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In this paper, we consider the iterative algorithm for a boundary value problem of n-order fractional differential equation with
mixed integral and multipoint boundary conditions. Using an iterative technique, we derive an existence result of the uniqueness
of the positive solution, then construct the iterative scheme to approximate the positive solution of the equation, and further
establish some numerical results on the estimation of the convergence rate and the approximation error.

1. Introduction

In this paper, we focus on the iterative algorithm for the
following n-order fractional equation involving mixed in-
tegral and multipoint boundary conditions:

− D
α
0+x(t) � f(t, x(t), x(t)), 0< t< 1,

x
(i)

(0) � 0, i � 0, 1, 2, . . . , n − 2,

x(1) � 􏽘
m− 2

i�1
βi 􏽚

ηi

0
x(s)ds + 􏽘

m− 2

i�1
cix ηi( 􏼁,

(1)

where Dα
0+ is the standard fractional derivative of order α

satisfying n − 1< α≤ n with m, n≥ 3 and m, n ∈ N+,
0< η1 < η2 < · · · < ηm− 2 < 1, βi, ci > 0, 1≤ i≤m − 2, and
f(t, u, v) is may be singular at v � 0 and t � 0, 1.

Based on the wide range applications of calculus, in
recent years, the study for various differential equations has
become a frontier issue of nonlinear field and many
mathematical methods and techniques, such as iterative
techniques [1–17], dual approach and perturbed techniques
[18–23], fixed-point theorems [24–50], lower-upper solution
method [51–53], variational method [54–68], numerical

methods and stability analysis [69–81], which were devel-
oped by many researchers to handle various nonlinear
problems. In particular, in describing and modeling visco-
elasticity and nonlocal problems in complex analysis, en-
vironmental issue, chemistry physics, and statistical physics,
a large amount of work [18, 30, 64, 82–111] have shown that
fractional differential equations possess greater advantage
than classical integer differential equations. In recent work
[95], Salm, by using the Hahn-Banach fixed point theorem,
studied the following multipoint boundary value problem:

− D
α
0+x(t) � q(t)f(t, x(t)), 0< t< 1, n − 1< α≤ n, n≥ 3,

x
k
(0) � 0, 0≤ k≤ n − 2,

x(1) � 􏽘
m− 2

i�1
ζ ix ηi( 􏼁.

(2)
0e weakly continuous solution for the above nonlinear

boundary value problem of fractional type was derived. And
then, Xie et al. [96] studied the following nonlinear fractional
differential equation with a three-point nonlinear boundary
condition:
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D
α
0+x(t) + f(t, x(t)) � 0, 0≤ t≤ 1,

x(0) � 0, g(x(1), x(η)) � 0, 0≤ η≤ 1.

(3)

By using themethod of upper and lower solutions as well as
the monotone iterative technique, the results about the exis-
tence of extremal solutions were obtained, where the iterative
process can start from the fixed upper and lower solutions.

Among various techniques of dealing with differential
equations, upper and lower solutions’ method and fixed-point
methods have been verified to be the most efficient ap-
proaches. However, the efficiency of those methods depends
essentially on the monotonicity and compactness of the
operator. So, how to overcome the requirement of the
monotonicity and compactness is a huge challenge, since such
qualities are not naturally available and difficult to prove
which lead to the complexity to solve some BVP, especially for
the fractional nonlinear boundary value problems.

Different from [96], in this paper, we develop the new
iterative algorithm to overcome the requirement of the
compactness for the nonlinear operator. Our work has three
major features. Firstly, equation (1) possesses a more general
nonlinear term which has two space variables and the
boundary condition is a mixed integral and multipoint
boundary condition. Secondly, the nonlinear term can be
singular in the time variables and the second space variables.
In the end, our results are more refined, that is, we not only
construct a new iterative process which can perform from
any initial value but also obtain the uniform convergence of
the iterative sequences; at same time, the estimation of the
convergence rate and the approximation error are also given,
which imply that more strong results are established under
the relatively weaker condition than that of [96].

0e paper is organized as follows. In Section 2, we recall
some definitions and lemmas. In Section 3, the unique of
positive solutions to BVP (1) are obtained. Finally, in Section
4, an illustrative example is also presented.

