Hindawi

Complexity

Volume 2021, Article ID 9223763, 8 pages
https://doi.org/10.1155/2021/9223763

Research Article

WILEY

Hindawi

A Comparison of Autometrics and Penalization Techniques under
Various Error Distributions: Evidence from Monte

Carlo Simulation

Faridoon Khan,! Amena Ul'ooj,1 Kalim Ullah,” Badr Alnssyan,3 and Zahra Almaspoor

'PIDE School of Economics, Pakistan Institute of Development Economics, Islamabad, Pakistan
Foundation University Medical College, Foundation University, DHA-1, Islamabad, Pakistan
*Department of Administrative Sciences and Humanities, College of Community at Buraydah, Qassim University,

Buraydah 51452, Saudi Arabia

*Department of Statistics, Yazd University, Yazd 89175-741, Iran

Correspondence should be addressed to Zahra Almaspoor; z.almaspoor@stu.yazd.ac.ir

Received 15 September 2021; Revised 19 November 2021; Accepted 25 November 2021; Published 9 December 2021
Academic Editor: Paulo Jorge Silveira Ferreira

Copyright © 2021 Faridoon Khan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This work compares Autometrics with dual penalization techniques such as minimax concave penalty (MCP) and smoothly
clipped absolute deviation (SCAD) under asymmetric error distributions such as exponential, gamma, and Frechet with varying
sample sizes as well as predictors. Comprehensive simulations, based on a wide variety of scenarios, reveal that the methods
considered show improved performance for increased sample size. In the case of low multicollinearity, these methods show good
performance in terms of potency, but in gauge, shrinkage methods collapse, and higher gauge leads to overspecification of the
models. High levels of multicollinearity adversely affect the performance of Autometrics. In contrast, shrinkage methods are
robust in presence of high multicollinearity in terms of potency, but they tend to select a massive set of irrelevant variables.
Moreover, we find that expanding the data mitigates the adverse impact of high multicollinearity on Autometrics rapidly and
gradually corrects the gauge of shrinkage methods. For empirical application, we take the gold prices data spanning from 1981 to
2020. While comparing the forecasting performance of all selected methods, we divide the data into two parts: data over
1981-2010 are taken as training data, and those over 2011-2020 are used as testing data. All methods are trained for the training
data and then are assessed for performance through the testing data. Based on a root-mean-square error and mean absolute error,
Autometrics remain the best in capturing the gold prices trend and producing better forecasts than MCP and SCAD.

1. Introduction

In the regression analysis, it is the core concern of re-
searchers to discover the key predictors for achieving better
prediction of the response variable. Therefore, identifying
the potential predictors for knowledge discovery and
boosting the predictive power of the model are very bene-
ficial [1]. However, to construct a linear regression model,
variable selection is one of the most vital steps. In practice, a
large number of predictors can raise the variance of the fitted
model, and selecting several predictors may result in un-
predictable output or biased results. In other words, in-
corporating more predictors in the model may cause high

variation in the least-squares fit, which, in turn, results in
overfitting the model, and hence, it yields a poor forecast for
the future [2]. Furthermore, if the predictors are highly
correlated with each other, then the standard error associ-
ated with each regression coefficient tends to increase, which
leads to invalid inferences [3-5]. On the other hand, missing
a single important predictor may lead to model mis-spec-
ification, and the conclusion drawn on the basis of a par-
ticular model could be misleading [6].

In the recent era, a considerable chunk of research is
focused on the analysis of “high-dimensional” data in the
discipline of finance and economics. Resultantly, a con-
siderable focus is being paid to the varieties of techniques
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that are applicable in the domain of data mining, dimension
reduction, and machine learning [7, 8]. Among them, pe-
nalization techniques and Autometrics are very popular to
handle huge data sets [9].

Many studies exist in the literature in which the per-
formance of Autometrics is determined theoretically as well
as empirically. Some of them are [9-16]. Similarly, many
researchers have evaluated the penalization techniques
under time series set up such as Mol et al. [17], Inoue and
Kilian [18], Bai and Ng [19], Kim and Swanson [20, 21],
Luciani [22], Swanson and Xiong [8, 23], Swanson et al. [24];
and Maehashi and Shintani [25].

