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In this article, free convection flow of an Oldroyd-B fluid (OBF) through a vertical rectangular channel in the presence of heat
generation or absorption subject to generalized boundary conditions is studied. )e fractionalized mathematical model is
established by Caputo time-fractional derivative through mechanical laws (generalized shear stress constitutive equation and
generalized Fourier’s law). Closed form solutions for the velocity and temperature profiles are obtained via Laplace coupled with
sine-Fourier transforms and have been embedded with regards to the special functions, namely, the generalized G-functions of
Lorenzo and Hartley. Solutions of the known results from recently published work (Nehad et al. Chin. J. Phy., 65, (2020) 367–376)
are recovered as limiting cases. Finally, the effects of fractional and various physical parameters are graphically underlined.
Furthermore, a comparison between Oldroyd-B, Maxwell and viscous fluids (fractional and ordinary) is depicted. It is found that,
for short time, ordinary fluids have greater velocity as compared to the fractional fluids.

1. Introduction

Fluids are classified in two categories with respect to the
relation of shear stress and rate of deformation called
Newtonian and non-Newtonian fluids. In non-Newtonian
fluids, this relation is not linear, while in Newtonian fluids
the relation of shear stress is linearly related to the rate of
deformation. Several fluids have non-Newtonian behavior
such as molten, salt solutions, custard, ketchup, blood,
toothpaste, paint, and shampoo. A significant class of non-
Newtonian fluids is viscoelastic fluids which show both
adaptable and viscous property and numerous models of
constitutive equations have been proposed to depict the
transport conduct of these fluids. Oldroyd-B fluid (OBF) [1]
is an exceptional non-Newtonian fluids and its transport
conduct cannot be appropriately depicted by the usual re-
lation between the shear rate and shear stress in a

straightforward shear flow. Hence, numerous models of
constitutive equations have been offered for these fluids in
[2–8].

Free convection flows are of incredible viable signifi-
cance to engineers and researchers on account of its all-
inclusive event in various mechanical applications, for ex-
ample, cooling of electronic equipment’s, solar amassers,
fiber protection, and geothermal frameworks [9]. Because of
its event in many engineering applications, numerous au-
thors deliberate the free convection fluid flow models be-
tween two vertical parallel plates. )e free convection fluid
flow between two infinite vertical parallel plates is examined
by Singh et al. [10]. Narahari [11] presented critical solution
for the transient free convection flow between two vertical
parallel plates within the sight of steady temperature and
mass diffusion by using the Laplace transform method. Na
et al. [12] found the closed form solutions of Maxwell free-
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convection fluid flow between vertical plates with damped
shear and thermal flux. Zaib et al. [13] studied the natural
convection flow of second-grade fluid with thermal radiation
and damped thermal flux between vertical channels. Haji-
zadeh et al. [14] got the exact solutions for free convection
flow of nanofluids between two vertical plates with damped
thermal flux. Shao et al. [15] found the semianalytical so-
lutions for hydromagnetic free-convection flow of viscous
fluid between vertical parallel plates with damped thermal
and mass fluxes. Seth et al. [16] have investigated the un-
steady hydromagnetic flow formation with Hall Effect due to
time-dependent free stream in a rotating medium. Seth et al.
[17] have studied the effect of Hall current on MHD natural
convection heat and mass transfer flow of rotating fluid past
a vertical plate with ramped wall temperature. )e natural
convective heat transfer and nanofluid flows through a
rectangular vertical channel under Robin-type conditions
are concentrated by Ahmed et al. [18].

On the contrart, heat generation/absorption effects be-
come relevant in many processes involving chemical reac-
tion and dissociating fluids, since the flow and thermal fields
can be greatly influenced by the heat source/sink term. Jha
et al. [19] examined the effect of heat generation/absorption
on flow formation in a parallel plate channel with ramped
temperatures. In a related work, Jha and Aina [20] obtained
the exact solution for heat generating/absorbing fluid in a
cylinder under time periodic boundary conditions in the
presence of magnetic field. )ey found out that the rate of
heat transfer is significantly declined with increase in heat
sink, while the contrast is true in presence of heat source. Jha
et al. [21] presented the exact solution responsible for the
mixed convection in an annular geometry when the fluid is
either heat generating or heat absorbing. In another work,
Saba et al. [22] presented a study on thermal analysis of
nanofluid in the presence of internal heat generation/ab-
sorption. Other related discussion can be found in [23–28].

