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In order to solve the problems of rapid path planning and effective obstacle avoidance for autonomous underwater vehicle (AUV)
in 2D underwater environment, this paper proposes a path planning algorithm based on reinforcement learning mechanism and
particle swarm optimization (RMPSO). A feedback mechanism of reinforcement learning is embedded into the particle swarm
optimization (PSO) algorithm by using the proposed RMPSO to improve the convergence speed and adaptive ability of the PSO.
+en, the RMPSO integrates the velocity synthesis method with the Bezier curve to eliminate the influence of ocean currents and
save energy for AUV. Finally, the path is developed rapidly and obstacles are avoided effectively by using the RMPSO. Simulation
and experiment results show the superiority of the proposed method compared with traditional methods.

1. Introduction

Autonomous underwater vehicle (AUV) has now become a
hotspot area in recent years, especially the multi-AUV
system due to the high parallelism, robustness, and col-
laboration of high efficiency [1–6]. +e path planning and
obstacle avoidance of AUV are the fundamental issues in the
path planning research field. +erefore, a path planning
algorithm is applied to plan an effective path and to avoid
obstacles autonomously in complex underwater environ-
ment, and it is still an open challenging issue in AUV [7–9].

+ere are a number of achievements reported about
studies of path planning in underwater environments. +e
AUV path planning algorithm can be divided into local path
planning and global path planning according to the envi-
ronment information. Local path planning, like rolling
window algorithm [10] and artificial potential field method
[11, 12], aims to avoid the obstacles quickly when a robot’s
sensor detects the surrounding obstacles. Global path
planning, such as A∗ algorithm [13, 14], fast search algo-
rithm [15], Dijkstra algorithm [16], probabilistic roadmaps
[17], estimation of distribution algorithm (EDA) based
approach [18], is a kind of path planning method used when
the map environment is known.

Particle swarm optimization (PSO) is a well-known
evolutionary algorithm that is generally regarded as an ef-
fective optimization method to solve path planning prob-
lems [19]. Roberge [20], Yan [21], and Kang [22] have
adopted the PSO algorithm for obstacle avoidance and
trajectory optimization of AUV path planning. Simulation
experiments show that the PSO algorithm has excellent
robustness and a fast convergence speed. However, the local
optimal solution is obtained for the PSO algorithm. It is fast
for the convergence speed of the algorithm in the initial stage
of the search, and in the later stage of the search, the
convergence speed of the algorithm is slow. +us, a few
improvements of this method have emerged. A cubic spline
optimization algorithm based on an improved PSO algo-
rithm is proposed to address multi-AUV path search
problems. +e path search is regarded as the parameter
optimization of a particular cubic spline. In this manner, the
convergence of the algorithm can be significantly improved
[23, 24]. Compared with the standard PSO algorithm, the
new hybrid PSO-LPM algorithm [25] for an AUV can find
better trajectories and successfully implement real-time
avoidance of static obstacles and moving obstacles. However,
the effect of ocean current is not considered in these algo-
rithms. Zeng [26] employed the quantum particle swarm
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optimization (QPSO) algorithm for the path search of AUVs.
Although the navigation of AUV in ocean current is studied,
the problem of convergence rate of the algorithm still exists.
+e problem of convergence rate is that the convergence rate
is not considered for the exiting PSO algorithm while the
ocean current influence on AUV is studied. However, for the
proposed RMPSO in the manuscript, not only is the ocean
current influence on the AUV convergence speed considered,
but also the convergence speed is improved substantially, so
the path planning is acquired quickly.

+is paper proposes an improved particle swarm opti-
mization algorithm based on the reinforcement mechanism
(RMPSO) integrating reinforcement learning mechanism
with particle swarm optimization algorithm. +e inertia
weight ω can determine the speed of convergence of the
particle swarm algorithm. +e value of ω is reduced linearly
with time for the traditional PSO which cannot adjust the
value of ω adaptively. +e introduction of the reinforcement
mechanism can adjust the value of ω adaptively and make
the algorithm converge faster. +e contributions and nov-
elties of the proposed algorithm can be summarized as
follows.

