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Whether in intelligent transportation or autonomous driving, vehicle detection is an important part. Vehicle detection still faces
many problems, such as inaccurate vehicle detection positioning and low detection accuracy in complex scenes. FCOS as a
representative of anchor-free detection algorithms was once a sensation, but now it seems to be slightly insufficient. Based on this
situation, we propose an improved FCOS algorithm.*e improvements are as follows: (1) we introduce a deformable convolution
into the backbone to solve the problem that the receptive field cannot cover the overall goal; (2) we add a bottom-up information
path after the FPN of the neck module to reduce the loss of information in the propagation process; (3) we introduce the balance
module according to the balance principle, which reduces inconsistent detection of the bbox head caused by the mismatch of
variance of different feature maps. To enhance the comparative experiment, we have extracted some of the most recent datasets
from UA-DETRAC, COCO, and Pascal VOC. *e experimental results show that our method has achieved good results on
its dataset.

1. Introduction

In recent years, with the rapid development of the automobile
industry, the number of motor vehicles in the city has also
developed rapidly. By the end of 2020, the number of motor
vehicles in the country has reached more than 300 million,
followed by the colossal traffic pressure and many traffic
regulation problems. When the traffic pressure and traffic
control problems become more serious, it will bring many
inconveniences to the production and life of urban residents
and will also restrict the rapid development of cities and towns.
On the other hand, with the gradual maturity of artificial in-
telligence, the application of artificial intelligence in vehicles has
also received extensive attention, and the application of vehicle
detection is the focus of this article. Moreover, vehicle detection
covers more and more areas, such as road traffic monitoring,
the automatic lifting of the entrance guard of the community,
some charging pile parking places, and automated driving.

Pedestrians or private cars are often parked in un-
guarded charging areas, causing inconvenience to new en-
ergy owners. When the vehicle is fully charged, you need to
remind the owner to move the car out of the charging pile.
*ere are still many problems with vehicle detection in
autonomous driving. *e vehicle will be seriously obscured
or cause misidentification in different scenarios, which is
often one of the leading causes of accidents in self-driving
cars. And, before the license plate recognition, it is often
necessary to recognize the body to narrow the identification
range, reduce the interference of the surrounding envi-
ronment, and improve accuracy. Based on these conditions,
the vehicle detection is still a challenging task.

*e primary purpose of vehicle detection can be divided
into two. One is to determine whether a vehicle is detected
(such as a bus, truck, and car) in the video or image. During
the detection process, it needs to determine its location and
mark it. Second, the specific category needs to be
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determined. *e particular sort of vehicle needs to be de-
termined by analyzing the semantic information (e.g., [1]) of
the car in the frame to complete the vehicle detection task.

Neural network design often follows several elements.
*e main one is to reduce the information path and enhance
the information dissemination; for example, the residual
connection [2] and dense connection [3] have played a
perfect role. It is also effective in improving the flexibility
and diversity of information channels, typically using a split-
transform-merge strategy [4]. *ere are also many methods
[5–7] to combine high-resolution image information with
high-level semantic information.

Driven by these cutting-edge algorithms, we propose an
improved-FCOS algorithm to detect vehicles, consisting of
mainly three points. Firstly, the car belongs to a rigid
structure and changes laterally under different shooting
angles and scene occlusions. *e receptive field of the
standard convolution kernel is often rectangular, extending
to the surroundings, which may not completely cover the
entire car. We introduce Deformable ConvNet [8] which
enables the convolution kernel to adaptively learn the re-
sponse’s position deviation according to the target’s de-
formation. Adding a bottom-up module to the original FPN
further enhances the flow of information between different
feature layers, reducing the distance between the bottom
layer and the top layer. Pang et al. [9] put forward a new idea
called the Libra R-CNN before this, thinking that today’s
detectors all follow the region selection, feature extraction,
and then the gradual convergence under the guidance of
multitask loss, which directly affects the effect of model
training. Based on the former balance concept, we add a
balanced module after the improved FPN, which integrates
feature maps of different resolutions, uses this feature to
strengthen the previous pyramid, and then adds nonlocal
attention to enhance the contextual network connection.
*is operation can reduce the inconsistency of bbox head
recognition due to different variances, and the whole process
is cost-free through interpolation and pooling.