Fractional calculus [29, 30] has been utilized effectively
in the depiction of viscoelasticity. Mostly, these constitutive
equations are obtained from known models via substituting
time ordinary derivatives of stress and strain by derivatives
of fractional order. )e generality permits one to express
indeed noninteger-order integral or derivatives. Recently,
numerous specialists have considered various issues asso-
ciated to such fluids. Hyder Ali Muttaqi Shah [31] examined
the flows of generalized OBF between two side walls per-
pendicular to the plate. Akgül et al. [32, 33] analyzed the
MHD Couette flows by fractal-fractional differential oper-
ators. Some accelerated flows of a generalized OBF are
discussed by Fetecau et al. [34]. Siddique and Akgül [35]
examined the blood liquor model via nonlocal and singular
constant proportional Caputo hybrid differential operator.
Khan et al. [36] examined the MHD flow of a generalized
OBF in a round funnel. Siddique and Sajid [37] founnd the
exact solutions for the unsteady axial flow of non-Newtonian
fluids through a circular cylinder. MHD OBF through
fractional calculus approach under several conditions has
been examined by Liu et al. [38]. Solutions for OBF between
two oscillating plates with transverse magnetic field have
been investigated by Bose and Basu [39]. Zhao et al. [40]

carried out numerical solutions for fractional OBF in porous
medium under the influence of heat transfer. Zafar et al. [41]
contemplated anOBF for circular cylinders with noninteger-
order derivatives. Zhang et al. [42] examined the analytical
solutions for time-fractional OBF utilizing the definition of
Caputo derivative. As of late, Riaz and Saeed [43] evaluated
the conduct of MHD OBF under slip condition with the
assistance of integer order, Caputo–Fabrizio, and Atanga-
na–Baleanu fractional derivatives. Wang et al. [44] acquired
the semianalytical solutions for velocity field and tangential
stress correspond to fractional Oldroyd-B fluid in an an-
nulus by Laplace transforms and modified Bessel equation.
Kamran et al. [45] find the exact solutions for the unsteady
rotational flow of an Oldroyd-B fluid with fractional de-
rivative through an infinite circular cylinder by means of the
finite Hankel and Laplace transforms. In all these studies the
ordinary derivatives are falsely supplanted by fractional
derivatives. Some recent works were done by specialists, and
they introduced fractional derivatives through mechanical
laws to governing equations [12–15, 46–48].

In the current paper, as uniqueness, we build up a
nonlocal mathematical model in which the thermal trans-
port is depicted by the fractional Fourier’s law. )e new
fractional constitutive equations are characterized with the
time-fractional Caputo derivative; hence, they give a power-
law damping to the temperature and velocity. )ese realities
were the significant reason of the lack of literature on the
study of OBFs between two-side walls under general
boundary conditions. In this work, we acquire the closed
form solutions of the generalized convection flows of OBF
between two parallel plates under general boundary con-
ditions by utilizing the Laplace transform coupled with the
finite sine-Fourier transform. )e solutions are uttered in
the form of generalized G-functions of Lorenzo and Hartley
[49]. )e impacts of fractional and physical parameters are
graphically outlined. In addition, the limiting cases of the
current outcomes compare to the solutions for fractional
Maxwell, ordinary Maxwell, Oldroyd-B, and Newtonian
fluids.

2. Mathematical Modeling

Let us consider the unsteady free-convection Oldroyd-B,
incompressible, and electrically conducting fluid flow be-
tween two infinite nonconducting parallel vertical plates
separated by a distance d. )e flow geometry in fixed
Cartesian coordinate system x, ζ∓1 and z is shown in Figure 1.
)e x− axis is taken along the plates in the direction of fluid
flow with the velocity u∓ and the ζ∓1 -axis is taken perpen-
dicular to the plates.

Since the channel is infinitely extended in the x and z

directions, we can assume that all physical entities describing
the fluid motion and heat transfer are the functions of ζ∓1 and
t∓1 only. At first, both the plates and the enclosed fluid are at
rest at the ambient temperature Ta. After this moment, the
left and right plates starts to slid in their own planes along
x− direction with the velocities U0g

∓
1(t∓1 ) and U0g

∓
2(t∓1 );

individually, plates are maintained at temperatures
Ta + (Tb − Ta)f∓1(t∓1 ) and Ta + (Tb − Ta)f∓2(t∓1 ),
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respectively, where U0 is a constant with dimension of
velocity; the functions fi(·) and gi(·), i � 1, 2, are piecewise
continuous and exponential order functions at infinity with
fi(0) � gi(0) � 0, i � 1, 2.

We made the following assumptions for the fluid flows:

(i) Velocity is only a function of material coordinate ζ∓1
and special coordinate t∓1 , i.e., v � (u∓1(ζ∓1 , t∓1 ), 0, 0)

(ii) Joule heating and viscous dissipation in energy
equations are negligible

In the absence of a pressure gradient in the flow direction
and utilizing the typical Boussinesq’s approximation, the
governing equations for the unsteady free-convection flow
of OBF through the vertical channel communicated by the
subsequent equations [50, 51] are the linear momentum
equation,