(1) In order to make the model of environment more
accurate and reduce the amount of calculation, a
convex polygon obstacle is built firstly, and then the
area of obstacle is extended to form a dangerous area.
+e MAKLINK phase-free network diagram is
constructed by using the dangerous area.

(2) In order to save energy consumption of AUV, an
ocean current evaluation function is proposed and it
is combined with velocity synthesis method.
According to ocean current evaluation function, the
new fitness function is introduced in the proposed
RMPSO to implement obstacle avoidance and esti-
mate the statement of particles.

(3) By combining reinforcement learning mechanism
with PSO, the parameter of particle swarm optimi-
zation can be adjusted adaptively according to the
surrounding environment. +e simulation results
demonstrate the effectiveness of the proposed
method compared with traditional methods.

+e rest of the paper is organized as follows. Section 2
introduces the AUV underwater path planning problem and
the thinking of applying PSO to the MAKLINK diagram.
Section 3 presents the RMPSO algorithm for path planning
and energy saving. Simulation results and experimental tests
are provided in Section 4. Finally, the conclusions and future
work are given in Section 5.

2. Problem Statement and Preliminaries

Our mission is to conduct a detailed investigation for the
suspicious target point through the AUV in the underwater
environment. +e underwater environment is harsh and
complex with a number of obstacles and ocean currents. +e
algorithm of path planning and obstacle avoidance, after the
AUV receives the information of targets, is discussed in

detail. +e underwater environment is modeled as shown in
Figure 1. Because the sizes of AUV and target appear very
small in the vast ocean, both of them are regarded as mass
points and their shapes are neglected. In Figure 1, the black
area indicates obstacles and the red pentagram represents
the suspicious target. +ere are some arrow lines indicating
the ocean current. In this environment, the ocean current
velocity is generally less than 1 knot, which is in the region
where the AUV can be balanced to reach the target directly.
A constant ocean current model is introduced to represent
the ocean current effect on AUV.

In order to guarantee that the AUV accomplishes the
task and gets access to the target successfully, it is necessary
to ensure that obstacles can be avoided and the influence of
ocean current on AUV can be eliminated. +erefore, the
RMPSO algorithm is proposed, and it can deal with ocean
current and plan a safe trajectory rapidly.

2.1.Modeling ofUnderwater Environment. Since the obstacles
in the marine environment are basically irregular concave
convex polygons, the MAKLINK graph theory for environ-
mental model is applied tomodel the obstacles more accurately.

2.1.1. Modeling of Obstacles. To avoid obstacles effectively
when the AUV works, a convex polygon obstacle model is
established by using the Graham algorithm [27] according to
the boundary information of the obstacle. +e dotted line is
shown in Figure 2(a). +e area of obstacle is extended, and
this extended distance is dmin m. +e solid line range is
shown in Figure 2(a), the space between the dotted line and
the solid line is named Danger Zone. Lastly, the distance
between AUV and obstacle meets d≥ dmin.

2.1.2. Modeling of Two-Dimensional Map. Assume that
there arem obstacles in the map and the ith obstacle Oi has n
vertices. +e mathematical model of obstacle Oi can be
expressed as follows:

Oi � xi1, yi1( 􏼁, xi2, yi2( 􏼁, . . . , xij, yij􏼐 􏼑􏽨 􏽩. (1)

m, n are the numbers of obstacles and vertices, respectively;
(xij, yij) means that the ith obstacle is the jth vertex co-
ordinate, i� 1, 2, 3,. . ., m and j� 1, 2, 3,. . ., n.

