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Intensive and repetitive simulations are required to study static and dynamic behaviours of systems. Particular phenomena such as
bifurcation and chaos require long simulation times and analysis. To check the existence of bifurcations and chaos in a dynamic
system, a fine-tuning procedure of a bifurcation parameter is to be carried out. )is increases considerably the computing time,
and a great amount of patience is needed to obtain adequate results. Because of the high switching frequency of a boost inverter,
the integration process of the dynamic model used to describe it uses an integration step that is in general less than one mi-
crosecond. )is makes the integration process time consuming even for a short simulation. )us, a fast, but accurate, method is
suitable to analyse the dynamic behaviour of the converter. )is work contains two topics. First, we develop a like-discrete
integration process that permits precise results in a very fast manner. For one switching period, we compute only two or a
maximum of three breaking points depending on whether we treat a continuous conduction mode (CCM) or a discontinuous
conduction mode (DCM) of the inductor current. Furthermore, with each segment of the dynamic trajectory, an exact analytic
formula is associated. )e second goal is to use this result to develop a discrete iterative map formulated as in standard discrete
time series models. )e Jacobian matrix of the found iterative map is defined and used to compute Lyapunov exponents to prove
existence of chaos. Performance of the developed study is positively evaluated by using classical simulations and fine-tuning a
bifurcation parameter to detect chaos. )is parameter is the desired reference of the inductor current peak. Results show that the
proposed scheme is very fast and accurate. )e study can be easily extended to other switching topologies of DC-DC inverters.

1. Introduction

DC-DC boost inverter, also known as a step up inverters, are
largely studied in literature [1–3]. )ese power electronic
devices transfer electric energy from a DC input voltage
source to an output load that requires a higher voltage. )e
efficiency of DC-DC boost inverter is good in general which
makes them largely employed in various applications.
Battery chargers, photovoltaic energy-based systems, and
DC motor drives are typical examples [4,5]. As for all DC-
DC power converter topologies, energy transfer in this
device is achieved by switching the state of a power transistor
at high frequencies. Output voltage or current is varied by
adjusting the control variable, commonly named the duty

cycle. )e operating steady-state regime can be done with an
open loop or closed loop configuration, by using the ap-
propriate controller. Important advances are reached in the
field of both voltage control and current control [6–8].

To perform successful and reliable practical control,
numerical simulations are of great importance. Intensive
and repetitive simulations are also needed to study particular
phenomena such as bifurcations [9,10] and chaos [10,11]. It
is shown in the literature that a lot of piecewise dynamic
systems exhibit chaotic behaviour [12,13]. DC-DC con-
verters are nonlinear periodically controlled systems that
operate under practically piecewise dynamic trajectories.
Chaotic regimes are confirmed for various switching power
converters.
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To check the existence of bifurcations and chaos in a
dynamic system, a fine-tuning procedure of a bifurcation
parameter is required. )is increases considerably the
computing time, and a great amount of patience is required
to establish adequate results. Because of the high switching
frequency of the PWM technique [14], to solve the model of
a DC-DC boost inverter, an integration step smaller than
one microsecond is required. )is makes the integration
process time consuming even for short simulations. )us, a
fast, but accurate, method is required to analyse the dynamic
behaviour of the converter.

)e first goal of this work is to develop a type-like
discrete integration process with precise and fast results. For
one switching period, we compute only two or a maximum
of three breaking points depending on whether we treat a
continuous conduction mode (CCM) or a discontinuous
conduction mode (DCM) of the inductor current [1,2].
Furthermore, with each segment of the dynamic trajectory,
an exact analytic formula is associated.

)e second goal of the paper is to use these results in
developing a discrete iterative map formulated as in stan-
dard discrete time series models [15,16]. A Jacobian matrix
as found with an iterative map is defined and used to
compute Lyapunov exponents [12,13] via the QR factor-
isation technique.

In switching inverter topologies, a current peak control
(CPC) is frequently used [3] to impose an adequate operating
point. In such case, the feedback control block is composed of
a saw tooth generator, a comparator, and a latch. A drive
circuit uses latch output to generate the gating pulses. )e
switch is turned on at the beginning of each switching period
and turned off if the inductor current becomes greater than a
reference value and remains in the off state until the beginning
of the next cycle. Simulations of this control system are
frequently done in Matlab/Simulink environment. In this
paper, we will demonstrate that there is no need for this
control block. Only a simple relation is needed to compute
transient duty cycle. Furthermore, the program is realised in
terms of a simple and fast Matlab m-file.