In the above papers, penalization techniques are often
compared to each other, and just a few papers have com-
pared the Autometrics with penalization techniques such as
least absolute shrinkage selection operator (Lasso), adaptive
Lasso, and weighted adaptive Lasso. To date, none of the
papers has considered the modified form of penalization
techniques in our context. Hence, this study contributes in
two dimensions. Firstly, we consider two modified penali-
zation techniques: minimax concave penalty (MCP) and
smoothly clipped absolute deviation (SCAD) and compare
with Autometrics theoretically as well as empirically. Sec-
ondly, the comparison is made under asymmetric error
distributions instead of Gaussian.

Our study aims to compare Autometrics with improved
penalization techniques including smoothly clipped absolute
deviation and minimax concave penalty under several
asymmetric error distributions such as exponential, gamma,
and Frechet through Monte Carlo simulations. Moreover,
we alter the sample size, number of predictors, and mag-
nitudes of multicollinearity in order to determine their effect
on the considered techniques. For real phenomenon anal-
ysis, we consider a financial data set.

The remaining part of the work is organized in the
following way. In Section 2, we have elaborately discussed
the model selection techniques and data-generating process.
Monte Carlo evidence on the comparative performance of
varjious model selection methods is discussed in Section 3.
Real data applications are described in Section 4. Section 5
gives the concluding remarks.

2. Model Selection Techniques

Model selection is one of the crucial steps of empirical re-
search throughout all disciplines, where an earlier theory
does not predefine a complete and correct specification.
Economics is certainly one of them, as macroeconomic
processes are typically high-dimensional, nonstationary, and
complicated [26]. Commonly, many different solutions have
been recommended to fit the data. Hence, statistical model
selection becomes a primary and ubiquitous task in em-
pirical economic research.

Selection procedures such as information criteria,
stepwise, and penalized regression are unavoidable. There
can never be a consensus regarding which model is best
because there is a considerable amount of criteria to assess
the model’s performance. Luckily, during the past two de-
cades, a new revolution has been existing in model building,
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in the form of general-to-specific modeling, indicated by
gets, as contained in the computer program, named as
PcGive. Computer automation of gets methods has shed
light in a new way on the statistical model selection.
PcGive is a computer program that automatically selects
an econometric model. It is absolutely a new approach to
formulate models and particularly devised for handling
economic data when the correct form of an equation under
analysis is unknown. In PcGive, the automatic model se-
lection job is performed by Autometrics. Hence, in the next
section, we provide a detailed explanation of Autometrics.

2.1. Autometrics. 'The automated gets procedure is almost be
considered a “black box™: a final model is chosen from the
model that is constructed from an initial set of candidate
variables. The initial model refers to the general unrestricted
model (GUM). Mostly, a set of terminal candidate models is
found. In such circumstances, information criteria are uti-
lized as the tiebreaker. There is a possibility that we may
choose the final GUM in the block-search procedure, which
is the union of the terminal candidate models.

The aim of the automated gets procedure is that the GUM
is well specified statistically, which is subjected to mis-
specification testing. Hereafter, diagnostic tests guarantee that
all underlying terminal candidate models clarify these tests as
well. Simplication of GUM is done via path search. Such a
type of search is needed to tackle the complex autocorrelation
that is often present in macroeconomic data. A simplification
is acceptable provided the expelled variables are insignificant
and the new model is a sound chopping of the GUM. The
latter condition is also known as encompassing the GUM or
backtesting and, in the context of linear regression models, is
based on the F-test of the removed variables.

In the application of Autometrics, reduction in p-value p,
is the principal choice to be used for backtesting and individual
coefficient significance. There are some tools to eschew esti-
mating 2% models [27]. This method is very efficient even
though the costs of statistical inference cannot be circumvented
and the costs of searching are substantially low. A pair of
automatic model selection frameworks that fail to fit the model
within general-to-specific (gets) methodology are as follows:

(1) Stepwise regression: start with the empty model and
add the most significant omitted variable in the
model. The highly insignificant variable is removed
from the model that is observed at any stage . Hence,
in every iteration, we include one significant variable
and discard an insignificant variable [28]. This
method is repeated till we get all the variables in the
model to be significant, and all omitted variables must
be insignificant.