+e working environment of AUV can be modeled as

E � B, Oi, . . . , OM􏼂 􏼃, (2)

where B represents the environmental boundary.
A 2Dmapwith AUV is shown in Figure 2(b), and there are

four polygon obstacles, som is set as 4, where yellow and black
area represent Danger Zone and obstacles, respectively. +e
dotted line in Figure 2(b) represents the phase-free network
graph based on MAKLINK graph theory. +e MAKLINK
graph algorithm is introduced, shown as Algorithm 1.

2.2. )inking in PSO. +e PSO, as a kind of evolutionary
algorithm, imitates birds’ foraging behavior to solve the
optimization problem [28]. Particles optimize themselves
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continuously by tracking two extremums in each itera-
tion. +e first extremum is the optimal solution found by
each particle itself, which is called individual extreme
value. +e second extremum is the optimal solution found
by all particles at present, which is called global extremum
value. +e location of the particle will be close to the two

peak positions, namely, individual extreme value and
global extremum value, and the optimal position will be
searched.

Assume that there is a d-dimensional search space, and
there are two kinds of attributes for each particle, namely,
current position Xid and velocity Vid, Xid and Vid are given:
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Figure 2: Modeling of underwater environment. (a) Modeling of obstacle. (b) Modeling of 2D map.
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Figure 1: Complex marine environment.

(1) Initialize: connecting the vertices of convex polymorphism to each other and forming an aggregate L
(2) for find the shortest line k in the aggregate L
(3) repeat:
(4) if k passes through the obstacles then
(5) select the next line in the aggregate L
(6) else
(7) if the two outer angles formed by the line k and the corresponding convex polygon boundary are more than 180° then
(8) if the angle between k and other candidate lines exceeds 180° then
(9) select the next line in the aggregate L
(10) else delete other lines of the vertex and keep the shortest line k
(11) else select the next line in the aggregate L
(12) Until: All vertices are traversed and the phase-free network graph is constructed

ALGORITHM 1: MAKLINK graph algorithm.
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Vid(t + 1) � ωVid(t) + C1r1(t) Pid(t) − Xid(t)( 􏼁

+ C2r2(t) Pg d(t) − Xid(t)􏼐 􏼑,
(3)

Xid(t + 1) � Xid(t) + Vid(t + 1), (4)

where Vid is similar to Pid, Xid, and Pg d; Vid is the dth
dimension of the ith particle’s velocity. It is limited to the
interval [− Vmax, +Vmax] to avoid the explosion of the par-
ticles. Pid and Pg d represent the individual extreme value
and the global extremum value, respectively. Coefficients r1
and r2 are two pseudorandom scalar values. +e superscript
in (3) denotes the tth iteration. +e acceleration coefficients
C1 andC2 are 2 for almost all applications.+e factorω is the
inertial weight, and this inertial weight plays the role of
balancing the global search (large inertial weight) with the
local search (small inertial weight). +e performance of the
algorithm is improved by adaptation parameter during the
optimization process significantly. +e flow chart of the PSO
algorithm applied in path planning is shown in Figure 3.

3. Main Algorithm

In order to further explain how the PSO algorithm is im-
proved into RMPSO, mathematical models and formulas
with some discussions are given.

3.1. Fitness Function. +e evaluation of particles position is
determined by fitness function; then, the PSO algorithm
optimizes the position of particles according to fitness value
of particles. +e traditional fitness function is given:

F(i) � d(i), (5)

where

d(i) � 􏽘
D+1

d�1

������������������������

xid − xid− 1( 􏼁
2

+ yid − yid− 1( 􏼁
2

􏽱

. (6)

Equation (5) gives the Euclid distance of the particle
generation path, where xid and yid represent the ith particle
in the dth dimension.

