

to large data series sequences than RNNs and other deep
learning techniques. Considering that EEG signals are es-
sentially highly dynamic, nonlinear time-series data, LSTM
networks are better than CNN in isolating the temporal
characteristics of brain activity during different states as
reported in various applications, such as emotion recogni-
tion, confusion estimation, and estimation prediction
[26, 34–36]. Despite their inherent advantages in EEG
analysis, LSTM models have not been examined combined
with emotion feature extraction.

)is paper analyzes an emotion recognition framework
based on the LSTM. First, the multichannel EEG signal is
divided into multiple segments, and the time domain, fre-
quency domain, and nonlinear dynamic features are extracted
from each segment of the signal to form a feature sequence
along with time, respectively. Each feature sequence consists
of characteristics representing specific feature information of
the signal. Second, an LSTM neural network is used to obtain
the time dynamic information from various feature sequences
and make the final emotion prediction.

3. Methods

3.1. Framework Design. Figure 1 shows that the framework
includes three parts: source signal processing, feature ex-
traction, and sentiment classification.

3.2. Experimental Dataset. Here, 12 videos were selected as
emotion-evoking stimuli to cover the entire emotional
spectrum. Six of 12 videos were excerpts from movies and
were chosen based on the preliminary study. During the
initial investigation, the participants self-assessed their
emotions by reporting their arousal feeling (ranging from
calm to excited/activated) and valence (ranging from un-
pleasant to pleasant) on a nine-point scale. Sam Manikins
were shown to facilitate the self-assessments of valence and
arousal [37]. Ultimately, six videos between 110 s and 120 s
long were selected to be shown. Psychologists recommend
videos from 1min to 10min long to elicit a single emotion
[38]. Here, the video clips were kept as short as possible to
avoid multiple emotions or habituation to the stimuli [39]
while keeping them long enough to observe the effect—data
collection. )e stimulus file is shown in Table 1.

Twenty younger adults (11 women), mainly students at
the Minzu University of China (mean age: 21.4 years, range:
20–23), participated in the experiment. )ey were paid
150 RMB per hour for their participation. Participants were
right-handed as assessed by a German version of the
Edinburgh handedness inventory [40] and had a normal or
corrected-to-normal vision. None of them reported neu-
rological or psychological disorders. All participants were
fully aware of the purpose of the study. )e study was
approved by the Local Ethics Committee (Minzu University
of China, Beijing, ECMUC2019008CO).

3.3. Experiment Environment. In the cognitive brain labo-
ratory, the electrode Synamps2 amplifier and Scan4.5
software developed by the Neuroscan Company, a cap with
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64 electrodes, and a computer (labeled as computer 1) were
used to collect the EEG signals, while a webcam camera and
another computer (labeled as computer 2) were used for
documenting the facial expressions. A dedicated server was
employed to generate the induction files developed with the
E-prime application software while coordinating computer 1
and computer 2 to obtain the EEG records and facial ex-
pressions simultaneously.

)e Neuralscan-64 system was selected for EEG ac-
quisition, while the electrode cap collected 64-channel EEG
signals. )e EEG sampling frequency was set to 1000HZ,
which fulfilled the requirements of rapidly changing EEG
signals. )e electrode distribution of the electrode cap was
based on the currently used 10/20 system electrode place-
ment method. Figure 2 shows the specific experimental
process.

Furthermore, to obtain a better mood in the wake of the
formal experiment, the video, as well as positive and negative
video capture emotions samples, was randomly presented.
Each test lasted about 25min in total, and the screen dis-
played a 3000ms gaze point “+” to prompt the participant to
focus, immediately playing a stimulus video. )e video was
displayed for about 3min. After the video had completed
playing, the subject had to provide feedback regarding the
subjective feelings after watching the material by pressing a
button. )e participants had a choice between three alter-
natives: “positive,” “neutral,” and “negative.” After provid-
ing feedback, a black screen appeared for 7000ms to clear
the participant’s thoughts and reduce mutual interference
between videos. After the experiment was completed, the
EEG data samples, including the positive emotions and
negative emotions, weremixed, and part of the EEG data was
proportionally selected as the training set for the model,
while the remaining part of the EEG data denoted the test
set.

)e EEG signal is fragile and extremely susceptible to the
internal or external environment during the measurement
process. )is rendered the collected signal unreliable, while
it was subject to interference by many electrical activities not
originating from the brain. )ese interferences are known as
artifacts. Common artifacts originate from electrooculo-
grams, electrocardiograms, electromyography, and electrode

EEG signal

Pretreatment

Wavelet transform

Classify

Emotional
prediction results

Training set

LSTM model 
training Test set

Feature extraction

Source signal 
processing

Figure 1: Framework design.