2. Preliminaries

In this section, we first list some notations and recall related
definitions and lemmas to be used in our proofs later.

Definition 1 (see [5]). Let p> 0, the Riemann–Liouville
standard fractional integral derivative of order p> 0 of a
function f: (0,∞)⟶ R is given by

I
p
0+f(x) �

1
Γ(p)

􏽚
x

0

f(t)

(x − t)
1− p

dt,

D
p
0+f(t) �

1
Γ(n − p)

d

dt
􏼠 􏼡

n

􏽚
t

0

f(s)

(t − s)
p− n+1 ds,

(4)

where n � [p] + 1, [p] denotes the integer part of the real
number p.

Lemma 1 (see [5]). Suppose that n − 1< α≤ n with n≥ 3 and
h ∈ L1[0, 1]; then, the boundary value problem

− D
α
0+x(t) � h(t), 0< t< 1,

x
(i)

(0) � 0, i � 0, 1, 2, . . . , n − 2,

x(1) � 􏽘
m− 2

i�1
βi 􏽚

ηi

0
x(s)ds + 􏽘

m− 2

i�1
cix ηi( 􏼁,

(5)

is given by

x(t) � 􏽚
1

0
G(t, s)h(s)ds +

t
α− 1

ξ
􏽘

m− 2

i�1
􏽚
1

0

· βiH ηi, s( 􏼁 + ciG ηi, s( 􏼁􏼂 􏼃h(s)ds,

(6)

where ξ � 1 − (1/α)􏽐
m− 2
i�1 βiηαi − 􏽐

m− 2
i�1 ciηα− 1

i > 0, and

G(t, s) �
1
Γ(α)

t
α− 1

(1 − s)
α− 1

− (t − s)
α− 1

, 0≤ s≤ t≤ 1,

t
α− 1

(1 − s)
α− 1

, 0≤ t≤ s≤ 1,

⎧⎪⎨

⎪⎩

H(t, s) �
1
Γ(α + 1)

t
α− 1

(1 − s)
α− 1

− (t − s)
α− 1

, 0≤ s≤ t≤ 1,

t
α− 1

(1 − s)
α− 1

, 0≤ t≤ s≤ 1.

⎧⎪⎨

⎪⎩

(7)

Lemma 2 (see [5]). For all t, s ∈ [0, 1], the functions G(t, s)

and H(t, s) in Lemma 1 satisfy the following properties:

(1) G(t, s) and H(t, s) are continuous and nonnegative
(2) ((α − 1)/Γ(α))tα− 1(1 − t)(1 − s)α− 1s≤G(t, s)≤ (1/Γ

(α))tα− 1(1 − s)α− 2

(3) ((α − 1)/Γ(α + 1))tα− 1(1 − t)(1 − s)α− 1s≤ H(t, s)≤
(1/Γ(α + 1))tα− 1(1 − s)α− 2

In this paper, we will work in the space E � C[0, 1]. Define
a set P in E and an operator T: E × E⟶ E as follows:

P �
x ∈ E | there exists a positive constant lx ∈ (0, 1), such that

lxt
α− 1 ≤ x(t)≤ lx( 􏼁

− 1
t
α− 1

, t ∈ (0, 1)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

T(x, y)(t) � 􏽚
1

0
G(t, s)f(s, x(s), y(s))ds

+
t
α− 1

ξ
􏽘

m− 2

i�1
􏽚
1

0
βiH ηi, s( 􏼁 + ciG ηi, s( 􏼁􏼂 􏼃f(s, x(s), y(s))ds.

(8)
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Obviously, (tα− 1, tα− 1) ∈ P × P, so P × P is not empty.