*e work of this paper is as follows:

(1) *e introduction of DCN [8] can make the receptive
field of the convolution kernel to adaptively change

(2) We added a bottom-up module behind the tradi-
tional FPN [6] to reduce the distance from bottom to
top

(3) We added a balanced module after the improved
FPN to reduce the inconsistency of the bbox head
prediction

2. Related Works

*is section mainly introduces the method of research used
for vehicle detection and FCOS algorithm.

2.1. Detection Algorithm. Many methods based on com-
bining the feature extraction and classifiers have been
proposed to achieve vehicle detection formerly. For example,
HOG [10] feature detection and then HOG [10] and LBP

[11] features are combined to improve the accuracy of the
vehicle detection further; Li Xiangfeng et al. put forward the
Haar [12] feature algorithm. Although these algorithms
achieve better detection results in simple scenarios, they are
challenging to deal with complex systems.

After 2012, the convolutional neural network-based al-
gorithm in deep learning became popular, extracting se-
mantic information about vehicles from different feature
layers and solving the problem of insufficient robustness of
traditional algorithms when the dataset is sufficient.

Detection can be done in three ways. One is a two-stage
regression algorithm (e.g., [9, 13–21]). *ese algorithms all
propose an anchor as a prior to further improve the accuracy
and speed up the convergence of the network model, which
is often slower than single-stage detection algorithms in
speed. *e second is the single-stage detection algorithm
(e.g., [22–27]). *ese algorithms do not use a prior method
such as anchor, so there are many differences in regression.

*e last one is the direction proposed by Facebook, rep-
resented by a transformer [28], which introduces the trans-
former inNLP into CV, greatly simplifying the networkmodel.
However, it has some shortcomings in accuracy, and it is still
far away in the engineering deployment, such as [29–32].

2.2. FCOS Algorithm. We choose the anchor-free network
because the anchor-based algorithm has many limitations:

(1) *e dataset is susceptible to the size, number, and
aspect ratio of anchors, and different tasks need to be
readjusted, which is not conducive to generalization

(2) To better match the GT box, many anchors need to
be generated, most of which are marked as negative
samples, which will cause an imbalance between
positive and negative examples

(3) It is necessary to calculate the value of IoU, which
consumes a lot of computing power, which slows
down the detection speed and increases the cost

FCOS [22] is an anchor-free detection algorithm. *e
accuracy of the previously proposed anchor-free algorithm is
quite different from that of the anchor-based algorithm.
And, FCOS [22] successfully surpassed the anchor-based
detection algorithm and became the SOTA of the year
through alternative solutions.

*e definition of the positive and negative samples in the
FCOS [22] algorithm is quite different from before. If a lo-
cation (x, y) falls into any GT box, it is a positive sample and
regresses the distance between this point and the bounding
box l∗, t∗, r∗, and b∗, as shown in the following equation:

l
∗

� x − x
(i)
0 ,

t
∗

� y − y
(i)
0 ,

r
∗

� x
(i)
1 − x,

b
∗

� y
(i)
1 − y.

(1)

*e previous anchor-free algorithm has no optimal
solution for overlapping the GT box regions, so the point
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regression has ambiguity. In FCOS [22], the ambiguity is
significantly reduced through the feature pyramid. As we all
know, the shallow layer of the neural network is rich in more
detailed features, which is beneficial to small target detection
[33]. Higher level has more semantic features, which are
used to detect large targets. To reduce the overlapping of
objects with significant differences, the parameter mi refers
to the maximum distance of the feature map i. If a location
(x, y) satisfies max(l∗, t∗, r∗, b∗)>mi or max(l∗, t∗, r∗,

b∗)<mi−1, the point to a negative sample is set without
regression. Among them, mi is set to 0, 64, 128, 256, 512,
+∞, respectively, divided into five intervals to reduce the
overlapping area. If there is an overlapping area in a layer, it
directly returns to the smallest area.

To further constrain those prediction boxes far away
from the center of the GT box, FCOS [22] samples the
centerness method to solve this problem (Equation (2)) and
uses BCE loss [34] to optimize the centerness branch.
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. (2)

3. Methods

*is chapter will give a detailed overview of the improved
part of the algorithm (the complete structure of the algo-
rithm in Figure 1). *e deformable convolution [8] is added
to the suppression factor that can reduce the influence of
noise and background. *e added bottom-up module could
significantly reduce the loss of data reaching the top. *e
integrated feature map is put into the nonlocal attention
structure by the balanced module and then redivided to
obtain a new feature map. In this paper, the improved FCOS
dramatically increases the accuracy but does not increase too
much calculation.