Table 1: )e movie list.

Movie slices sources Label
Martial arts biography Positive
Love apartments Positive
Pet funny video Positive
Death is coming Negative
)e chainsaw cry Negative
Teacher’s grace Negative
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movements. )e experimental environment used in the
acquisition of EEG signals can be controlled artificially.
However, it is challenging to artificially intervene in the
human body’s unconscious activities. )erefore, the un-
satisfactory EEG area was deleted, while the electrooculo-
gram artifacts and other interferences were removed. Digital
filtering was performed to preprocess the EEG signals in
preparation for the next step of feature extraction and EEG
signal classification.

3.4. Classifier. )e manuscript uses the LSTM network to
classify the emotions obtained via the EEG. Two classifi-
cation models were compared based on LSTM. One was to
perform feature extraction and provide input to the LSTM
network for classification, while the other used LSTM di-
rectly for classification.

4. Result

4.1. 4e Construction of an LSTM Model Based on EEG.
)e LSTM-based emotion classification model established in
this paper consisted of four layers: the input layer, the LSTM
layer, the fully connected layer, and the output layer. In
establishing the LSTM network, different parameters de-
termined different network structures. It was necessary to
select the appropriate number of layers and determine the
number of hidden nodes in each layer. )ese parameters
directly determined the training speed of the network, the
level of classification accuracy, and the stability of the
network.

)e advantage of deep learning is its colossal network
scale. However, as the network scale expands, more com-
puting resources are required. Too many nodes in the hidden
layer may cause the training speed to decline or even overfit.
)e experiments indicated that when the number of hidden
layer units was below a specific value, it became challenging to
fit the model. It required the design of a more streamlined
model structure on the premise of meeting the accuracy
requirements.)erefore, as few nodes in the hidden layer and
the number of LSTM layers as possible should be selected
while ensuring accuracy. Due to the LSTM structure, the
neuron’s state continuously changed as the input increased,
while the historical information of the data was saved, and the
hidden layer could utilize the output of each step as the next
input. Experiments were conducted on the single-layered and
multilayered LSTM structures. After adjustment, it was found
that the classification of the multilayered LSTM was superior.
)e multilayered LSTM sent the output values of the front-
end LSTM as input to the back-end LSTM, while the LSTM
could be stacked infinitely in a similar way. Finally, an LSTM-

based emotion classification model was established to classify
the features of wavelet extraction.)emodel consisted of four
layers, each of which exhibited 32 hidden nodes.

Because of the distinct individual differences in EEG, the
EEG classification tasks in this paper are based on the EEG
signals collected by individual people. )e single-person
EEG data is divided into a training set and a test set, where
the model was trained using the former and tested using the
latter.

Via continuous debugging, the Adam algorithm is used
for parameter optimization and denotes an adaptive mo-
ment estimation method to calculate the adaptive learning
rate for each parameter. In practical applications, the con-
vergence speed of the network can be accelerated, which
achieves excellent results. Compared with other adaptive
learning rate algorithms, the convergence speed is faster,
obtaining amore effective learning effect.)e learning rate is
set to 0.005. During the process of neural network training,
regularization or Dropout is usually used to avoid over-
fitting. )e model uses the Dropout method, with the pa-
rameter value set to 0.5. During the training process, this
section uses the Batch technology. During the experiment,
the batch was set to 16, 32, and 64, respectively. )e analysis
found that an appropriate increase in batch size could
improvememory utilization and enhance the running speed,
each finalizing a batch size of 64 training examples. Google’s
Tensor Flow framework implements an LSTM network
model. )e specific parameters are shown in Table 2.

4.2. ALL-LSTM. )e LSTM model’s structural properties
allow it to learn the timing characteristics of the data,
facilitating long-termmemory. )erefore, the ALL-LSTM
model does not perform artificial feature extraction from
the EEG data but selects the preprocessed full-scale EEG
information and sends it directly to the LSTM-based
emotion classification model shown in Figure 3.

)e ALL-LSTM emotion classification model consists of
four layers. )e first layer takes the preprocessed full EEG
sequence as input. )e second is the LSTM layer, which
extracts contextual related features from the input EEG
sequence, such as the time-domain information. )e third is
a fully connected layer, which is used to integrate the features
extracted by the LSTM layer. It is a linear combination of the
output of all LSTM units during the last time step. )e
function of this layer is to combine different feature-dy-
namic information learned from each LSTM unit. )e
output of this layer represents the input to the SoftMax layer
to predict the emotional state. )e fourth is the output layer,
producing the recognized emotion category.