According to these goals, the paper is organised as
follows. Section 2 develops fundamentals of the inverter. It
includes the equivalent electrical circuit modelling the
DC-DC boost inverter, commutation equations, properties
of DCM and CCM regimes, and dynamical submodels as-
sociated with ON and OFF states. Section 3 develops exact
and analytical relations of dynamic variables for both ON
and OFF states. )is section proposes, in particular, a simple
correction of the time interval associated with DCM regime.
Section 4 deals with fundamental steady-state equations. For
both DCM regime and CCM regime, mean values of in-
ductor current and output voltage are detailed and
expressed. Effect of inductor inductance, output load re-
sistance, and switching period on the boundary between
DCM and CCM is graphically explained. Section 5 presents
the main steps of the dynamic simulation algorithm and
discusses how to implement the current peak control. In
Section 6, we develop the procedure of obtaining a discrete
map model and discuss how to conduct the computation of

Lyapunov exponents. Finally, Section 7 presents various
simulation cases. Results obtained in open-loop and closed-
loop control are presented and commented. )e discussion
is particularly focused on tuning the bifurcation parameter
and analysing chaos. Computing time is also considered in
the scheme evaluation.

2. Fundamentals of a DC-DC boost inverter

Figure 1 shows an equivalent circuit diagram of a boost DC-
DC inverter supplying a pure resistive loadRo. ParametersE,
L, and C denote, respectively, the input voltage source, the
inductance of the inductor, and the output filtering ca-
pacitor. In this work, we consider the most widely used
model [2, 8] characterised by ideal components. )is means
that the power transistor is an ideal switch; the inductor,
filtering capacitor, and diode are lossless. In the conduction
mode, the voltage across the diode is zero. )e power
transistor works as short circuit or as an open circuit
depending on whenever the signal command u(t) equals 1
or0. Along switching time, boost inverter equivalent circuit
shown by Figure 1 takes two forms as shown by Figures 2(a)
and Figure 2(b) [14]. During the ON state, the transistor
behaves like a short and no current flows through the diode.
)erefore, the inductor becomes in fact disconnected from
the parallel part (Ro − C) and the positive voltage of the
capacitor biases the diode. )e current flowing through the
inductor increases; as a result, the electromagnetic energy in
the inductance L increases. At the same time, the filtering
capacitor discharges into the load resistance Ro, and
therefore the voltage across the capacitor decreases. During
the OFF state, the power transistor behaves like an open
circuit, and the diode is conducting. )erefore, the input
voltage supplies directly to the load. )e voltage across the
capacitor increases and the current through the inductor
decreases because the electromagnetic energy is transformed
into electrostatic energy.

Command u(t) is a PWM signal characterised by a
switching period T and a duty cycleα. In the following, this
period will be divided into three time intervals t1, t2, and t3 as
indicated by equations (1) and (2). )e first interval cor-
responds to the ON state given by (u(t) � 1). )e second
and third intervals are associated with the OFF state cor-
responding to (u(t) � 0). In these equations, coefficients
(α, β, c) correspond, respectively, to ratios of (t1, t2, t3) with
respect to the switching periodT. Coefficient αis known by
duty cycle. Coefficient β is the complement of α in the case of
continuous conduction mode (CCM). Coefficient c is the
complement of (α + β) in the case of discontinuous con-
duction mode (DCM).

t1 � αT,

t2 � βT,

t3 � cT,

(1)

t1 + t2 + t3 � T,

α + β + c � 1.
(2)
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)is organisation aims to take into account continuous
conductionmode (CCM) and discontinuous conductionmode
(DCM) of inductor current. As previously indicated, inductor
current iℓ(t) increases during the ON state and decreases
during the OFF state. Let us consider that the switching period
T begins with an inductor current Iℓ0 and a capacitor voltage
Vc0, and just when theOFF state takes place, these variables are,
respectively, Iℓ1and Vc1. If iℓ(t) in the OFF state remains
positive until the end of the period, we have the CCM case and
(t3 � 0); therefore, (t2 � βT � (1 − α)T). At the end of the
period T, the current through the inductor and voltage across
the capacitor are denoted Iℓ2 and Vc2, respectively. If
iℓ(t)reaches zero before the period finishes, we have the DCM
case, (t3 > 0) and(t2 � βT< (1 − α)T). In this case, the current
through the inductor remains null during t3 because the diode
is biased. However, the voltage across the capacitor decreases
exponentially from the value Vc2 to a third value Vc3.
Figures 3(a) and 3(b) sketch this scenario in terms of inductor
current iℓ(t) and capacitor voltage vc(t). )ese figures cor-
respond to the transient regime and report the possible
breaking points for a DCM case. For both DCM and CCM
regimes, we establish the following commutation equation:

vℓ � E − (1 − u)vo,

vo � vc.
(3)