3. Main Results

Before claiming our main results, we first introduce the
following notations:

(i) M � ξα + (1 + α)(m − 2)

(ii) N � 􏽐
m− 2
i�1 (βi + αci)ηα− 1

i (1 − ηi)

Theorem 1. Assume that

(H1) f(t, u, v) ∈ C[(0, 1) × [0, +∞) × (0, +∞); (0, +

∞)] and for (t, u, v) ∈ (0, 1) × [0, +∞) × (0, +∞),
f is increasing with respect to u, decreasing with
respect to v

(H2) For (t, u, v) ∈ (0, 1) × [0, +∞) × (0, +∞) and
k ∈ (0, 1), there exists a constant μ ∈ (0, 1) such that
f(t, ku, k− 1v)≥ kμf(t, u, v)

(H3) 0< 􏽒
1
0 (1 − s)α− 2f(s, sα− 1, sα− 1)ds<∞

Ben, the BVP (1) has unique positive solution x∗(t) ∈ P,
and there exists a constant 0< l< 1 satisfying

lt
α− 1 ≤ x

∗
(t)≤ l

− 1
t
α− 1

, t ∈ [0, 1]. (9)

Proof. Firstly, it is easy to know that x∗ is the solution of the
BVP (1) if and only if x∗ satisfies T(x∗, x∗) � x∗.

Next, it follows from (H1) that the operator
T: P × P⟶ P is nondecreasing with respect to x and
nonincreasing with respect to y; thus, by (H1), (H2), and
(H3), for any (x, y) ∈ P × P and t ∈ (0, 1), there exist two
constants 0< lx < 1, 0< ly < 1 such that

lxt
α− 1 ≤ x(t)≤ lx( 􏼁

− 1
t
α− 1

,

lyt
α− 1 ≤y(t)≤ ly􏼐 􏼑

− 1
t
α− 1

.
(10)

Denote l∗x � min lx, ly􏽮 􏽯; then, we have

l
∗
xt

α− 1 ≤ x(t)≤ l
∗
x( 􏼁

− 1
t
α− 1

,

l
∗
xt

α− 1 ≤y(t)≤ l
∗
x( 􏼁

− 1
t
α− 1

.
(11)

Consequently,

T(x, y)(t) � 􏽚
1

0
G(t, s)f(s, x(s), y(s))ds

+
t
α− 1

ξ
􏽘

m− 2

i�1
􏽚
1

0
βiH ηi, s( 􏼁 + ciG ηi, s( 􏼁􏼂 􏼃f(s, x(s), y(s))ds

≤
t
α− 1

Γ(α)
􏽚
1

0
(1 − s)

α− 2
f s, l

∗
x( 􏼁

− 1
s
α− 1

, l
∗
xs

α− 1
􏼐 􏼑ds

+
t
α− 1

ξ
􏽘

m− 2

i�1
􏽚
1

0

βiη
α− 1
i

Γ(α + 1)
+

ciη
α− 1
i

Γ(α)
􏼢 􏼣(1 − s)

α− 2
f s, l

∗
x( 􏼁

− 1
s
α− 1

, l
∗
xs

α− 1
􏼐 􏼑ds

≤
l
∗
x( 􏼁

− μ
t
α− 1

Γ(α)
􏽚
1

0
(1 − s)

α− 2
f s, s

α− 1
, s

α− 1
􏼐 􏼑ds

+
l
∗
x( 􏼁

− μ
t
α− 1

ξ
􏽘

m− 2

i�1
􏽚
1

0

βiη
α− 1
i

Γ(α + 1)
+

ciη
α− 1
i

Γ(α)
􏼢 􏼣(1 − s)

α− 2
f s, s

α− 1
, s

α− 1
􏼐 􏼑ds

≤ l
∗
x( 􏼁

− μ
t
α− 1ξα +(1 + α)(m − 2)

ξαΓ(α)
􏽚
1

0
(1 − s)

α− 2
f s, s

α− 1
, s

α− 1
􏼐 􏼑ds

� t
α− 1M l

∗
x( 􏼁

− μ

ξαΓ(α)
􏽚
1

0
(1 − s)

α− 2
f s, s

α− 1
, s

α− 1
􏼐 􏼑ds< +∞,

(12)