3.1. Deformable Convolution. At present, the convolution
unit commonly used in the CNN is a fixed geometric
structure. In the same feature layer, the receptive field size of
all activation units is the same. Considering its character-
istics, the vehicle changes horizontally under different
shooting angles and scene occlusions. *e receptive field of
the standard convolution kernel is often rectangular,
extending to the surroundings, and may not completely
cover the entire car. *erefore, to allow the detection al-
gorithm to adapt to the scale, posture, and geometric
changes of the vehicle target, we introduced deformable
convolution [8], which adaptively determines the size of the
receptive field to improve the accuracy of detection and
positioning. Compared with standard convolution, the DCN
[8] is more in line with the actual situation. Its principle is
shown in Figure 2.

We introduced the deformable convolution of the DCN
[8] (it is illustrated in Figure 3). Deformable convolution is
mainly composed of two parts: (1) the previous feature map
is convolved to obtain the deviation; (2) according to the
deviation value, the new sampling coordinates are obtained
and convoluted to generate a new feature map. *e model

will focus on the area outside the target in actual training,
introducing noise and not conducive to detection, adding a
suppression factor to make the model more focused on the
target we need.

For example, R � (−1, −1), (−1, 0), . . . , (0, 1), (1, 1){ }

denotes the coordinates of the 3× 3 convolutional kernel and
the convolution calculation is shown in Equation (3).
Among them, Δpk refers to the deviation value, where Δmk

denotes the suppression factor, which mainly assigns dif-
ferent weights to the target area and the noise background
area. *e sampling coordinates of the convolution kernel on
the original feature map are pk + Δpk. In the actual calcu-
lation, the coordinates of the former have a decimal point.
We use bilinear interpolation to solve this problem, as
shown in Equation (4).

In the experiment, the DCN [8] was added to the C3–C5
layer of the backbone, which brought a considerable increase
in accuracy, and we added the C2 featuremap to improve the
learning ability of the model further.

y p0(  � 
pnεR

wk · x p0 + pk + Δpk(  · Δmk , (3)

x(p) � 
q

G(q, p) · x(q) . (4)

3.2. Improved FPN. We modified the FCOS [22] neck
module. *e previous FPN [6] mainly improves the target
detection effect by fusing high- and low-level features, es-
pecially for small-size targets. As we all know, high-level
features contain semantic information, while low-level
features contain more specific descriptions of detailed in-
formation. Driven by PAN [7] (the champion of instance
segmentation competition that year), this paper adds a
bottom-up path augmentation module as in Figure 4 after
the traditional FPN [6]. However, in the FPN [6] algorithm,
a top-down process is required. *e transfer of shallow
features to the top layer requires dozens or more than one
hundred network layers. Obviously, after such a multilayer
transfer, the superficial feature information will be seriously
lost. *e bottom-up path augmentation added in this article
can connect the shallow features to the P2 through the lateral
connection of the original FPN underneath and then pass
from P2 to the top layer along with the bottom-up path
augmentation. *e number of layers passed is less than 10,
which can better retain the shallow feature information.

3.3. Balance Module. *e previous improvement makes the
original image go through the FPN [6] layer to perform
multiscale feature extraction from top to bottom and then go
through the bottom to top to enhance the positioning feature
information. *e information of adjacent resolution feature
maps is aggregated and strengthened, but there still exist
some problems. *e former does not consider the aggre-
gation relationship of the hierarchical feature information
between different resolutions, and the variance of each
feature map is different. When sent to the bbox head, there
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(a) (b)

Figure 2: All examples use a 3× 3 convolutional kernel. (a) Standard convolution: green dots are the sampling points. (b) Deformable
convolution sampling locations (dark blue points) with augmented offsets (light blue arrows) in the deformable convolution.

deformable convolution

output feature map

2N

Figure 3: Illustration of 3× 3 deformable convolution. 2N rep-
resents the deviation in the x and y directions, respectively.