)us, without any particular difficulty, the following
dynamic model is derived:

diℓ

dt
�

E − (1 − u)vc

L
,

dvc

dt
�

(1 − u)Roiℓ − vc

RoC
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

Depending on whether we are dealing with an ON state
or an OFF state, we have to treat two different models. In the
ON state, the model becomes equivalent to two independent
submodels as given by systems (5) and (6). In the OFF state,
we have the model given by systems (7) and (8).

diℓ

dt
�

E

L
 , (5)

dvc

dt
� −

vc

RoC
 , (6)

diℓ

dt
�

E − vc

L
 , (7)

dvc

dt
�

Roiℓ − vc

RoC
 (8)

For the OFF state case, isolating vcfrom (7) and estab-
lishing its time derivative yields

vc � E − L
diℓ

dt
, (9)

dvc

dt
� − L

d2iℓ
dt

2 . (10)

)us, for the OFF state case, equations (9) and (10),
combined with equation (8), result in

d2iℓ
dt

2 +
1
τc

diℓ

dt
+

iℓ

τℓτc

−
Ier

τℓτc

� 0, (11)

τc � RoC,

τℓ �
L

Ro

,

Ier �
E

Ro

.

(12)

)e second-order linear ODE (11) furnishes the fol-
lowing characteristic polynomial:

s
2

+
s

τc

+
1

τℓτc

� 0. (13)

With the condition(L< 4R2
oC), this polynomial admits

two complex conjugate poles which means that we have a
damped oscillating system. )e time constant (τ) and the
pulsation (ω) are expressed by

s � −
1
τ
± jω,

τ � 2τc � 2RoC,

ω �
1
τ

�����
2τ
τℓ

− 1



.

(14)

E
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Figure 1: Boost inverter equivalent circuit.
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3. Temporal Solution of the
Mathematical Model

3.1. Analytical Solution of ON State Case. Here, we have to
solve a simple dynamic system ((5) and (6)) which is
completely decoupled into two independent subsystems.)e
inductor current and capacitor voltage of the boost inverter
are of the form

iℓ(t) � Iℓ0 +
E

L
t,

vc(t) � Vc0e
− t/τc( ).

(15)

)is solution is verified by the construction of (iℓ(0) �

Iℓ0) and(vc(0) � Vc0). Iℓ1 and Vc1 of iℓ(t) and vc(t) at (t1 �

αT) are expressed by

Iℓ1 � iℓ t1(  � Iℓ0 +
EαT

L
,

Vc1 � vc t1(  � Vc0e
− αT/τc( ).

(16)

3.2. Analytical Solution of OFF State Case. Solution iℓ(t) of
(11) is naturally composed of two terms. )e first term is the
particular solution corresponding to the case where iℓ(t)is
constant. )e second one is the homogeneous solution
which is a sinusoidal damped variable. )us, we get

iℓ(t) � Ier + η1 sin(θ) + η2 cos(θ) e
− (t/τ)

, (17)

θ � ωt. (18)

For(t � 0), we have (iℓ(0) � Iℓ1) which implies

η2 � Iℓ1 − Ier. (19)

To identify parameter η1, we obtain the derivative with
respect to time of equation (17) and make it equal to
equation (7). )erefore, we obtain

diℓ

dt
� − ωη2 +

η1
τ

 sin(θ) +
η2
τ

− ωη1 cos(θ) e
− (t/τ)

�
E − vc

L
.

(20)

By applying this expression at (t � 0), one deduces

η1 �
Iℓ1 − Ier

ωτ
+

E − Vc1

Lω
. (21)

)e behaviour of the voltage across the capacitor is
derived from equation (20). )is results in

vc(t) � E + η3 sin(θ) + η4 cos(θ) e
− (t/τ)

, (22)

η3 � Lω η2 +
η1
ωτ

 ,

η4 � Lω
η2
ωτ

− η1 .