T(x, y)(t) � 􏽚
1

0
G(t, s)f(s, x(s), y(s))ds

+
t
α− 1

ξ
􏽘

m− 2

i�1
􏽚
1

0
βiH ηi, s( 􏼁 + ciG ηi, s( 􏼁􏼂 􏼃f(s, x(s), y(s))ds

≥
(α − 1)t

α− 1

ξ
􏽘

m− 2

i�1
􏽚
1

0

βiη
α− 1
i 1 − ηi( 􏼁

Γ(α + 1)
+

ciη
α− 1
i 1 − ηi( 􏼁

Γ(α)
􏼢 􏼣s(1 − s)

α− 1
f s, l
∗
xs

α− 1
, l
∗
x( 􏼁

− 1
s
α− 1

􏼐 􏼑ds

≥
l
∗
x( 􏼁

μ
t
α− 1

(α − 1)

ξαΓ(α)
􏽘

m− 2

i�1
βi + αci( 􏼁ηα− 1

i 1 − ηi( 􏼁 􏽚
1

0
s(1 − s)

α− 1
f s, s

α− 1
, s

α− 1
􏼐 􏼑ds

� t
α− 1(α − 1)N l

∗
x( 􏼁

μ

ξαΓ(α)
􏽚
1

0
s(1 − s)

α− 1
f s, s

α− 1
, s

α− 1
􏼐 􏼑ds.

(13)
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Let

lTx � min

1
2
,
(α − 1)N l

∗
x( 􏼁

μ

ξαΓ(α)
􏽚
1

0
s(1 − s)

α− 1
f s, s

α− 1
, s

α− 1
􏼐 􏼑ds,

M l∗x( 􏼁
− μ

ξαΓ(α)
􏽚
1

0
(1 − s)

α− 2
f s, s

α− 1
, s

α− 1
􏼐 􏼑ds􏼢 􏼣

− 1

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (14)

0en, there exists a constant 0< lTx < 1 such that

lTxt
α− 1 ≤ (T(x, y))(t)≤ lTx( 􏼁

− 1
t
α− 1

, t ∈ (0, 1), (15)

which implies that the operator T: P × P⟶ P is well
defined. According to the Arzela-Ascoli theorem, it is easy to
know that T: P × P⟶ P is completely continuous.

Now, take h(t) � tα− 1, then (h, h) ∈ P × P, it follows
from (12) and (13) thatT(h, h) ∈ P.0us, by the definition of
P, there exists a constant 0< lTh < 1 such that

lTht
α− 1 ≤T(h, h)(t)≤ lTh( 􏼁

− 1
t
α− 1

. (16)

Take

0< λ≤ l
(1/1− μ)

Th , (17)

and let

x0 � λh(t),

y0 � λ− 1
h(t).

(18)

Now, construct the following iterative sequence:

xn � T xn− 1, yn− 1( 􏼁,

yn � T yn− 1, xn− 1( 􏼁, n � 1, 2, . . .
(19)

We assert

x0 ≤ x1 ≤ · · · ≤xn ≤ · · · ≤yn ≤ · · · ≤y1 ≤y0. (20)