ρ
zu
∓
1 ζ∓1 , t

∓
1( 􏼁

zt
∓
1

�
zτ∓1 ζ∓1 , t

∓
1( 􏼁

zζ∓1
+ gρβT T

∓ ζ∓1 , t
∓
1( 􏼁 − Ta􏼂 􏼃, (1)

the constitutive equation,

1 + λ±
z

zt
∓
1

􏼠 􏼡τ∓1 ζ∓1 , t
∓
1( 􏼁 � μ 1 + λ∓r

z

zt
∓
1

􏼠 􏼡
zu
∓
1 ζ∓1 , t

∓
1( 􏼁

zζ∓1
, (2)

the thermal balance equation,

ρcp

zT
∓ ζ∓1 , t

∓
1( 􏼁

zt
∓
1

� −
zq1 ζ∓1 , t

∓
1( 􏼁

zζ∓1
− Q0 T

± ζ∓1 , t
∓
1( 􏼁 − Ta􏼂 􏼃,

(3)

and Fourier’s law,

q1 ζ∓1 , t
∓
1( 􏼁 � − k

zT
∓ ζ∓1 , t

∓
1( 􏼁

zζ∓1
, (4)

under corresponding initial and boundary conditions:

T
∓ ζ∓1 , 0( 􏼁 � Ta,

u
∓
1 ζ∓1 , 0( 􏼁 � 0, 0≤ ζ∓1 ≤d,

(5)

T
∓ 0, t
∓
1( 􏼁 � Ta + Tb − Ta( 􏼁f

∓
1 t
∓
1( 􏼁,

T
∓

d, t
∓
1( 􏼁 � Ta + Tb − Ta( 􏼁f

∓
2 t
∓
1( 􏼁, t

∓
1 ≥ 0,

(6)

u
∓
1 0, t
∓
1( 􏼁 � U0g

∓
1 t
∓
1( 􏼁,

u
∓
1 d, t

∓
1( 􏼁 � U0g

∓
2 t
∓
1( 􏼁, t

∓
1 ≥ 0.

(7)

Introducing the following nondimensionless variables,
functions, and parameters,

d

z

x

g→

v = u1 (ζ1,t1)i

T (0,t) = Ta + (Tb–Ta)f1 (t1)

u (0,t) = U0g1 (t1 )

ζ1

T (d,t) = Ta + (Tb–Ta)f2 (t1)

u (d,t) = U0g2 (t1 )

Figure 1: Flow geometry.

Complexity 3



y �
ζ∓1
d

,

t �
vt
∓
1

d
2 ,

u �
u
∓
1

U0
,

T �
T
∓

− Ta

Tb − Ta

,

q �
q1d

k Tb − Ta( 􏼁
,

τ �
τ∓1d

μU0
,

λ �
vλ∓

d
2 ,

λr �
vλ∓r
d
2 ,

Q0 �
Qd

2

k
,

Pr �
μcp

k
,

Gr �
gβT Tb − Ta( 􏼁d

2

vU0
,

f
∓
j t
∓
1( 􏼁 � fj

d2t
]

􏼠 􏼡,

g
∓
j t
∓
1( 􏼁 � gj

d2t
]

􏼠 􏼡, j � 1, 2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (8)

into equations (1)–(7), we have

zu(y, t)

zt
�

zτ(y, t)

zy
+ GrT(y, t), (9)

1 + λ
z

zt
􏼠 􏼡τ(y, t) � 1 + λr

z

zt
􏼠 􏼡

zu(y, t)

zy
, (10)

zT(y, t)

zt
� −

1
Pr

zq(y, t)

zy
− QT(y, t), (11)

q(y, t) � −
zT(y, t)

zy
. (12)

)e partial differential equations (9)–(12) are taken
along with the following dimensionless initial and boundary
conditions:

u(y, 0) � 0,

T(y, 0) � 0, 0≤y≤ 1,
(13)

T(0, t) � f1(t),

T(1, t) � f2(t), t≥ 0,
(14)

u(0, t) � g1(t),

u(1, t) � g2(t), t≥ 0.
(15)

In the following, we develop a fractional model in which
the classical constitutive equations (10) and (12) are gen-
eralized by using the constitutive shear stress equation:

1 + λ
z

zt
􏼠 􏼡τ(y, t) � 1 + λr

z

zt
􏼠 􏼡

C
D

1− α
t

zu(y, t)

zy
􏼠 􏼡, 0< α≤ 1,

(16)

proposed by Scott-Blair [52], respectively, and the gener-
alized Fourier’s law,

q(y, t) � −
C

D
1− β
t

zT(y, t)

zy
􏼠 􏼡, 0< β≤ 1, (17)

proposed by Povstenko [53] and Hristov [54], respectively.
In the above constitutive equations, CD

α
t (·) denotes the

time-fractional Caputo derivative defined by [55, 56]. Hence,

C
D

α
t u(y, t) �

1
Γ(1 − α)

􏽚
t

0
_u(y, s)(t − s)

− αds

� hα(t)∗ _u(y, t)( 􏼁, 0≤ α≤ 1,

(18)

where hα(t) � (t− α/Γ(1 − α)) is the singular power-law
kernel for _u(y, s) � (zu(y, t)/zt)|t�s.