(23)

To compute values Iℓ2 of iℓ(t) and Vc2 of vc(t) at t2, let us
first assume that we are in the CCM regime by setting (c �

L

E C

iℓ

υℓ
υoυc Ro

ic io

(a)

L

E C

iℓ

υℓ

υc υo

ic io

Ro

(b)

Figure 2: (a) Equivalent circuit in ON state case. (b) Equivalent circuit in OFF state case.
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Figure 3: (a) Illustrative evolution of inductor current. (b) Illustrative evolution of capacitor voltage.
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0) and(β � (1 − α)) or equivalently by setting (t3 � 0)

and(t2 � (1 − α)T). )e following equations are obtained.
Note that all coefficients (η1, η3, η4, η5)are functions
of(δ � ωβT).

Iℓ2 � Ier + η5 η1 sin(δ) + η2 cos(δ) , (24)

Vc2 � E + η5 η3 sin(δ) + η4 cos(δ) , (25)

η5 � e
− (δ/ωτ)

,

δ � ωβT,

β � (1 − α).

(26)

If Iℓ2 computed by equation (24) is positive, the as-
sumption of CCM holds and the computed values of Iℓ2 and
Vc2 are valid. If Iℓ2 is negative, this means that the as-
sumption is false and we are in DCM case. Consequently,
coefficient β is less than (1 − α) and must be equal to the
solution satisfying

Iℓ2 � Ier + η5(δ) η1(δ)sin(δ) + η2 cos(δ)  � 0. (27)

)is relation is nonlinear in terms of β and needs to be
solved iteratively by the Newton–Raphson method. To ovoid
additional computing time, we propose to compute β by
linearizing iℓ(t) around (t � 0) and setting the result to zero.
)is approach is based on the fact that the damping time
constant (τ) is big enough when compared with the
switching period, which is true in the real world. So, applying
a first-order Taylor expansion to equation (20) yields

iℓ(t) � Iℓ1 +
diℓ

dt
|t�0,

t � Iℓ1 −
Vc1 − E

L
 t.

(28)

)us, we obtain

β �
LIℓ1

Vc1 − E( T
. (29)

)e voltage of the capacitor Vc2 at (t2 � βT) is
recomputed by using equation (25) that continues to be valid
with the new value of(β< (1 − α)). During the remaining
time interval(t ∈ [(α + β)TT]), the inductor current is kept
null; (iℓ(t) � Iℓ2 � 0). However, the voltage across the ca-
pacitor decreases exponentially from the value Vc2 to a third
valueVc3. At the end of the switching period, this voltage
takes the value of

Vc3 � Vc2e
− (cT/τ)

,

c � 1 − α − β.
(30)

Note finally that according to Figures 3(a) and 3(b), the
mean values of the current through the inductor and the
voltage of the capacitor are calculated at each switching
period by the following equations. In the case of CCM, the
third term in equation (31) must be removed because cis null
in this situation.

Iℓ �
α Iℓ0 + Iℓ1(  + β Iℓ1 + Iℓ2( 

2
, (31)

Vc �
α Vc0 + Vc1(  + β Vc1 + Vc2(  + c Vc2 + Vc3( 

2
. (32)

4. Fundamental Steady-State Equations

As previously outlined, there are two possible modes for the
boost converter: CCM and DCM. In CCM, the inductor
current flows continuously above zero during the totality of
the switching period.)e output voltage can be described by
a relatively simple expression making control reliable via the
duty cycleα. In addition, the inductor voltage waveform is
almost a constant signal that results in an inductor current
ripple close to a triangular signal. In the DCM, the inductor
current reaches zero before the end of the switching period.
)e output voltage is described by a high nonlinear equation
in terms of the duty cycle making it difficult to control.
Figures 4(a) and 4(b) sketch general shapes of the inductor
and diode current in the case of DCM regime.

To evaluate the input current and the output voltage in
steady operating conditions, we use the small ripple ap-
proximation hypothesis that permits to replace instanta-
neous variables in minor time intervals by their mean values.
Figures 5(a) and 5(b) report waveforms of inductor voltage
vℓ(t) and capacitor current ic(t) during one switching pe-
riod. During the three possible time intervals forming the
switching period as defined by Figures 3(a) and 3(b), from
Figures 5(a) and 5(b), we establish

t ∈ t1 � αT: Vℓ � E, Ic � −
Vo

Ro

� − Io,

t ∈ t2 � βT: Vℓ � E − Vo, Ic � Iℓ − Io,

t ∈ t3 � cT: Vℓ � 0, Ic � − Io.