(1) Penalty function: +e penalty function P (i) is in-
troduced in (7) to make sure that AUV is not close to
obstacles and is defined as follows:

P(i) �
0, paths are not blocked by obstacles,

E, paths are blocked by obstacles,
􏼨 (7)

where E is a positive constant and it is far greater
than the fitness value of other particles. When ob-
stacles are not traversed by a path formed by par-
ticles, P (i)� E. Otherwise, P (i)� 0. +e fitness
function is updated:

F(i) � d(i) · 0.5 + P(i) · 100, (8)

where 0.5 and 100 can be obtained by adjusting
parameters of program. Equation (8) effectively
prevents the particles from producing obstacles
when the PSO algorithm iterates.

(2) Ocean current evaluation function: After obstacles
can be avoided by AUV successfully, in the next step,
the ocean current evaluation function combined
with the velocity synthesis approach [29] is designed
to estimate the influence of ocean current on AUV.

As shown in Figure 4, a moving coordinate system is
established. A velocity vector Vc in the moving coordinate
system represents the ocean current speed affecting the
AUV. VE and VA represent the vectors of synthesis and
AUV’s speed. +e angles between VA/VE/VC and X-axis are
defined as α3, α2, α1, respectively.

Where Vcn is the vertical component of ocean current on
VE, and Van is the vertical component of AUV on VE. When
Vcn and Van are opposite, the side effects of ocean current

Obtain individual optimal
and global optimal

Optimize particle velocity
according to Eq. (3)

Optimize particle position
according to Eq. (4)

Whether iteration is
completed

Y
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Planning path

EndBegin
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Calculate the fitness of
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Figure 3: PSO algorithm applied in path planning.
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Figure 4: Velocity synthesis method.
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will be canceled, namely, VA sin(α3 − α2) � VC sin(α2 − α1).
When the ocean current speed is known, the ocean current
can be used for path planning by adjusting the speed of AUV
and the direction of each road section. +e desired speed VE
and path angle α3 of AUV can be figured out:

VA �
VC · sin α2 − α1( 􏼁

sin α3 − α2( 􏼁
,

α3 � arc sin
VC sin α2 − α1( 􏼁

VA

􏼠 􏼡 + α2.

(9)

Assume that the speed of AUV is known, then the PSO
generates the absolute value of the difference between the
expected angle and the actual angle of each path, and the
absolute value is |α3(id) − α(id)|. Considering that each path
length will affect the energy consumption of AUV, the angle
difference and path length are considered comprehensively,
and the ocean current evaluation function of each path
segment is |α3(id) − α(id)| · 0.3 + X(id) · 0.1. +e path
ocean current evaluation function generated by each particle
can be defined as follows:

α(i) � 􏽘
D+1

d�1
α3(id) − α(id)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · 0.3 + X(id) · 0.1􏼐 􏼑, (10)

where α3 (id), α (id) and X (id) are the expected angle, actual
angle, and path length of the dth segment path generated by
the ith particle, respectively. +e dimension of particles is D,
which indicates the number of path points generated by each
particle in the map. +e total number of path points in-
cluding starting point and ending point is d+ 2, and the
number of path segments generated is d+ 1.When the ocean
current is taken into consideration, the fitness function is
updated:

F(i) � d(i) · 0.5 + C · 100 + α(i) · 0.216. (11)

According to (11), not only are obstacles effectively
avoided, but also the influence on AUV of ocean current is
taken into account.

3.2. PSO Weight Updating Function. +e traditional PSO
algorithm has fast convergence speed in the early stage and
slow convergence speed in the later stage, and it cannot
adjust ω adaptively. +e increase of ω appropriately can
improve the global search ability of the algorithm, and the
decrease of ω improves the local search ability. +erefore, a
reinforcement learning mechanism [30, 31] is integrated
with PSO to overcome the shortcomings of the PSO algo-
rithm and plan the optimal path rapidly.