(2) Backward elimination: all predictors are entered into
the initial model; then predictors are thrown one at a
time starting from the least significant. The process is
continued until all predictors have a p-value of p, or
small.

There exist three main differences with automated gets: (i)
lack of search, (ii) no backtesting, and (iii) no mis-specification
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testing/diagnostic tracking. Figure 1 describes the way that how
Autometrics selects the model automatically.

2.1.1. Methodology. Autometrics comprises the following
five basic stages:

(i) In the first stage, the linear model known as the so-
called general unrestricted model (GUM) is formed

(ii) In the second stage, the parameters are estimated
along with testing the statistical significance of the
GUM

(iii) In the third stage, the presearch process is
performed

(iv) The fourth stage produces the tree-path search
(v) In the last stage, the final model is selected

Doornik [27] elaborated the entire algorithm of Auto-
metrics whereas the steps to run Autometrics are as follows.
Start oft by considering all the candidate variables in a linear
model (GUM), estimate it by the least-squares method, and
then verify through diagnostic tests. In case of insignificant
coeflicients, then simpler models are estimated utilizing a
tree-path reduction search and validated by diagnostic tests. If
some terminal models are detected, Autometrics undertakes
their union testing. Rejected models are deleted, and the
union of those terminal models who survived induces new
GUM for another tree-path search iteration. This inspection
procedure continues, and the terminal models are statistically
assessed against their union. If two or more terminal models
clear the encompassing tests, and then the prechosen infor-
mation criterion is a gateway to a final decision.

2.2. Shrinkage Methods. One of the assumptions of the
classical linear regression model is that there is no associ-
ation among the covariates, which often does not exist in
practice. If this assumption is violated, then such a phe-
nomenon is known as the problem of multicollinearity. In
presence of multicollinearity, it is a challenging task to es-
timate the reliable effects of a specific covariate. More
specifically, the estimated coefficients have high sampling
variance along with false signs, due to which both estimation
and prediction are poorly affected.

An alternative most used family of methods to deal with
many features is the regularization/penalization regression,
which includes many methods, but our study selects the
most well-known and robust methods: minimax concave
penalty and smoothly clipped absolute deviation. A form of
the regularized least-squares estimator is the minimizer of
the given objective function:

p
LY—Xy2+ Zﬂk(h/k ), (1)

2m e
where Y = (Y,,Y,, ...,Y,), X = (x, x5, ..., x,,),and y is
the coefficient matrix with y = (y;,¥,,...y,). Here, p and m
denote the number of covariates and observations, respectively.
The second term in equation (1) 7, (| - |) represents the penalty
function, which adopts difterent shapes for different procedures.

The term 7 refers to the tuning parameter that controls the
amount of shrinkage. The range of tuning parameters lies
between zero and infinity.

We provide the brief discussion of the following
methods:

Least Absolute Shrinkage and Selection Operator: the L,
norm is defined as 7 (|9]) = 7|9| tends to the Lasso
estimator, where 7 refers to the tuning parameter and is
selected through cross-validation [29]. L, norm shrinks
the several regressor coeflicients to zero retaining the
relevant predictors only. norm shrinks the several re-
gressor coefficients to zero retaining the relevant pre-
dictors only. If there is a high correlation among the
group of predictors, then Lasso keeps only one pre-
dictor from the group. In addition, Lasso is biased in
features selection [30].

Smoothly Clipped Absolute Deviation: the continuous
differentiable penalty function can be defined as:
7 (19) = s{I(9<s) + ((ws = 9) +/(w—1)s) [(9< )}
If the results of w > 2, 9> 0, and s > 0 then the resulting
penalty refers to SCAD [31], where m; (|9]) =0 and
w = 3.7 as recommended by Lu et al. [32].