(33)

By applying the principle of charge-discharge balance of
inductor electromagnetic energy and capacitor electrostatic
energy, mean values Vℓand Ic of vℓ(t) and ic(t) must be zero.
So, we deduce

αE + β E − Vo(  � 0,

− (1 − β)Io + β Iℓ − Io(  � 0.
(34)

Solving these equations for unknown Vo andIℓ, we
generate the steady-state solution:

Vo �
(α + β)E

β
, (35)

Iℓ �
Io

β
�

(α + β)Ier

β2
. (36)

Also, note that equations (35) and (36) established above
for steady state of CCM case can be found from models (5)
and (6) if we substitute variable (1 − u) by its mean value
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βand we set time derivatives to zero as in classical contin-
uous dynamic systems.

4.1. Continuous Conduction Mode. In the CCM case, we
have (β � (1 − α)), and consequently equations (35) and
(36) become

Vo �
E

1 − α
, (37)

Iℓ �
Ier

(1 − α)
2. (38)

With this assumption, the peak-to-peak ripple of the
inductor current and capacitor voltage is approximated by
the following equations:

Δiℓ ≃
EαT

L
, (39)

ΔvC ≃
IerαT

C(1 − α)
. (40)

4.2. Discontinuous Conduction Mode. In the DCM case, the
initial inductor current Iℓ0 is zero and peak current Iℓ1 is
such that

Iℓ1 �
EαT

L
. (41)

)e inductor peak current Iℓ1 and diode average current
Id are defined by

Id � Io �
βIℓ1

2
�
βEαT

2L
. (42)

)is allows us to deduce

β �
KVo

αE
,

K �
2L

RoT
.

(43)

Substituting β into equation (35) results in

KVo Vo − E(  − (αE)
2

� 0. (44)

Solving equation (44) in terms of Vo allows us to define
the output voltage and input current:

Vo �
E

2
1 +

������

1 +
4α2

K



⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (45)

Iℓ �
Eα2 + KVo 

RoK
. (46)

Just when the steady-state operating point passes from the
CCM to the DCM regime, i.e., just at the boundary separating
these regimes, the voltage solution given by equation (45)
becomes greater than that of equation (35). )at is:

tT

ON OFF

0
t1 t2 t3

iL (t)

Iℓ1

(a)

tT0

ON OFF

t1 t2 t3

iL (t)

Iℓ1

(b)

Figure 4: (a) General shape of inductor current in DCM. (b) General shape of diode current in DCM.

tT

ON OFF

E

E – Vo

0

t1 t2 t3

υℓ (t)

(a)

–Io

(Iℓ – Io)

–Io

t
T

0

ON OFF

t1 t2 t3

ic (t)

(b)

Figure 5: (a) Simplified waveform of inductor voltage. (b) Simplified waveform of capacitor current.
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1 +

������

1 +
4α2

K



>
2

1 − α
. (47)

Arranging this, one concludes that DCM is characterised
by the following inequality:

f(α) � α(1 − α)
2 >K. (48)

Function f(α) of inequality (48) passes by a maximum
point defined by (fmax � 4/27) for (α � 1/3) as illustrated by
Figure 6. If (K≥fmax), the inductor current is continuous
over the complete range of the switching period and rela-
tions (37) and (38) hold for α ∈ 0 1 ( . If (K<fmax), the
inductor current has a discontinuous mode in the interval
α ∈ α1 α1 (  and a continuous mode in the remaining

intervals α ∈ 0 α1 (  and α ∈ α2 1 ( . Parameters
α1and α2 are the solutions of equation(f(α) � K). In the
central region where we have DCM, the output voltage and
input current are given by equations (45) and (46).

5. Dynamic Simulation Algorithm and Control

Now that all necessary relations to realise the dynamic
simulation of the boost converter are available, it is of
importance to note that an integration step that corresponds
to a one switching period is needed. We will first present
how the integration process works. Second, we will discuss
the possibility of implementation of the classical switching
controller.

5.1. Dynamic Simulation Algorithm. )e dynamic simula-
tion algorithm is simple. It is based on the following main
steps:

(i) Set the initial inductor current and capacitor voltage
(iℓ � Iℓ0 � 0) and (vc � Vc0 � 0) and save these
values as a first point.

(ii) Compute (Iℓ1, Vc1) and save this point.
(iii) Compute (Iℓ2, Vc2) using (β � 1 − α). If (Iℓ2 ≥ 0),

save this point and go to step (iv); otherwise, go to
step (v).

(iv) Reinitialise with (Iℓ0 � Iℓ2) and (Vc0 � Vc2) and go
to step (ii).