(1) Reinforcement learning mechanism: As shown in
Figure 5, F (i) is the adaptation value function that
can calculate the fitness value of each particle
according to the environment information, and F (i)
can also calculate the global optimal solution and
local optimal solution of the particle population.
+en, the inertia weights ω (i) of the particles are
adjusted adaptively according to F (i). When the

global optimal solution, local optimal solution, and
inertia weights ω (i) are obtained, the velocities and
positions of particles are updated according to (1)
and (2).+ese steps mentioned above are repeated to
optimize the inertia weights ω (i). +e adaptation
value function F (i) is defined as (11) and ω (i) is
defined as (13).
+e inertia weight update formula of the traditional
PSO algorithm is shown as (12). T is the number of
current iterations, and the inertia weight ω (i) de-
creases linearly with the increase of T. Compared
with the inertia weight formula of the traditional
PSO, the inertia weight for RMPSO algorithm can be
adjusted adaptively according to the surrounding
environment, so the convergence rate of RMPSO
increases.

ω(i) �
ω(i) − (ω(i) − 0.3)

T
. (12)

(2) PSO weight updating function: Based on the
above-mentioned reinforcement mechanism, (13)
is introduced into PSO weight updating function
to improve the convergence speed and accuracy of
the PSO algorithm. +e following equation is
defined:

ω(i) � 0.3∗ exp((F(i) − 100)∗ 0.03 − 0.63), (13)

where 0.3, 0.03, and 0.63 can be obtained by adjusting
parameters of program; ω (i) represents the weight of the ith
particle, and this weight has a positive relationship with F (i)
in (13). It is necessary to improve the global optimization
ability when the fitness of particles becomes larger. At the
same time, the particle’s weight will be increased according
to (13), which can improve the capability of global opti-
mization. When the particle fitness value becomes smaller,
leading smaller ω (i), the local optimization ability becomes
stronger.

+e velocities Vid of particles in the PSO algorithm are
updated as

Vid(t + 1) � ωi(t)Vid(t) + C1r1(t) Pid(t) − X(t)(t)􏼐 􏼑

+ C2r2(t) Pgd(t) − Xid(t)􏼐 􏼑.

(14)

Extremum Update velocity
and location

Particle

Environment

Fitness value

Figure 5: Application of reinforcement mechanism to PSO.
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3.3. Bezier Curve. A Bezier curve of degree n can be rep-
resented as

R(t) � 􏽘
n

i�0
PBi,n(t), t ∈ [0, 1], (15)

where t indicates the normalized time variable; Pi � [xi, yi]
T

is the coordinate vector of the ith control point with xi and yi
in the X and Y coordinates, respectively. Bi,n denotes the
Bernstein basis polynomials, representing the base function
in the expression of a Bezier curve and given by

Bi,n(t) � C
i
nt

i
(1 − t)

n− i

�
n!

i!(n − i)!
t
i
(1 − t)

n− i
, i � 0, 1, . . . , n.

(16)

From (15) and (16), the parameter equation for each
control point can be generated as follows:

P(t) � P0(1 − t)
3

+ 3P1(1 − t)
2
t + 3P2(1 − t)t

2
+ P3t

3
,

(17)

where t is the range of [0, 1]. +e Bezier curve is invariance
under translation and rotation, and this is called geometry
invariance property. In addition, the Bezier curve starts at
the starting point (t� 0) and stops at the ending (t� 1). In
other words, P0 �R (0) and Pn �R (1). +e Bezier curve has
some control points which form a control polygon as shown
in Figure 6.

By sampling four equidistance points in the polyline
generated by the RMPSO algorithm, these four points are P0,
P1, P2, P3. A series of dense points P (t) are obtained from
(17), and then the smooth curve is obtained by connecting
these points.

3.4.)eWholeProcedure of theProposedAlgorithm. +e flow
of the improved PSO algorithm is shown in Algorithm 2.+e
whole path planning algorithm is a loop procedure that is
repeated until an AUV gets close to the target. +e AUV
moves to its corresponding position, and ocean currents and
obstacles are taken into consideration at the same time. +e
procedure is performed through iterations to calculate the
optimal solution of path cost.