pi+1

Ni+1

Ni

Figure 4: Block diagram of bottom-up path augmentation.
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Figure 1: Improved FCOS algorithm structure: we clearly show all the tricks in the original picture for easy reading. Among them, C2∼C5
are the feature layers output by the backbone, the first N2∼N6 are the improved FPN, and the second is the result of adding local attention.
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will be inconsistency problems. *anks to Libra RCNN’s [9]
success, we add a balance module after the improved FPN
(Figure 5). It resizes feature maps of different resolutions to
the same size, then adds the feature elements together, and
gets divided by the number of levels to achieve aggregation.
*e feature information of different scales is aggregated in
the N4 feature map and then sent to the following refine
structure (Equation (5)). *e refine structure introduces a
nonlocal attention mechanism, which is used to capture
long-distance dependence, that is, how to build the con-
nection between two nonadjacent pixels on the image.When
calculating the response of an arbitrary position, nonlocal
attention will consider the relationship of the feature map
context to assign weights adaptively.

yi �
1

C(x)

∀j

f xi, xj g xj  , (5)

where i is the location of the output feature map, j is the
location of other different feature maps, x is the input feature
map, f is the pairing calculation function for the two feature
maps to calculate the correlation between the ith position
and all other positions, g is the unary input function for
transform information, and C(x) is the normalization
function.

Figure 6 is the specific form of nonlocal attention. First,
g(xi) convolves the input feature map three times to obtain
the θ, φ, and g features, and then it calculates the correlation
between the two positions through the f function (3 parts in
the structure diagram).

f xi, xi(  � e
θ xi( )

Tϕ xj(  . (6)

Equations (7) and (8) calculate the Gaussian distance in
the embedding space by the corresponding parts 1 and 2 in
the structure diagram.

θ xi(  � Wθxi , (7)

Φ xj  � WΦxj . (8)

*en, the dimensions of the above three features are
reshaped except for the number of channels, and the cor-
relation is calculated by matrix point multiplication of θ and
φ. Finally, the weights are 0∼1 by the softmax operation, as
follows:

C(x) � 
∀j

f xi, xj  , (9)

weight �
1

C(x)
f xi, xj . (10)

Equations (9) and (10) are sorted out to obtain the
following equation:

y � softmax x
T
W

T
θ Wϕx g(x) . (11)

Finally, the attention coefficient is correspondingly
multiplied back to the feature matrix g, plus the number of
extended channels. *e result and the original input feature

map are used for the residual operation (4 in the structure
diagram) to obtain the refined feature map, enhancing the
relationship between the feature maps and balancing the
variance.

3.4. Loss Function. *e final loss function is

L Px,y , tx,y   �

1
Npos


x,y

Lcls Px,y, c
∗
x,y  +

λ
Npos


x,y

1
c∗x,y>0 

Lreg tx,y, t
∗
x,y .

(12)

In order to highlight the improvements, we have not
changed the loss function of the original algorithm. Here,
Lcls is the focal loss as in [26], and it can greatly reduce the
problem of imbalance between positive and negative sam-
ples. Lreg is the IoU loss as in UnitBox [35], which considers
that the correlation between the coordinates is different from
the weighted sum of L1 and L2 loss. Npos denotes the
number of positive samples, and λ being 1 in this paper is the
balance weight for Lreg. *e summation is calculated over all
locations on the feature maps Fi. 1 c∗

i
> 0{ } is the indicator

function, being 1 if c∗i > 0 and 0 otherwise.

4. Experiment

Our experiment performed detection on three diverse
datasets, including UA-DETRAC, MSCOCO2017, and
Pascal VOC, for joint training (where each dataset only uses
pictures in the category of car, bus, and truck).

4.1. Experimental Details. UA-DETRAC (a multitarget
tracking dataset, taken on different roads in Beijing and
Tianjin, China) contains various weather conditions, such as
cloudy, night, sunny, and rainy. Occlusion is divided into
unoccluded and heavy occlusions; the video per second
recording had 25 frames and about 130,000 pictures. *e
pictures are highly similar, and this article takes a sample
every 40 frames by increasing the contrast to prevent
overfitting. *e second dataset selected part of the vehicle
pictures in Pascal VOC2012. *e third dataset uses
MSCOCO2017. *e full name of COCO is “Common
Objects in Context,” a dataset provided by the Microsoft
team for image recognition. *e images in the dataset are
divided into training, verification, and test sets. *is article
samples all vehicle pictures in the training and validation
sets, and the total dataset is about 20,000 (the specific in-
formation is in Table 1). All the annotation information is
represented by the VOC format, 90% is used for training and
verification, and the remaining 10% is used for the testing.