(v) Recompute β and Vc2 as previously explained and
save the new point (0, Vc2). )en, compute Vc3, set
(Iℓ3 � 0), and save this point.

(vi) Reinitialise with (Iℓ0 � 0) and (Vc0 � Vc3) and go to
step (ii).

It is obvious that for one period, we have to save two or
three points depending on whether we are in the CCM or
DCM case. Furthermore, if we zoom in a plotted curve il-
lustrating the result, we find a linear piecewise trajectory.
)e reason is evident.

5.2. Dynamic Control. Various interesting works in the
field of control design of DC-DC boost inverter, such as

classical control [8], sliding mode control [17], fuzzy
control [18], and so on, can be found in the literature.
Widely used approaches develop a second-order con-
troller based on transfer functions for small signals. Here,
the main goal is to implement the classical switching
controller, which is by nature a current peak controller
(CPC). )e feedback control block is composed of a saw
tooth generator, a comparator, and a latch. )e output of
the latch is used by the drive circuit that generates the
gating pulses. )e switch is turned on at the beginning of
each switching period and turned off if the inductor
current becomes greater than a programmed reference
value Iref and remains in the OFF state until the beginning
of the next cycle. During simulation, this is equivalent to
computing the PWM duty cycle α from the initial current
Iℓ0 and reference current Iref . )us, at the beginning of the
period, duty cycle α is computed by equation (49) which is
equivalent to equation (41) where Iℓ1 is set equal to Iref .
)e simulation algorithm previously presented remains
practically the same.

α �
Iref − Iℓ0( L

TE
. (49)

6. Discrete Map and Lyapunov Exponents of
DC-DC boost inverter

In this section of the paper, the load resistance is chosen to
ensure that the circuit operates theoretically in the con-
tinuous mode.)e sequence of the braking points computed
for a set of some consecutive switching periods is used to
define a discrete iterative map process. )e obtained time
series added to the Jacobian matrix of the map permits the
computation of Lyapunov exponents. If the largest Lyapu-
nov exponent (LLE) is positive, the system enters in a chaotic
behaviour. Points corresponding to the minimum peak
current form the selected discrete time series. In this sense,
let us indicate two successive switching periods by (k, k + 1)

and denote the couple (Iℓ0, Iℓ2) of inductor current and the
corresponding couple (Vc0, Vc2) of voltage capacitor as
follows:

4/27

f (α)

1

CCMDCMCCM

K = 2L/TR

1/3

α1 α2

α

Figure 6: DCM-CCM boost inverter curve.
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Iℓ0 � xk,

Iℓ2 � xk+1,

Vc0 � yk,

Vc2 � yk+1.

(50)

In this way, equation (50) of the duty cycle and equations
(21), (23), and (26) of coefficients (η1, η3, η4, η5) are refor-
mulated as functions of the discrete iterative variables.

δ � δ xk(  � ωT −
Lω
E

Iref − xk( ,

η0 � η0 xk(  � e
− 2 ωT− δ xk( )( )/ωτ( ),

η1 � η1 xk, yk(  �
η2
ωτ

+
E − η0 xk( yk

Lω
,

η3 � η3 xk, yk(  � Lω η2 +
η1 xk, yk( 

ωτ
 ,

η4 � η4 xk, yk(  � Lω
η2
ωτ

− η1 xk, yk(  ,

η5 � η5 xk(  � e
− δ xk( )/ωτ( ).

(51)

)is leads to the iterative process defined by

δ xk(  � ωT −
Lω
E

Iref − xk( , (52)

fx xk, yk(  � Ier + η5 xk(  η1 xk, yk( sin δ xk( ( 

+ η2 cos δ xk( ( ],
(53)

fy xk, yk(  � E + η5 xk(  η3 xk, yk( sin δ xk( ( 

+ η4 xk, yk( cos δ xk( ( ],

xk+1 � fx xk, yk( ,

yk+1 � fy xk, yk( .

(54)

Let J(x, y) denote the Jacobian matrix associated with
the system above. )e computation of this matrix at each
iteration furnishes the possibility to compute Lyapunov
exponents λ via the QR factorisation method. )is is the
most suitable method to compute these exponents for a time
series process with known Jacobian. At each iteration k, the
Lyapunov exponents are computed as follows:

λ(k) �
1
k


k

Log(|Diag(R)|). (55)

In this relation, Diag(R) denotes the diagonal of matrix
R computed in Matlab environment by the following syntax.
In this process, matrix Q is initialised by the identity matrix.
Note also that because J(x, y) is space consuming, the
development of its elements is reported in the Appendix.