Furthermore, using the second form of the time-frac-
tional Caputo derivative from equation (18) and one of the
following properties of hα(·) is defined as

L hα(t)􏼈 􏼉 �
1

s
1− α,

h1− α ∗ hα( 􏼁(t) � 1,

h0(t) � L
− 1 1

s
􏼚 􏼛 � 1,

h1(t) � L
− 1 1{ } � δ(t),

(19)

where L ·{ } denotes the Laplace transform, δ(·) is Dirac’s
distribution, and s is the transform parameter, and it is easy
to show that
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C
D

0
t f(y, t) � f(y, t) − f(y, 0),

C
D

0
t f(y, t) � f(y, t), if f(y, 0) � 0􏼒 􏼓,

C
D

1
t f(y, t) �

zf(y, t)

zt
.

(20)

Using properties (20), for α � β � 1, equations (16) and
(17) reduce to the classical forms (10) and (12).

It is important to specify that the models based on
fractional constitutive equations are more general than those
described by constitutive equations with integer derivatives.

For this, let us analyze the constitutive equations for the
thermal flux (12) and (17). Equation (12) corresponding to
Fourier’s law is a local form in time and space. Indeed, the
value of the heat flux in a position y at time t is determined by
the value of the temperature gradient in the same spatial
position and at the same time.

)e generalized constitutive equation (17), written in the
equivalent form q(y, t) � − (1/Γ(β))(z/zy) 􏽒

t

0 (t − s)β− 1

zT(y, t)/zt|t�sds, shows that the value of the thermal flux in

position y at time t is influenced by the temperature history;
therefore, the values of the time derivative of temperature for
all past and present times determine the thermal flux at the
moment t. Such types of constitutive equations describe the
thermal processes with time nonlocality. )e function
h1− β(t) � (tβ− 1/Γ(β)) is the time-nonlocality kernel (the
weight function).

)e processes with time nonlocality are called processes
with memory. )e classical Fourier’s law describes processes
with “instantaneousmemory” whose time nonlocality kernel
being Dirac’s distribution. If the weight function is constant,
the process is called the “full memory” process, i.e., there is
no fading of memory.

A similar discussion can be made regarding the gen-
eralized constitutive equation (16). )e difference, in this
case, is about the memory of the material deformation. It can
be seen from equation (16) that the history of the strain rate
influences the stress at the moment t.

Eliminating τ from equations (9) and (16) and q from
equations (11) and (17), we obtain

1 + λ
z

zt
􏼠 􏼡

zu(y, t)

zt
� 1 + λr

z

zt
􏼠 􏼡

C
D

1− α
t

z
2
u(y, t)

zy
2􏼠 􏼡 + Gr 1 + λ

z

zt
􏼠 􏼡T(y, t), (21)

zT(y, t)

zt
�

1
Pr

C
D

1− β
t

z
2
T(y, t)

zy
2􏼠 􏼡 − QT(y, t). (22)

In order to obtain the equivalent forms of equations (21)
and (22), we recall the time-fractional integral operator:

J
α
t f(y, t) � h1− α ∗f( 􏼁(t) �

1
Γ(α)

􏽚
t

0
f(y, s)(t − s)

α− 1ds,

(23)

which is the left-inverse operator of the derivative operator
CD

α
t (·). Indeed, using equations (18), (19), and (23), we

obtain that

J
α
t ∘

C
D

α
t􏼐 􏼑f(y, t) � J

α
t

C
D

α
t f(y, t)􏼐 􏼑 � h1− α ∗ hα ∗ _f􏼐 􏼑􏽨 􏽩(t)

� h1− α ∗ hα( 􏼁∗ _f􏽨 􏽩(t) � [1∗ _f](t) � f(y, t) − f(y, 0),
(24)

which implies

J
α
t ∘

C
D

α
t􏼐 􏼑f(y, t) � f(y, t), if f(y, 0) � 0. (25)

Moreover, using equations (18) and (23), it results that

J
1− α
t

_f(y, t) � hα ∗ _f􏼐 􏼑(t) �
C

D
α
t f(y, t). (26)

Now, applying the fractional integral operators J1− α
t and

J
1− β
t to equations (21) and (22) and using properties
(24)–(26) together with the initial condition, we obtain the
following fractional differential equations:
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1 + λ
z

zt
􏼠 􏼡

C
D

α
t u(y, t) � 1 + λr

z

zt
􏼠 􏼡

z
2
u(y, t)

zy
2 + GrJ1− α

t 1 + λ
z

zt
􏼠 􏼡T(y, t), (27)

C
D

β
t T(y, t) �

1
Pr

z
2
T(y, t)

zy
2 − QJ

1− β
t T(y, t). (28)

To determine the solutions of equations (27) and (28), we
will employ the Laplace and finite Fourier transform.

)e mathematical models considered in this paper de-
scribe real problems of fluid flow and heat transfer in a
rectangular channel. )erefore, we consider for the study
problems in which the temperature and velocity fields are
functions that are at least twice differentiable in relation to
the variables on which they depend. It is also considered that
the functions that describe the movement and heat transfer
have additional properties so that the existence of the
Laplace and Fourier transforms to be provided.

)erefore, for the studied problems, we search solutions
in the class of functions that satisfy the above properties.