In fact, it follows from 0< λ< 1 and (18) that x0, y0 ∈ P

and x0 ≤y0. Moreover,

x1 � T x0, y0( 􏼁(t) � 􏽚
1

0
G(t, s)f s, λh(t), λ− 1

h(t)􏼐 􏼑ds

+
t
α− 1

ξ
􏽘

m− 2

i�1
􏽚
1

0
βiH ηi, s( 􏼁 + ciG ηi, s( 􏼁􏼂 􏼃f s, λh(t), λ− 1

h(t)􏼐 􏼑ds

≥ λμ 􏽚
1

0
G(t, s)f(s, h(t), h(t))ds

+
λμt

α− 1

ξ
􏽘

m− 2

i�1
􏽚
1

0
βiH ηi, s( 􏼁 + ciG ηi, s( 􏼁􏼂 􏼃f(s, h(t), h(t))ds

� λμT(h, h)(t)≥ λμlThh(t)≥ λμλ1− μ
h(t) � x0,

y1 � T y0, x0( 􏼁(t) � 􏽚
1

0
G(t, s)f s, λ− 1

h(t), λh(t)􏼐 􏼑ds

+
t
α− 1

ξ
􏽘

m− 2

i�1
􏽚
1

0
βiH ηi, s( 􏼁 + ciG ηi, s( 􏼁􏼂 􏼃f s, λ− 1

h(t), λh(t)􏼐 􏼑ds

≤ λ− μ
􏽚
1

0
G(t, s)f(s, h(t), h(t))ds

+
λ− μ

t
α− 1

ξ
􏽘

m− 2

i�1
􏽚
1

0
βiH ηi, s( 􏼁 + ciG ηi, s( 􏼁􏼂 􏼃f(s, h(t), h(t))ds

� λ− μ
T(h, h)(t)≤ λ− μ

lTh( 􏼁
− 1

h(t)≤ λ− μλμ− 1
h(t) � y0.

(21)
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On the other hand, it follows from x0 ≤y0 and the fact of
T being nondecreasing with respect to second variable and
nonincreasing with respect to third variable that x1 ≤y1.
0us, according to the above fact, we have (20) holds.

Notice that, for any nature number n,

xn � T xn− 1, yn− 1( 􏼁 � T
n

y0, x0( 􏼁

� T
n λh(t), λ− 1

h(t)􏼐 􏼑

� T
n λ2λ− 1

h(t), λ− 2λh(t)􏼐 􏼑

≥ λ2􏼐 􏼑
μn

T
n λ− 1

h(t), λh(t)􏼐 􏼑

� c
μn

yn,

(22)

where c � λ2. So, for any nature numbers n and n∗, we have

0≤xn+n∗ − xn ≤yn − xn ≤ 1 − c
μn

􏼐 􏼑yn ≤ 1 − c
μn

􏼐 􏼑λ− 1

h(t)⟶ 0, n⟶ +∞,
(23)

which implies that there exists x∗ ∈ P such that

xn(t)⟶ x
∗
(t), (24)

uniformly on (0, 1). By the same method, we can also prove
that

yn(t)⟶ x
∗
(t), (25)

uniformly on (0, 1). In view of the continuous of T, take the
limits in xn � T(xn, yn), we have x∗ � T(x∗, x∗). So, x∗ is a
positive solution of BVP (1). Since x∗ ∈ P, for any t ∈ (0, 1),
there exists a constant l ∈ (0, 1) such that

lt
α− 1 ≤ x

∗
(t)≤ l

− 1
t
α− 1 (26)

holds.
Finally, we show that the uniqueness of the positive

solution. Let y∗(t) be another positive solution of BVP (1);
then, for any t ∈ (0, 1), there exists a constant m ∈ (0, 1)

such that

mt
α− 1 ≤y

∗
(t)≤m

− 1
t
α− 1

. (27)

Taking λ defined in (17) be small enough such that λ<m.
So,

x0(t)≤y
∗
(t)≤y0(t), t ∈ (0, 1). (28)

According to T(y∗, y∗) � y∗, using the nondecreasing
of T, we can show that

xn(t)≤y
∗
(t)≤yn(t), t ∈ (0, 1). (29)

Taking limits to the both sides of (29), we have x∗ � y∗.
It follows that the solution of BVP (1) is unique.0e proof of
0eorem 1 is completed.

In the following, we consider the error estimation be-
tween unique solution and iterative value. □

Theorem 2. Let conditions (H1), (H2), and (H3) be sat-
isfied. Ben, for any initial value z0 ∈ P, there exists a

sequence zn(t) that uniformly converges to the unique positive
solution x∗(t) with the following error estimation:

max zn(t) − x
∗
(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯 � o 1 − c

μn

􏼐 􏼑, (30)

where c ∈ (0, 1) is determined by z0.