)e dataset used in this paper is represented by the raw
EEG data collected from subjects watching the stimulation
material. Each subject’s EEG data was divided into 10ms
(10 sampling points), obtaining 100440 EEG data from
each. Each EEG data dimension collected via the 64-
electrode cap presented a matrix of 64 ×10. According to
the LSTM principle, each column of the matrix (the
voltage value collected by the 64-lead electrode) was se-
lected as the data read in one step. Each row of the matrix

Trial 1 Trial n...Trial 2

Blank
10 s

Film
3 min

Feedback 
30 s

Figure 2: Emotional induction experimental process.
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(10 sampling points with a duration of 10ms) was con-
sidered the time step number. One of the advantages of
intercepting EEG data in this way is that the amount of
data is sufficient since deep learning requires an abundant
amount of data as a basis. Seventy-five thousand were
selected as the training set, accounting for about 75%, and
25440 were selected as the test set, accounting for about
25%. )e ratio of the training set to the test set was about
3 : 1.

All the EEG training data obtained from a single person
was sent to the LSTM emotion classification model in batch
polls for training, a process known as completing an epoch.
After each epoch, the loss and accuracy rate of the training
set based on the existing training model was provided. After
200 epochs, the model tended to converge, and the training
was completed. )e training process is shown in Figure 4, in
which the abscissa represents the training number, and the
ordinate denotes the accuracy during the training.

)e test set was sent to the trained model. )e final
classification results of the eight subjects are shown in
Table 3.

)ese analytical results indicate that the ALL-LSTM
model classification’s average accuracy is 86.48%, and the
variance is 0.0039.

4.3. WT-LSTM. )e WT-LSTM was established using EEG
data after performing the WT emotion recognition process
based on the LSTM emotion classification model. )is paper
examines four standard, efficient wavelet features, namely, E,

REE, LREE, and DE. )e same source data is used
throughout the experiment and sent to the LSTM emotion
classification model using the same parameters. )e clas-
sification results corresponding to these four factors were
obtained, and the EEG features that were most compatible
with the LSTM network were identified. )erefore, the
classification results obtained by changing only the feature
parameters can clearly reflect the efficacy of the features.

Figure 5 shows that the sentiment classification model
based on the WT-LSTM established in this section consists
of four layers. First, the input layer considers the extracted
wavelet features as input. )e second layer represents the
LSTM layer, extracting context-related features from the
input information. )e third layer is a fully connected layer,
which is used to integrate the features extracted by the LSTM
layer and convert the information from the LSTM into the
desired output. )e fourth layer is the output layer, which
aims to output the recognized emotion categories.

)e EEG data represent the dataset used in this article
that collected the subjects watching the stimulation ma-
terial simultaneously. Because the EEG signals recorded
too many potential values, which were doped with some
unwanted potential values, it was necessary to segment
each person’s EEG signal samples. However, since there is
no clear conclusion regarding the time range of human
emotional change, the length of each sample selected in this
paper is 3000ms (3000 sampling points). Each 3,000ms
was divided into one EEG data unit. Since the electrode cap
used in the experiment was a 64-lead, the dimension of

Preprocessed EEG signals

LSTM

LSTM

LSTM

...

Hidden 
layer 1

Hidden 
layer 2

Input 
layer

...

...

...

Output 
layer

Hidden 
layer 4

Fully
connected

layer

...

...

...

... ......

LSTM layer

Figure 3: ALL-LSTM model.

Table 2: LSTM emotion classification model specific parameter settings.

Name Parameter
Learning rate 0.005
Input dimension 64∗5, 64∗10
Output category 2
Batch 64
Dropout 0.5
Hidden node number 32
LSTM layer number 4
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each EEG data unit was 64 × 3000. Of the total 348 EEG
data units obtained after each participant’s segmentation,
260 were randomly selected as the training set, accounting
for about 75%, and 88 were chosen as the test set, ac-
counting for about 25%, while the ratio of the data in the
training set to the test set was approximately 3 : 1. After the
five-layered WT, each raw EEG data dimension was re-
duced to a matrix of 64 × 5. According to LSTM principles,
this paper selected each column of the matrix as the data
read in one step and considered each row of the matrix as
the number of time steps.

)e frequency E, frequency REE, frequency LREE, and
DE were extracted as EEG features for training. Figure 6
shows a training process using the frequency LREE as a
feature. )e abscissa represents the training number in the
figure, while the ordinate denotes the accuracy rate during
training. Each image randomly shows the training process of
four participants.

After 40 training epochs, the model tended to converge.
)e classification results of the eight subjects and the average
classification accuracy and variance corresponding to the
four characteristics are shown in Table 4.