Minimax Concave Penalty: The minimax concave pen-
alty is illustrated as follows: 7', (|9]) = ((ws — 9) + /w),
where the value of w is 3.7. This procedure provides the
convexity of the penalized loss in sparse regions sub-
stantially given certain thresholds for variable selection
and unbiasedness [33].

2.3. Selection of Tuning Parameter. The tuning parameter A
is often selected using a cross-validation approach aimed at
achieving the optimum prediction solution. It entails
splitting the given data into two halves at random: a
training data set and a testing data set (or holdout set). The
training data set is being used to fit the model, and the fitted
model will be used to anticipate the responses for the
validation set data. The test error rate is estimated by the
validation set error rate, which is commonly calculated
using MSE in the context of a numerical response. The k-
fold cross-validation method involves randomly splitting
data collection into k groups, or folds, of roughly similar
size, using a k-fold CV; usually, we use k that is equal to 10
or 5. The algorithm is fitted on the remaining k — 1 folds,
with the initial fold serving as a validation set. On the
observations in the holdout fold, the mean squared error,
MSE,, is calculated. This technique is repeated k times, with
each validation set consisting of a distinct set of obser-
vations. MSE;, MSE,, .. ., MSE, are the test error estimates
produced by this method. Averaging these values yields the
k-fold CV estimate.

>
M=

I
—_

2.4. Artificial Data-Generating Process. In the recent section,
we introduced some scenarios intending to demonstrate the
performance of Autometrics against shrinkage methods



Complexity

DGP
(The economic mechanism that
operates in the real world)

GUM
(Sp eciﬁlcatiot? l(;f Theory of Reduction
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Gets Algorithm

Specific LDGP
(Final terminal (DGP for locally

model) relevant variable)

FiGure 1: From DGP to models.

delineated in previous subsections. We consider two types of
correlation structure among covariates, that is, low (0.25)
and high (0.90) with varying the distribution of error terms.
Our study uses the data-generating process followed by
Doornik and Hendry [13] and Wahid et al. [34] to generate
artificial data as follows:

Y; = xiTy + e, (3)

where Y; is the response variable. The set of covariates,
X; = X1, X,,...,Xp, is generated from multivariate normal
distribution as x; ~ MV N (0, Y)) where the mean of cova-
riates is zero and ) is the variance-covariance matrix. It is
fact that the variance-covariance matrix contains variance
and covariance together. In our case, the variance is assumed
to be one, and the covariance between x,, and x,, is generated

in the following way: cov(x,,,x,) = Y. Im=nl 34],

[ 1 CLLphm

p

(4)

S\gl
i

L |
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which permits for regulation of the degree of pairwise
correlation between the covariates m and » by altering the
single parameter p. Furthermore, y represent the regression
coeflicients, and e; is the disturbance term, which is gen-
erated from the following three asymmetric probability
distributions in this study. The distributions are exponential
distribution, gamma distribution, and Frechet distribution.

The reason behind the selection of these distributions
from a huge set of distributions is: exponential distribution is
basically a standard distribution in the literature of asym-
metric distributions. Moreover, Frechet distribution, which
is also known as inverse Weibull distribution, and gamma
distribution are the generalized form of the exponential

distribution. Mostly, the distribution of financial data is
right-skewed [35].

For our study, we are considering three asymmetric
probability distributions from a huge list of distributions.
There are many:

(i) e; ~ exp(0,8)
(ii) e; ~ gamma(2,5)
(iii) e; ~ frechet(1,2,4)

2.4.1. Scenario 1. We perform simulation experiments
where we consider three cases of covariates: p € {20, 25, 30}.
In each experiment, we assume 15 predictors are relevant,
and the remaining are irrelevant.

i) y={(1,...,1)5(0,...,0)5}
(i) y={(1,..., )5 (0,...,0)0}
(i) y={(1,...,1)5 (0,...,0)5}

We consider two cases of sample size n € {100, 300}. In
this scenario, we generate errors of the model from an
exponential distribution.