[Q, R]k+1 � qr JkQk( . (56)

Kaplan–Yorke dimension [19] is a powerful tool that
describes the complexity of chaotic attractors. )is di-
mension is also known by the Kaplan–Yorke conjecture.
First, Lyapunov exponents are arranged in decreasing order
(λ1 > λ2 > · · · λn), and index j corresponding to inequality
(57) is determined. )en, the conjecture is that the di-
mension of the attractor is given by (53). For the studied
case, equation (58) is equivalent to equation (59).



j

i�1
λj ≥ 0,



j+1

i�1
λj < 0,

(57)

Dky � j +
1

λj+1






j

i�1
λi, (58)

Dky � 1 +
λ1
λ2



. (59)

Reference peak current Iref will be considered a bifur-
cation parameter. By varying Iref , we will observe how the
circuit changes its behaviour from a stable system to a
chaotic system via the period-doubling mechanism.

7. Results and Comments

)eboost inverter parameters used to illustrate this study are
reported in Table 1. Results are carried out in Matlab en-
vironment. Necessary software is written in a m-file code.
For all simulations, the initial inductor current and capacitor
voltage are set to zero.

According to these parameters, the frequency and time
constant characterising dynamic inverter behaviour in the
OFF state are (f � 1.415 kHz) and (τ � 480 μs), respec-
tively. )is time constant is 4.8 times greater than the
switching period. Equation (48) implies that the DCM
boundary coefficient is (K � 1> 4/27). )at is, the inverter
works in CCM for full range of the duty cycle because the
used rated resistance load is less than the critical load re-
sistance whose value is (Ro � 135Ω). To simulate a DCM
case, we use (Ro � 200Ω). In this case, we have
(K � 0.1< 4/27) that results in a DCM in the range
α ∈ 0.1330 0.5874 ( .

7.1. Simulation No. 1. Two simulation tests are carried out.
)e first test corresponds to (α � 0.5) and (Ro � 20Ω). A
CCM regime is expected. Using equation (38), we found
(Iℓ � 1.967A). )e second simulation is realised with (α �

0.3) and (Ro � 200Ω) and a DCM regime is expected.
Using equation (46), we found(Iℓ � 0.1237A). Figures 7(a)
and 7(b) show steady-state evolution of inductor current
for these tests, respectively, and confirm the predicted
Iℓvalues.
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7.2. Simulation No. 2. We consider a load resistance
(Ro � 20Ω), and we simulate two tests of inductor current
peak: (Iref1 � 2A) and(Iref2 � 3A). Figures 8(a) and 8(b)
show steady-state evolution of inductor current for these two
tests, respectively. Iℓ2 and Vc2 of inductor current and ca-
pacitor voltage at the end of the switching period are saved.
Figures 9(a) and 9(b) show phase portraits of Iℓ2 and Vc2 in
dot plot form. Figures 10(a) and 10(b) show the dot plot of
(Iℓ2 � f(α)) and (Vc2 � f(α)), respectively. All these fig-
ures show without ambiguity the existence of chaos phe-
nomenon in boost DC-DC dynamics when controlled in
CPC type. To show areas with period doubling and those of

intermittence, a fine variation of bifurcation parameter is
required.

7.3. Simulation No. 3. )e load resistance (Ro � 20Ω) is
used. We tune the bifurcation parameter Iref with a small
variation in the range of 1A to 5A. For each value of Iref , we
discard the transient part of the trajectory and save the
remaining steady-state part. At the end, all results are plotted
in dot plot form. Lyapunov exponents are calculated at the
same time of dynamic trajectories. Figures 11(a) and 11(b)
show bifurcation diagrams of inductor current and capacitor

Table 1: System parameters.