In Figure 7, the whole path planning process includes the
model of underwater environment, path planning, and path
optimization. In order to express the ocean environment

information integrally, the Graham algorithm is presented to
construct polygon obstacle model, and a 2D map is built
based on MAKLINK graph theory.

Firstly, a 2Dmap is established byMAKLINK theory and
the Graham algorithm. +en, a suboptimal path is planned
based on the Dijkstra algorithm. When the RMPSO is used
to continuously optimize the suboptimal path through it-
eration, the obstacles will be avoided effectively based on
MAKLINK phase-free network graph. Finally, in order to
further optimize the path, the Bezier curve is used to smooth
the optimized path.

4. Experiment Results and Analysis

+e effectiveness of the RMPSO algorithm is demonstrated,
and simulations are carried out with different ocean envi-
ronment. At the same time, the path lengths of ant colony
algorithm (ACO), PSO, Dijkstra, and RMPSO in the same
map are compared. +e algorithm convergence rates of the
ACO, PSO, and RMPSO are also compared. +e value of
dmin is set as 1.875m, which is three times the AUV’s length.
+e number of iterations and the population size are set as
150 and 80; the dimension and the maximum particle speed
are set as 8 and 3; the learning factors C1 and C2 are set as 2
and 2, respectively.

4.1. Validity Simulations. Figure 8 illustrates the environ-
ment model and the initial path planning route. +e un-
derwater workspace is designed as 200m× 200m. +e
starting position of AUV is (20, 180), and the target position
is (160, 90), which are represented by “Start” and “Target,”
respectively. +e yellow area and the black area are the
Danger Zone and obstacles, respectively. +e initial path is
formed using the Dijkstra algorithm and is shown in green in
Figure 8.+e nodes through which the route passes are S, P1,
P2, P3, P4, P5, P12, P12, P11, T, respectively. It can be clearly
seen that the green path along the dotted line is not the
optimal path and its length is 252.26m.

In Figure 8, the Dijkstra algorithm determines the
node, and it also determines the real line where the node is
located, so each segment of the path can move in the real
line and the path line will not intersect with obstacles
when moving. +e positions of P1, P2, P3, P4, P5, P12,
P13, P11 are adjusted continuously to determine the
shortest path of each segment, and finally the optimal path
is obtained.

4.1.1. Result in Stationary Environment. Based on the
Dijkstra algorithm, the final path optimization is performed
by employing the algorithm RMPSO. +e red route in
Figure 9(a) is the final path optimization path result. +e
AUV get close to the edge of the Danger Zone to avoid the
obstacle, and the path length is only 176.2m, which is
shorter than the length of initial path planning. Figures 9(b)
and 9(c) show the convergence trend of the RMPSO algo-
rithm which has converged to the optimal value in the 35th
iteration of the algorithm.

Control points

Smoothing path
P3

P2P1

P0

Figure 6: Bezier curve.
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4.1.2. Result in Ocean Current Environment. +e serious
influence of ocean currents in the complex underwater
environment may lead to AUVmission failure. It is assumed
that the AUV speed is 1.5m/s, the current speed is 0.3m/s,
and the direction is -75°. In Figure 10(a), the red solid line is

the optimized path of the RMPSO algorithm under the
influence of ocean currents. When the influence of ocean
currents is considered comprehensively, the position of the
path point is changed in each section of the path, and a
tortuous path is formed.

Building 2D map based on
MAKLING graph theory

2. Specific algorithm

1. Process of path
planning

Building polygon obstacle
model based on Graham

algorithm

Modeling of underwater
environment Path planning Path optimization

Smooth path based on Bezier
curve

Ultimate path optimization
based on RMPSO algorithm

Initial path planning based on
Dijkstra algorithm

Figure 7: +e whole path planning process.
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Figure 8: Initial path planning (Dijkstra algorithm).