3. Solution of the Problem

3.1. Temperature Distribution. Applying the Laplace trans-
form to equations (28) and (14), using initial condition (13),
we obtain

s
β
T(y, s) �

1
Pr

z
2
T(y, s)

zy
2 − Qs

β− 1
T(y, s), (29)

T(0, s) � F1(s),

T(1, s) � F2(s),
(30)

where T(y, s) � 􏽒
∞
0 T(y, t)e− stdt, s is Laplace transform

parameter, and L fi(t)􏼈 􏼉 � Fi(s); i � 1, 2.
Applying the finite sine-Fourier transform to differential

equation (29) subject to the conditions in equation (30), we
obtain

􏽥Ts(n, s) �
(nπ) F1(s) +(− 1)

n+1
F2(s)􏼐 􏼑

Prsβ + Qs
β− 1

+(nπ)
, (31)

where 􏽥Ts(n, s) � 􏽒
1
0 T(y, s)sin(nπy)dy, n � 1, 2, . . ..

Equation (31) can be written in the following equivalent
form:

􏽥Ts(n, p) �
F1(s)

nπ
+

(− 1)
n+1

F2(s)

nπ
−

F1(s) +(− 1)
n+1

F2(s)􏽨 􏽩

nπ

× 1 −
(nπ)

2

Pr
1

s
β

+ (nπ)
2/Pr􏼐 􏼑􏼐 􏼑 + QPr− 1

s
β− 1

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(32)

Taking inverse Laplace transform of equation (32), we
obtain

􏽥Ts(n, t) �
f1(t)

nπ
+

(− 1)
n+1

f2(t)

nπ
−

f1(t) +(− 1)
n+1

f2(t)􏽨 􏽩

nπ

∗ δ(t) − (nπ)
2

􏽘

∞

m�0

(− Q)
m

Prm+1 Gβ,(β− 1)m,m+1 −
(nπ)

2

Pr
, t􏼠 􏼡⎡⎣ ⎤⎦,

(33)

where “∗ ” represents the convolution product, δ(t) is the
direct delta function, and Ga,b,c(·) is the generalized
G-function of Lorenzo and Hartley [49] defined as

Ga,b,c(d, t) � L
− 1 p

b

p
a

− d( 􏼁
c􏼨 􏼩, R(p)> 0, R(ac − b)> 0,

d

p
a

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1.

(34)

Taking the inverse sine-Fourier transform of equation
(33), we obtain the temperature field

T(y, t) � f1(t)(1 − y) + f2(t)y − 2 􏽘
∞

n�1

1
nπ

f1(t) +(− 1)
n+1

f2(t)􏽨 􏽩

∗ δ(t) − (nπ)
2

􏽘

∞

m�0

(− Q)
m

Prm+1 Gβ,(β− 1)m,m+1 −
(nπ)

2

Pr
, t􏼠 􏼡⎡⎣ ⎤⎦sin(nπy).

(35)

For the ordinary case when β � 1, we have

6 Complexity



T(y, t) � f1(t)(1 − y) + f2(t)y − 2 􏽘
∞

n�1

1
nπ

f1(t) +(− 1)
n+1

f2(t)􏽨 􏽩

∗ δ(t) −
(nπ)

2

Pr
exp −

(nπ)
2

+ Q

Pr
t􏼠 􏼡􏼢 􏼣sin(nπy).

(36)

For the special case, when Q � 0, the similar solution is
recovered as obtained in equation (35) in [12].

3.2. Velocity Field. Applying the Laplace transform to
equations (27) and (15), using initial condition (13), we
obtain

(1 + λs)s
α
u(y, s) � 1 + λrs( 􏼁

z
2
u(y, s)

zy
2 + Gr(1 + λs)s

α− 1
T(y, s),

(37)

u(0, s) � G1(s),

u(1, s) � G2(s).
(38)

Applying the finite sine-Fourier transform to differential
equation (37) subject to the conditions in equation (38), we
obtain

s
α

+ λs
α+1

+ 1 + λrs( 􏼁(nπ)
2

􏽨 􏽩􏽥us(n, s)

� (nπ) 1 + λrs( 􏼁 G1(s) +(− 1)
n+1

G2(s)􏽨 􏽩 + Gr s
α− 1

+ λs
α

􏽨 􏽩
􏽥Ts(n, s).

(39)

Using equation (31) in equation (39), we write the ex-
pression in suitable form as

􏽥us(n, s) �
(nπ) 1 + λrs( 􏼁 G1(s) +(− 1)

n+1
G2(s)􏽨 􏽩

s
α

+ λs
α+1

+ 1 + λrs( 􏼁(nπ)
2

􏼐 􏼑

+
Gr(nπ)

Pr
s
α− 1

+ λs
α

􏼐 􏼑 F1(s) +(− 1)
n+1

F2(s)􏽨 􏽩

s
α

+ λs
α+1

+ 1 + λrs( 􏼁(nπ)
2

􏼐 􏼑

1
s
β

+ (nπ)
2/Pr􏼐 􏼑􏼐 􏼑 + QPr− 1

s
β− 1.