*e experiments used in this article are all based on the
mmdetection [36] framework developed by Shangtang,

Improved
FPN integrate outputrefine head

Figure 5: Balanced module flow.
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which is developed based on the PyTorch framework. It
divides the target detection algorithm into several significant
modules: backbone, neck, head, bbox, encode, decode, and
loss, decoupling the connection between the modules. *is
article uses 6 Nvidia TITAN Xp to train the network, and all
the parameter settings are consistent with mmdetection
official, where the learning rate and the number of GPUs
have a linear scaling relationship.

4.2.AccuracyExperiment. We report our main results on the
test (approximate 2K images) by uploading detection results
to the server. We firstly forward the input image through the
network and obtain the predicted bounding boxes with a
predicted class. Unless specified, the postprocessing and data
enhancement of the algorithm will use the official default of
mmdetection. We hypothesize that the performance of our
detector may be improved further if we carefully tune the
hyperparameters. We compare the mainstream algorithms
in recent years, and the results are in Table 2. Compared with
other algorithms in current years, our method achieves the
best performance on this dataset.

4.3. Model Complexity. We also tested the complexity of
each model on the dataset as shown in Table 3. It can be seen
from the table that the one-stage network often has fewer
parameters than the two-stage network and our model has
dramatically improved the accuracy and reduced them. For
the GFLOPs indicator, the parameter has only risen a little.

4.4. Ablation Experiment. *is section analyzes the per-
formance of ablation experiments on the improved network
(Table 4). *e DCN [8] can expand the receptive field of the
convolution kernel, which can change the sampling points
with the deformation of the object. Its visualization result is
shown in Figure 7, and we can see that the feature focus area

Table 1: *e distribution of the dataset.

DETRAC Pascal-VOC2012 COCO
3457 467 16977

Table 2: Our proposed algorithm vs. other algorithms with
ResNet-50 and FPN as default.

Model mAP
Faster-RCNN [13] 67.4
ATSS [23] 67.2
GFL [37] 66.8
FCOS [22] 66.8
YOLOF [38] 67.1
YOLOV3 [16] 58.9
SSD [39] 57.6
DETR [29] 61.0
Centernet [40] 51.3
Retinanet [9] 66.0
Ours 70.1

θ : 1×1×1 φ : 1×1×1 g : 1×1×1

1×1×1

+

x

x

1 2

4

so�max

3

x

Figure 6: Nonlocal attention structure (refine).

Table 3: Model complexity comparison.

Model Input shape GFLOPs Parameters (M)
Faster-RCNN [13] 1280× 800 206.67 41.13
ATSS [23] 1280× 800 201.51 31.89
GFL [37] 1280× 800 204.61 32.04
FCOS [22] 1280× 800 196.76 31.84
YOLOF [38] 1280× 800 98.21 42.11
YOLOV3 [16] 1280× 800 193.89 61.53
SSD [39] 1280× 800 343.77 24.68
DETR [29] 1280× 800 101.34 20.09
Centernet [40] 1280× 800 51.02 14.21
Retinanet [9] 1280× 800 205.24 36.15
Ours 1280× 800 174.39 35.1
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is very different. *e experimental results are shown in
Table 4. It is evident that the combined performance of the
three improvement methods is the best. Figure 8 shows the
linechart of cls and bbox loss. Compared with FCOS, our
method converges faster and more stably on cls.

4.5. Visualization of Results. Figure 9 is a visualization of the
effect of the algorithm. It can be seen that vehicles can be
detected no matter whether they are at a distance or in some
unique scenes, even when there is little picture information,
which proves the superiority of our algorithm.

(a) (b)

Figure 7: Ablation experiment example. (a) Figure without DCN, where its network attention is relatively distracted, and the sampling area
cannot cover the overall target. (b) After adding DCN, the effect figure shows that the DCN sampling area is more comprehensive and can
learn more features.
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Figure 8: *e linechart of cls and bbox loss, where the earlier loss_cls converges faster and the fluctuation is minor.

Table 4: Ablation study for the proposed methods.

Method mAP
FCOS [22] 66.8
+Improved FPN 67.2
+DCN [8] 68.4
+Balanced module 67.9
+All 70.1
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5. Conclusions

We improved the detection algorithm based on the anchor-
free FCOS [22] and introduced the DCN [8] based on the
original backbone to broaden the receptive field of the
convolution kernel and also introduced a bottom-upmodule
to improve the FPN and reduce the loss between the in-
formation transmission. A balance module is added because
the variance of the feature pyramid affects the accuracy,
which has a good effect and proves the superiority of the
improved algorithm.
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