(1) Initialize: the particles’ positions, velocity (V), the number of particles (P), maximum number of iterations (N), the global
optimum (gbest), the individual optimum (pbest (i))

(2) for maximum number of iterations (N)
(3) for all particles (i)
(4) Update the position and V according to (14)
(5) Calculate the fitness value of particles F (i) according to (11)
(6) if (F (i)< pbest (i)) then
(7) pbest (i)� F (i)
(8) end if
(9) if (pbest (i)< gbest) then
(10) gbest� pbest (i)
(11) end if
(12) update ω (i) according to (13)
(13) end for
(14) end for

ALGORITHM 2: RMPSO algorithm.
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Figure 10: +e influence of ocean currents is taken into account during path planning. (a) Path optimized by the RMPSO algorithm. (b)
Path smoothed by the Bezier curve.
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Figure 9: Optimized path through RMPSO. (a) Ultimate path planning (RMPSO). (b) Fitness convergence curve (RMPSO). (c) Path
distance convergence curve (RMPSO).
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In order to save AUV energy, the Bezier curve
smoothing path is used to reduce the number of turning
points. Shown as the solid blue line path in Figure 10(b), the
smoothed path has no obvious turning points.

4.2. Comparison Studies. In order to more clearly compare
the differences between the ACO algorithm [32], Dijkstra
algorithm [33], PSO algorithm, and RMPSO algorithm in
terms of convergence speed and total path length, the ocean
current influence is not considered for the above algorithms
based on the environment.

4.2.1. Result of the ACO Algorithm. Path No. 4 in Figure 11
shows the optimization results of the ant colony algorithm,
and it can be seen that the path is not the shortest path and
that the total path length is 188.86m.

4.2.2. Result of the PSO Algorithm. Path No. 1 in Figure 11
shows the optimization results of the particle swarm algo-
rithm, and it can be seen that the path is almost the same as
those of the RMPSO algorithm, with a total path length of
179.38m.

4.2.3. Comparison and Analysis. Figure 12 shows the
comparison of the convergence speed of three optimization
algorithms, namely, the ant colony algorithm, PSO algo-
rithm, and RMPSO algorithm. It can be seen that the red
curve representing RMPSO algorithm converges much
faster than the other two optimization algorithms for the
same number of convergences. Table 1 shows the specific
values of convergence of the three optimization algorithms.
Because the ant colony algorithm relies on pheromone
concentration to look for paths and there exists a lot of
instability, so it starts to converge only after the 56th it-
eration. +e inertia weight of the PSO algorithm decreases
linearly with the number of iterations and cannot take into
account the current particles’ condition, so it starts to
converge only in the 45th iteration. +e RMPSO can adjust
the inertia weights according to the surrounding envi-
ronment, and the algorithm starts to converge in the 22nd
iteration, which is much better than the other two
algorithms.

With the same number of iterations, the RMPSO al-
gorithm converges to the optimal value in the 22nd iteration,
while the ant colony and particle swarm algorithm converge
to the optimal value only in 45th and 56th iterations,
respectively.

Table 2 shows the comparison of the total path lengths of
the four optimization algorithms.+eDijkstra algorithm has
the longest path which is 252.26m, while the final path
length of the RMPSO algorithm converges to only 176.20m.
Obviously, the RMPSO algorithm is not only shorter than
the standard particle swarm algorithm in terms of path
length, but also much faster than the other two optimization
algorithms in terms of convergence speed.

4.2.4. Comparison Based on Raster Maps. Raster maps have
the advantage of being able to simply model and easily
validate new algorithms. +erefore, we apply RMPSO to
raster maps and compare it with the PSO and A∗ algorithms.

Figure 13 shows the paths planned by three algorithms,
with black squares as obstacles, PSO algorithm for line 1,
RMPSO algorithm for line 2, and A∗ algorithm for line 3.
+rough Table 3, we can learn that the path length of
RMPSO planning is better than those of the PSO and A∗
algorithms, where RMPSO has 3.75m more than A∗. Be-
cause the A∗ algorithm relies on the size of the adaptation
value of each raster in the raster map, there are many corners
in the planned path due to the calculation of each raster, so
the path length of the A∗ algorithm is more than those of
both PSO and RMPSO.