Proof. By0eorem 1, we know that the positive solution x∗

is unique. For any z0 ∈ P, there exists a constant lz0 ∈ (0, 1),
such that

lz0t
α− 1 ≤ z0(t)≤ l

− 1
z0

t
α− 1

. (31)

Similar to0eorem 1, we can take λ<min lz0, l
(1/1− μ)

Th􏽮 􏽯 as
a fixed number. It follows that

x0(t)≤ z0(t)≤y0(t), t ∈ (0, 1). (32)

Let zn � T(zn− 1, zn− 1), n � 1, 2, . . .; then, by monoto-
nicity of the operator T, we have

x1(t)≤ z1(t)≤y1(t), t ∈ (0, 1). (33)

0us, it follows from mathematical induction that

xn(t)≤ zn(t)≤yn(t), t ∈ (0, 1). (34)

Take limits for the above inequality, we get that zn(t)􏼈 􏼉

uniformly converges to the unique positive solution x∗ of
BVP (1). Using (23), we can now derive the error estimation
(30), which implies that the error estimation is the same
order infinitesimal of (1 − cμ

n

), where c � λ2 and determined
by z0. 0is completes the proof of 0eorem 2. □

4. Example

Let us illustrate the main results with an example.

Example 1. Let α � (7/2), m � 4, η1 � (1/3), η2 � (2/3),
β1 � (3/2), β2 � 4, c1 � (5/2), and c2 � 2. We consider the
following BVP:

D
(7/2)
0+ x(t) + a(t)x

(1/8)
+ b(t)y

− (1/5)
� 0, 0< t< 1,

x′(0) � x″(0) � 0,

x(1) �
3
2

􏽚
(1/3)

0
x(s)ds

+ 4􏽚
(2/3)

0
x(s)ds

+
5
2

x
1
3

􏼒 􏼓 + 2x
2
3

􏼒 􏼓,

(35)

where f(t, x, y) � a(t)x(1/8) + b(t)y− (1/5). For any
k ∈ (0, 1), take μ � (1/4), and it is easy to verify that

f t, kx, k
− 1

y􏼐 􏼑≥ k
μ
f(t, x, y). (36)

According to the expression of f and the above in-
equality, it follows that (H1) and (H2) are held. In addition,
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0< 􏽚
1

0
(1 − t)

(3/2)
f t, t

(5/2)
, t

(5/2)
􏼐 􏼑dt<∞. (37)

So, all of the assumptions of0eorem 1 are satisfied. As a
result, BVP (35) has a unique positive solution x∗ and for
any initial value x0 ∈ P, and the successive iterative sequence
xn(t)􏼈 􏼉 is generated by

xn(t) � 􏽚
1

0
G(t, s)f s, xn− 1(s), xn− 1(s)( 􏼁ds

+
t
α− 1

ξ
􏽘

m− 2

i�1
􏽚
1

0
βiH ηi, s( 􏼁 + ciG ηi, s( 􏼁􏼂 􏼃f

· s, xn− 1(s), xn− 1(s)( 􏼁ds, n � 1, 2, . . . ,

(38)

and uniformly converges to the unique positive solution x∗

on (0, 1). We also obtain the error estimation

max xn(t) − x
∗
(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯 � o 1 − c

(1/4)n

􏼐 􏼑, (39)

where c ∈ (0, 1) is a constant and determined by the initial
value x0. Moreover, for any t ∈ (0, 1), there exists a constant
l ∈ (0, 1) which satisfies that

lt
(5/2) ≤ x

∗
(t)≤ l

− 1
t
(5/2)

. (40)

Remark 1. According to the definition of f(t, x, y), let
f(t, x, x) � a(t)x(1/8) + b(t)x− (1/5); then, f does not have
monotonicity with respect to x. 0us, the iterative process in
some previous work such as [31, 33, 35] cannot be per-
formed, which implies our developed iterative technique in
this paper can be suitable for a wider range of functions; in
particular, even if f(t, x, y) is reduced to only have one
space variable f(t, x), our results is more general than those
of [96].

5. Result and Discussion

In this paper, we obtain the results of the existence solutions
of the n-order fractional equation involving mixed integral
and multipoint boundary conditions by using a new iterative
algorithm. 0e efficiency of those methods depends essen-
tially on the monotonicity and compactness of the operator.
Different from [96], the iterative process does not need to
start with the fixed upper and lower solution. We can not
only construct a new iterative process which can perform
from any initial value but also obtain the uniform conver-
gence of the iterative sequences; at the same time, the es-
timation of the convergence rate and the approximation
error are also given, which imply that themore strong results
are established under the relatively weaker condition than
that of [96].
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