(40)

Equation (40) can be written in the following equivalent
form by using the series formula (1/(z1 + b)) � 􏽐

∞
k�0

((− 1)kzk
1/b

k+1), |z1/b|< 1 as

􏽥us(n, s) �
G1(s)

nπ
+

(− 1)
n+1

G2(s)

nπ
−

G1(s) +(− 1)
n+1

G2(s)􏽨 􏽩

nπ

× 􏽘
∞

l�0

(− 1)
l

λl+1 􏽘

l

k�0

l!(nπ)
2(l− k)

k!(l − k)!

s
(α+1)k− l− 1

s
α

+ λr(nπ)
2/λ􏼐 􏼑􏼐 􏼑

l+1 +
λs

(α+1)k− l

s
α

+ λr(nπ)
2/λ􏼐 􏼑􏼐 􏼑

l+1
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦

+ Gr(nπ) F1(s) +(− 1)
n+1

F2(s)􏽨 􏽩

× 􏽘
∞

n�0

(− 1)
n

λl+1 􏽘

n

k�0

l!(nπ)
2(l− k)

k!(l − k)!

s
(α+1)k− l− 2

s
α

+ λr(nπ)
2/λ􏼐 􏼑􏼐 􏼑

l+1 +
λs

(α+1)k− l− 1

s
α

+ λr(nπ)
2/λ􏼐 􏼑􏼐 􏼑

l+1
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦

􏽘

∞

m�0

(− Q)
m

Prm+1
s

(β− 1)m

s
β

+ (nπ)
2/Pr􏼐 􏼑􏼐 􏼑

m+1.

(41)
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Taking the inverse Laplace transform of equation (41),
we obtain

􏽥us(n, t) �
g1(t)

nπ
+

(− 1)
n+1

g2(t)

nπ
−

1
nπ

g1(t) +(− 1)
n+1

g2(t)􏽨 􏽩

∗ 􏽘
∞

l�0

(− 1)
l

λl+1 􏽘

l

k�0

l!(nπ)
2(l− k)

k!(l − k)!
Gα,(α+1)k− l− 1,l+1 −

λr(nπ)
2

λ
, t􏼠 􏼡 + λGα,(α+1)k− l,l+1 −

λr(nπ)
2

λ
, t􏼠 􏼡􏼢 􏼣

+ Gr(nπ) f1(t) +(− 1)
n+1

f2(t)􏽨 􏽩

∗ 􏽘
∞

l�0

(− 1)
l

λl+1 􏽘

l

k�0

l!(nπ)
2(l− k)

k!(l − k)!
Gα,(α+1)k− l− 2,n+1 −

λr(nπ)
2

λ
, t􏼠 􏼡 + λGα,(α+1)k− l− 1,m+1 −

λr(nπ)
2

λ
, t􏼠 􏼡􏼢 􏼣

∗ 􏽘
∞

m�0

(− Q)
m

Prm+1 Gβ,(β− 1)m,m+1 −
(nπ)

2

Pr
, t􏼠 􏼡.

(42)

Taking the inverse sine-Fourier transform of equation
(42), we have

u(y, t) � g1(t)(1 − y) + g2(t)y − 2 􏽘
∞

n�1

1
nπ

g1(t) +(− 1)
n+1

g2(t)􏽨 􏽩∗ 􏽘
∞

l�0

(− 1)
l

λl+1 􏽘

l

k�0

l!(nπ)
2(l− k)

k!(l − k)!

· Gα,(α+1)k− l− 1,l+1 −
λr(nπ)

2

λ
, t􏼠 􏼡 + λGα,(α+1)k− l,l+1 −

λr(nπ)
2

λ
, t􏼠 􏼡􏼢 􏼣sin(nπy)

+ 2Gr 􏽘
∞

n�1
f1(t) +(− 1)

n+1
f2(t)􏽨 􏽩∗ 􏽘

∞

l�0

(− 1)
l

λl+1 􏽘

n

k�0

l!(nπ)
2(l− k)+1

k!(l − k)!
×

· Gα,(α+1)k− l− 2,n+1 −
λr(nπ)

2

λ
, t􏼠 􏼡 + λGα,(α+1)k− l− 1,l+1 −

λr(nπ)
2

λ
, t􏼠 􏼡􏼢 􏼣

∗ 􏽘
∞

m�0

(− Q)
m

Prm+1 Gβ,(β− 1)m,m+1 −
(nπ)

2

Pr
, t􏼠 􏼡 sin(nπy).