Parameter Notation Value
Rated input voltage E 10V
Rated resistance of the load Ro 20Ω
Rated switching period T 100 μs
Inductor inductance L 1000 μH
Filtering capacitor C 12 μF
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Figure 8: (a) CCM chaotic steady state of inductor current in closed-loop test with (Iref � 2A). (b) CCM chaotic steady state of inductor
current in closed-loop test with (Iref � 3A).
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Figure 7: (a) CCM steady state of inductor current in open-loop case. (b) DCM steady state of inductor current in open-loop case.
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Figure 9: (a) Phase portrait of CCM chaotic steady state of inductor current in closed-loop test with (Iref � 3A). (b) Phase portrait of CCM
chaotic steady state of voltage capacitor in closed-loop test with (Iref � 3A).
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Figure 10: (a) Closed-loop CCM chaotic steady state of inductor current versus duty cycle (Iref � 3A). (b) Closed-loop CCM chaotic steady
state of capacitor voltage versus duty cycle (Iref � 3A).
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Figure 11: (a) Bifurcation diagram of inductor current. (b) Bifurcation diagram of capacitor voltage.
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voltage, respectively. We observe the phenomenon of period
doubling and then the entrance of the system in a chaotic
behaviour. Figures 12(a) and 12(b) furnish more details on
this behaviour. It is observed that period doubling begins
with (Iref � 1.69A). )en, at(Iref � 2.37A), (Iref � 2.63A),
and (Iref � 2.7A), the system enters in 4T, 8T, and 16T type
orbits, respectively. Two intermittence [20] areas are ob-
served around (Iref � 4.1A) and(Iref � 4.9A). Figures 13(a)
and 13(b) show Lyapunov exponents and Kaplan–Yorke
dimension evolution versus the bifurcation parameter. As
the system is of dimension 2, we generate two Lyapunov
exponents. It is found that one (LLE) becomes positive for a
bifurcation parameter (Iref > 2.8A). )is indicates the be-
ginning of a chaotic region.)e second exponent is negative.
)e largest exponent is red colored while the other is blue
colored. Note that LLE detects intermittence areas.
Kaplan–Yorke dimension evolution is similar to LLE be-
cause LLE here is dominant. In the chaotic region, this
dimension increases but remains inferior to 2, the physical
dimension of the system.

8. Conclusion

We have developed in this paper a study on DC-DC boost
inverter based on two levels. )e first level of the paper
develops a like-discrete integration process based on de-
termination of precise analytical relations of breaking points
characterising the switching behaviour of DC-DC boost
inverter. )e presented scheme gives good results in a very
fast manner because for one switching period, we compute
only two three breaking points depending on whether we
have a continuous conduction mode (CCM) or a discon-
tinuous conduction mode (DCM) of the inductor current.
Performance of the developed analytical solution is thus
successfully proved. )e second level of the paper develops a
discrete iterative map as in standard discrete time series
models. Jacobianmatrix of the found iterative map is defined
and used to compute Lyapunov exponents. )ese exponents
confirm the existence of chaos in the system behaviour when
varying the reference value of the controlled inductor
current. )is level of the study is limited to CCM regime. On
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Figure 12: (a) First zoom on bifurcation diagram of inductor current. (b) Second zoom on bifurcation diagram of inductor current.
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Figure 13: (a) Effect of bifurcation parameter on Lyapunov exponents. (b) Effect of bifurcation parameter on Kaplan–Yorke dimension.
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the other hand, it is obvious that established iterative map
can be easily extended to other inverter topologies such as
interleaved configurations [21].

Appendix

A. JacobianMatrix of theDiscrete IterativeMap

First, compute these preliminary coefficients:

zδ
zx

�
Lω
E

,

zη0
zδ

�
2η0
ωT

,

zη1
zδ

� −
Y

Lω
zη0
zδ

,

zη1
zx

�
zη1
zδ

zδ
zx

,

zη1
zy

� −
η0
Lω

,

zη3
zx

�
L

τ
zη1
zx

,

zη3
zy

�
L

τ
zη1
zy

,

zη4
zx

� − ωL
zη1
zx

,

zη4
zy

� − ωL
zη1
zy

,

zη5
zδ

� −
η5
ωτ

,

zη5
zx

�
zη5
zδ

zδ
zx

.

(A.1)

Secondly, compute the Jacobian matrix by

J(x, y) �

zfx

zx

zfx

zy

zfy

zx

zfy

zy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

J11 J12

J21 J22

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

J11 �
zFx

zx
� η1 sin(δ) + η2 cos(δ) 

zη5
zx

+ η5
zη1
zx

sin(δ)

+ η5 η1 cos(δ) − η2 sin(δ) 
zδ
zx

,

J12 �
zFx

zy
� η5

zη1
zy

sin(δ),

J21 �
zFy

zx
� η3 sin(δ) + η4 cos(δ) 

zη5
zx

+ η5 η3 cos(δ) − η4 sin(δ) 
zδ
zx

+ η5
zη3
zx

sin(δ) +
zη4
zx

cos(δ) ,

J22 �
zFy

zy
� η5

zη3
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sin(δ) +
zη4
zy

cos(δ) .

(A.2)
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