It can be concluded from the above table that the
classification accuracy of the four features of Subject 1 is low,
and the classification accuracy of the four features of Subject
6 exceeds 80%. )e classification accuracy is significantly
affected by individual differences. Analysis of the four
characteristics indicated an accuracy rate of 50% or less
exhibiting one E, two REE, two DE, and zero LREE. An
accuracy rate of 80% or more displays one E, one REE, four
DE, and three LREE. An accuracy rate of 90% or more shows
zero E, zero REE, zero DE, and one LREE. Furthermore,
when the frequency LREE is used as the feature, the average
classification accuracy is the highest, and the variance value
is the lowest. )erefore, the use of LREE as a feature leads to

0.0

0.2

0.4

0.6

0.8
ac
c

25 50 75 100 125 150 175 2000
epoch

(a)

25 50 75 100 125 150 175 2000
epoch

0.0

0.2

0.4

0.6

0.8

1.0

ac
c

(b)

0.0

0.2

0.4

0.6

0.8

1.0

ac
c

25 50 75 100 125 150 175 2000
epoch

(c)

25 50 75 100 125 150 175 2000
epoch

0.0

0.2

0.4

0.6

0.8

ac
c

(d)

Figure 4: )e random training process of four participants.

Table 3: ALL-LSTM model classification results.

Experimenter Accuracy %
Subject 1 84.72
Subject 2 84.57
Subject 3 96.04
Subject 4 84.57
Subject 5 90.36
Subject 6 93.02
Subject 7 81.91
Subject 8 76.64
AVG 86.48
VAR 0.0039
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higher accuracy and higher stability when used for emotion
classification.

)ese results indicate that when the LREE is selected as
the feature for the WT-LSTMmodel, the classification effect
is the best, and the average accuracy of the classification is
73.48%. )e LREE is also the most suitable EEG feature of
the four wavelet features in the emotion classification
problem and LSTM network.

5. Discussion and Conclusion

In theory, the advantage of feature extraction for the WT-
LSTM model is that it provides a straightforward solution
for obtaining hidden information about the signal’s fre-
quency contents or brain area connectivity from the
available channels, compared to the information gained by
using the EEG signals as a time series. However, Table 5
shows that the best classification accuracy of the WT-LSTM

model with features extracted via WT is still significantly
lower than that of the ALL-LSTM model.

)e best average accuracy of the WT-LSTM model is
about 13% lower than the average accuracy of the ALL-
LSTM model, while the variance also increases. )e results
showed that the ALL-LSTM model’s stability was slightly
better than that of the WT-LSTM model in the emotion
classification of these eight subjects.

)is could be attributed to LSTM displaying a strong
ability to use context. Feature extraction based on WT is
currently based on more complex and mature feature
extraction methods used during EEG emotion recogni-
tion. However, feature extraction via WTmay destroy the
timing of the EEG signal itself. Timing information is
vital for emotional classification, and the LSTM model
can make full use of the timing information implicit in
the EEG data. )e significant improvement in the clas-
sification ability of the ALL-LSTM model also shows that
the method is feasible for EEG-based emotion
recognition.

Furthermore, by adding more layers and memory units,
better EEG signal representation could be learned when the
LSTM network’s size was substantially increased, compen-
sating for the more extensive input size by directly providing
the EEG signals. However, the computational cost of
training larger LSTM networks increases rapidly, requiring
extended training time or GPU arrays. Regardless of the
computational cost, this method could need even more EEG
data to effectively train the millions of network parameters.

)erefore, the goal is to train the LSTM network by
learning the suitable emotion features, which can be realized
by essentially simulating a more profound and more
complex LSTM model without increasing the time and data
training limitations. )erefore, the emotion recognition
system can run under more suitable conditions.

Data Availability

)e EEG data used to support the findings of this study were
supplied by National Nature Science Foundation of China
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Figure 6: )e training process of the LREE as an EEG feature.

Table 4: Test set classification results.

Sample E (%) REE (%) DE (%) LREE (%)
Subject 1 57.05 68.52 85.09 83.48
Subject 2 57.32 43.62 45.85 66.73
Subject 3 58.17 58.97 70.91 66.38
Subject 4 71.29 74.15 72.73 65.86
Subject 5 75.20 60.23 85.47 91.17
Subject 6 89.95 86.15 86.78 82.14
Subject 7 45.93 47.11 47.83 59.47
Subject 8 72.95 74.97 84.33 72.65
AVG 65.98 64.22 72.37 73.48
VAR 0.0193 0.0210 0.0284 0.0119

Table 5: Comparison of results of the two classification models.

Model Average accuracy (%) )e variance of accuracy
ALL-LSTM 86.48 0.0039
WT-LSTM 73.48 0.0119
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under license and so cannot be made freely available. Re-
quests for access to these data should be made to Huiping
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