(43)
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Figure 2: Profiles of dimensionless temperature versus y for variation of β at altered values of time t, Pr � 20 andQ � 0.5, and
f1(t) � − sin(πt/4) andf2(t) � sin(πt/4).
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Figure 3: Profiles of dimensionless temperature versus y for variation of β at altered values of time t, Pr � 20 andQ � 0.5, and
f1(t) � H(t) � f2(t).
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Remarks 1
(i) For the classical case corresponding to α � β � 1, we

have the ordinary velocity field of the OBF from
equation (43):

u(y, t) � g1(t)(1 − y) + g2(t)y − 2 􏽘
∞

n�1

1
nπ

g1(t) +(− 1)
n+1

g2(t)􏽨 􏽩∗

􏽘

∞

l�0

(− 1)
l

λl+1 􏽘

l

k�0

l!(nπ)
2(l− k)

k!(l − k)!
G1,2k− l− 1,l+1 −

λr(nπ)
2

λ
, t􏼠 􏼡 + λG1,2k− l,l+1 −

λr(nπ)
2

λ
, t􏼠 􏼡􏼢 􏼣 sin(nπy)

+ 2
Gr(nπ)

Pr
􏽘

∞

n�1
f1(q) +(− 1)

n+1
f2(q)􏽨 􏽩

∗ 􏽘
∞

l�0

(− 1)
l

λl+1 􏽘

n

k�0

l!(nπ)
2(l− k)

k!(l − k)!
G1,2k− l− 2,n+1 −

λr(nπ)
2

λ
, t􏼠 􏼡 + λG1,2k− l− 1,l+1 −

λr(nπ)
2

λ
, t􏼠 􏼡􏼢 􏼣∗

􏽘

∞

m�0

(− Q)
m

Prm+1 G1,0,m+1 −
(nπ)

2

Pr
, t􏼠 􏼡 sin(nπy).

(44)

(ii) For fractional and classical Maxwell fluid when
λr⟶ 0 and Q � 0 in equation (44), the similar
solution is recovered as obtained in equations (43)
and (44) in [12], respectively.

(iii) For fractional and classical viscous fluid when
λ⟶ 0, λr⟶ 0, and Q � 0 in equation (44), w the
similar solution is recovered as obtained in equation
(45) and (46) in [12], respectively.

4. Numerical Results and Discussion

In order to examine the communicative changes on the
thermal transport and flow profiles arising due to change of

physical parameters, numerical estimations of the fluid
temperature and velocity are figured and shown graphically
in Figures 2–14.

In Figure 2, we exposed the effect of fractional parameter
β at different values of time t and considering the functions
f1(t) � − sin(πt/4) andf2(t) � sin(πt/4) at left and right
plates, respectively. It is pointed out that, for small values of
time t, the temperature is decreasing by increasing the values
of fractional parameter β; after critical point, the influence
becomes reversed for the large value of time. In Figure 3, we
presented the effect of fractional parameter β at different
values of time t and considering constant temperature at
both plates. It has the similar influence like Figure 2. Also, we
observed from this figure that the value of temperature at the
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Figure 4: Profiles of dimensionless temperature versus y for variation of Q at altered values of time t, Pr � 20, and f1(t) � H(t) � f2(t).
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middle of the channel is low. )e impact of absorption
coefficient Q on temperature profile is presented in Figure 4.
We observed that temperature is an increasing function of Q

for small and large values of time t.

Figures 5 and 6 are presented to show the critical point
for Figures 2 and 3, respectively.

In Figure 7, we presented the effect of fractional pa-
rameter α at different values of time t, and f1(t) � H(t),

f2(t) � e− 5t, andg1(t) � H(t) � g2(t). From Figures 7(a)
and 7(b), we observed that velocity profile increasing for
small time t corresponds to the large values of α, while
velocity profile increasing for large values of time t corre-
sponds to small values of α.)e effect of fractional parameter
β at different values of time t, f1(t) � f1(t) � H(t) �

g1(t) � g2(t) and f1(t) � − H(t), and f2(t) � H(t) �

g1(t) � g2(t) is presented in Figures 8 and 9, respectively.
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Figure 5: Profiles of dimensionless temperature verses t for β at two values of y for Pr � 20 andQ � 0.5 and
f1(t) � − sin(πt/4) andf2(t) � sin(πt/4).
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Figure 6: Profiles of dimensionless temperature verses t for β at two values of y for Pr � 20, Q � 0.5, and f1(t) � H(t) � f2(t).
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From Figures 7–9, it is observed that, for small values of time
velocity decreases by increasing the values of fractional
parameters α, while the influence is opposite for large values
of time.

In order to find the critical value of time at which the
influence becomes reversed, it is presented in Figure 10. )e
effects of relaxation and retardation parameters λ and λr and
absorption coefficient Q on velocity profile are presented in
Figures 11–13.We observed that the velocity is an increasing
function of λ for small and large values of time t because the
relaxation time is the time needed by the fluid particles to