4.3. Real Experiment and Results. To further test the per-
formance of the proposed RMPSO algorithm in a real en-
vironment, the underwater experiment platform is
established, shown as Figure 14. +e underwater experiment
platform is mainly composed of underwater vehicle [34].
+e size of the underwater vehicle is shown in Figure 14,
with a length of 0.625m, a width of 0.457m, and a height of
0.326m; 8 thrusters are used for driving to achieve free
cornering. +e underwater vehicle has a maximum power of
1500W, weighing 20Kg, and can be equipped with cameras,
DVL, and other sensors.+e experiment was conducted on a
lake with an area of about 3000 square meters.

+e underwater vehicle platform is composed of a
control host CPU model i5, 8G RAM, 120G SSD with
Windows 10 operating system. It is also equipped with a 15″
high brightness LED screen, which can display real-time
underwater images, attitude, underwater vehicle depth,
temperature, and other information. +e ground control
platform controls the vehicle operation through cables. +e
experiment was conducted on the lake surface to verify the
algorithm to facilitate observation of the experiment. +e
real-time position of the underwater vehicle is obtained
through the control platform and aerial photography, and
then the trajectory of the underwater vehicle is plotted.

As shown in Figure 15, the convex polygonal obstacle
endpoints are created by floating balls, and then the
MKALINK 2D environment model is completed on the
computer.+e blue and green pentagons are the starting and
terminal points, respectively. +e black polygon is the ob-
stacle, and the yellow area is the Danger Zone.

+e vehicle speed is set as 1.5m/s in the experiment. In
Figures 16, Figure 16(a) shows the trajectory of the optimized
algorithm-controlled robot operation. +e yellow line is the
path planned by the ant colony algorithm, and the blue line is
the path planned by the RMPSO algorithm. It can be seen that
although the ant colony algorithm effectively avoids obstacles,
the path length is longer than that of the RMPSO algorithm.
Figure 16(b) shows the planning path of the RMPSO algorithm
considering the case with the influence of ocean currents, and
the red curve is the path map after Bezier curve optimization.
In the experimental process, the control board can largely
reduce the frequent control of the robot through this path and
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Table 1: Comparison of convergence speed of the optimization algorithms.

Optimization algorithm Iteration number/Total number Convergence value Convergence minimum
ACO 56/150 88.81 88.15
PSO 45/150 88.61 88.04
RMPSO 22/150 91.51 91.00

Table 2: Comparison of path distances.

Path planning algorithm Path distance (m)
Dijkstra 252.26
ACO 188.86
PSO 179.83
RMPSO 176.20
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Figure 15: Experimental environment on the lake.
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Table 3: Comparison of path distances in raster maps.

Path planning algorithm Path distance (m)
A∗ 50.53
PSO 47.29
RMPSO 46.78
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Figure 14: Underwater experiment platform.
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also effectively avoid the obstacles. +e stability of underwater
vehicle is improved greatly by using the proposed RMPSO to
obtain the shortest and smoothed trajectory, resulting in saving
energy efficiently.

5. Conclusion and Future Work

We propose an improved particle swarm algorithm based on
reinforcement mechanism combined with the ocean current
model to solve the path planning problem and energy
consumption problem of AUV. Simulation results dem-
onstrate that the proposed RMPSO path planning algorithm
can effectively avoid obstacles in the MAKLINK undirected
network graph. By comparing various algorithms with
RMPSO, the convergence speed of the proposed algorithm is
found to be much faster, but there are a few disadvantages
for the stability. In future research, the RMPSO algorithm
will have practical applications in the fields of underwater
search, rescue, and investigation. +e statistical analysis will
be used to prove the superiority of RMPSO, improve the
stability of the algorithm, and use it to solve underwater 3D
path planning problems [35].
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