adjust the flow motion of the fluid, while velocity is a de-
creasing function of λr and Q for small and large values of
time t. )e comparison between fractional Oldroyd-B, or-
dinary Oldroyd-B, fractional Maxwell, ordinary Maxwell,
fractional viscous, and ordinary viscous fluids is presented in
Figure 14. It is investigated that, for small time, ordinary
fluids have greater velocity as compared to fractional fluids
while for large time vice versa. Figures 15 and 16 are plotted
to see the validity of our obtained results for temperature
and velocity profiles by comparing to the Na et al. [12]
outcomes. It can be seen from these figures that, by ignoring
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Figure 7: Profiles of dimensionless velocity versus y for variation of α at altered values of time t, Gr � 5, λ � 2, λr � 3,Pr � 20, andQ � 0.5,
and f1(t) � H(t), f2(t) � e− 5t, andg1(t) � H(t) � g2(t).
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Figure 8: Profiles of dimensionless velocity versus y for variation of α at altered values of time t, Gr � 5, λ � 2, λr � 3,Pr � 20, andQ � 0.5,
and f1(t) � − H(t) andf2(t) � H(t) � g1(t) � g2(t).
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Figure 9: Profiles of dimensionless velocity versus y for variation of β at altered values of time t, Gr � 5, λ � 2, λr � 3,Pr � 20, Q � 0.5, and
f1(t) � f1(t) � H(t) � g1(t) � g2(t).
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Figure 10: Profiles of dimensionless velocity versus y for variation of α at altered values of time t, Gr � 5, λ � 2, λr � 3,Pr � 20, Q � 0.5, and
f1(t) � f1(t) � H(t) � g1(t) � g2(t).
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Figure 11: Profiles of dimensionless velocity versus y for variation of λ at altered values of time t, Gr � 5, λr � 3,Pr � 20, Q � 0.5, and
f1(t) � f1(t) � H(t) � g1(t) � g2(t).

16 Complexity



1.3

1.2

1.1

1

Ve
lo

ci
ty

0 0.2 0.4 0.6
y

0.8

β=0.5
α=0.4
t=0.5

λr = 1
λr = 2

λr = 3
λr = 4

(a)
Ve

lo
ci

ty

1.8

1.6

1.4

1.2

1
0 0.2 0.4 0.6

y
0.8

β=0.5
α=0.4
t=1

λr = 1
λr = 2

λr = 3
λr = 4

(b)

Figure 12: Profiles of dimensionless velocity versus y for variation of λ at altered values of time t, Gr � 5, λ � 2,Pr � 20, Q � 0.5, and
f1(t) � f1(t) � H(t) � g1(t) � g2(t).

Ve
lo

ci
ty

0 0.2 0.4 0.6
y

0.8

1.3

1.2

1.1

1

α=0.4
β=0.5
t=0.5

Q=1
Q=2

Q=3
Q=4

(a)

Ve
lo

ci
ty

0 0.2 0.4 0.6
y

0.8

1.6

1.4

1.2

1

α=0.4
β=0.5

t=1

Q=1
Q=2

Q=3
Q=4

(b)

Figure 13: Profiles of dimensionless velocity versus y for variation of Q at altered values of time t, Gr � 5, λ � 2, λr � 3,Pr � 20, and
f1(t) � f1(t) � H(t) � g1(t) � g2(t).
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the effects of Q and λr, our results are identical to those
obtained by [12].

5. Conclusions

)e aim of this work is to study the free-convection flow of
an OBF between two vertical parallel plates in the presence
of heat generation or absorption subject to generalized
boundary conditions. )e Caputo time-fractional derivative
is introduced by means of the generalized constitutive shear
stress and damped thermal flux by using generalized
Fourier’s law. Closed form solutions of fractional differential
equations are found by employing the Laplace and sine-
Fourier transforms which are suitable for the boundary
conditions. )e obtained solutions are expressed in the form
of generalized G-functions of Lorenzo and Hartley. )e
effects of fractional and physical parameters are graphically
presented in Figures 2–14. Some key findings of our work are

(i) For small values of time, temperature is decreasing
by increasing the values of fractional parameter and
vice versa

(ii) Velocity decreases by increasing the values of
fractional parameters for small values of time and
vice versa

(iii) Velocity is an increasing and decreasing functions
of λ and λr for small and large values of time t,
respectively

(iv) Velocity is a decreasing functions of absorption
coefficient Q for small and large values of time t

(v) Velocity of Maxwell ordinary fluid is higher as
compared to ordinary viscous and ordinary OBF for
small times, while for large times velocity of

fractional Maxwell fluid is higher as compared to
fractional viscous and fractional OBF

(vi) Our obtained results for temperature and ve-
locity profiles are identical to those obtained by
[12]

Nomenclature

u∓1 : Velocity(m/s)
T∓: Temperature(K)

t∓: Time(sec)
g: Gravitational acceleration(m/s2)
k: )ermal conductivity(W/mK)

cp: Specific heat (J/kgK)

Q0: Heat absorption coefficient (W/m3K)

Gr: )ermal Grash of number
Pr: Prandtl number
λ∓: Relaxation time (sec)
λ∓r : Retardation time (sec)
τ∓: Shear stress (kg/ms2)
μ: Dynamic viscosity (kg/ms)
ρ: Density (kg/m3)

]: Kinematic viscosity (m2/s)
βT: )ermal expansion coefficient (K− 1).
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