2.4.2. Scenario 2. Furthermore, this scenario is the same as
the first experiment; only the errors are generated from a
gamma distribution.

2.4.3. Scenario 3. 'This scenario is the same as the first ex-
periment; besides, the error is generated from the Frechet
distribution.

2.5. Measures of Methods Performance. There are a few ways
to evaluate the models’ performance in terms of variable
selection, in which we are adopting the potency and gauge.
Gauge is delineated as the empirical null retention frequency
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that how often irrelevant covariates are retained. The
comparison of Autometrics with penalization methods is
evaluated in the form of correct zero identification inter-
preted as potency and incorrect zero identification referred
to as gauge [13].

Mathematically, the gauge is delineated as follows:

Pirr
bl
pirr

E(ﬁ’") — .
Pirr

The gauge indicates the irrelevance part that corresponds
to the nominal significance level (), where p;,, shows a set
of irrelevant covariates in the initial model and p;,, shows

the set of estimated irrelevant covariates [36].
Potency is defined as follows:

Prel
bl
P rel

Pirr

This indicates that the relevant part p,,; shows the set of
relevant covariates in the initial model and p,,; points to the
set of estimated relevant covariates, so the expected potency
tending towards the value 1 is evidence of a good model [36].
Furthermore, we repeat each simulation experiment 1,000
times, and the expected potency and gauge evaluate the best
method relatively. We use R software for the entire analysis.

(5)

(6)

3. Simulation Results and Discussion

The results of Monte Carlo experiments are illustrated in
Tables 1-3.

Scenario I: Table 1 presents simulation results for ex-
ponentially distributed errors, with varying sample
sizes and covariates. All methods are improving with
increasing sample size. In the case of low multi-
collinearity, in almost all cases, Autometrics and
shrinkage methods such as SCAD and MCP hold all the
relevant predictors, but shrinkage methods also hold
irrelevant predictors in a large amount. Retaining ir-
relevant variables often lead to an overspecified model.
Increasing the level of multicollinearity, Autometrics
found 61% relevant variables (potency) along with
around 3% irrelevant variables (gauge), while shrinkage
methods retained more than 80% relevant variables
with a much higher percentage of irrelevant variables.
As we increase the sample size, the potency of Auto-
metrics is dramatically enhanced and also gains im-
provement in gauge. Shrinkage methods improved the
gauge, but it is still very high.

Scenario II: Table 2 presents the simulation results for
gamma distributed errors, with varying sample sizes
and covariates. All results are improving with
expanding the data window. In this scenario, all

TaBLE 1: Simulation results for exponentially distributed errors.

0.25 0.90

{n, p} Methods
Potency Gauge Potency Gauge

Autometrics 0.999 0.011 0.612 0.042

{100, 20} SCAD 1 0.219 0.924 0.577
MCP 1 0.140 0.925 0.562

Autometrics 0.999 0.01 0.610 0.037

{100, 25} SCAD 1 0.177 0.890 0.498
MCP 1 0.110 0.885 0.472

Autometrics 0.999 0.012 0.612 0.037

{100, 30} SCAD 1 0.142 0.845 0.391
MCP 1 0.085 0.847 0.397

Autometrics 1 0.009 0.955 0.010

{300, 20} SCAD 1 0.102 0.995 0.305
MCP 1 0.090 0.995 0.294

Autometrics 1 0.010 0.959 0.012

{300, 25} SCAD 1 0.061 0.994 0.269
MCP 1 0.056 0.992 0.261

Autometrics 1 0.011 0.958 0.012

{300, 30} SCAD 1 0.045 0.989 0.231
MCP 1 0.039 0.990 0.230

TaBLE 2: Simulation results for gamma distributed errors.

0.25 0.90
{n, p} Methods
Potency Gauge Potency Gauge
Autometrics 1 0.01 1 0.014
{100, 20} SCAD 1 0.101 0.999 0.065
MCP 1 0.081 1 0.07
Autometrics 1 0.012 1 0.016
{100, 25} SCAD 1 0.070 1 0
MCP 1 0.052 1 0.050
Autometrics 1 0.013 1 0.022
{100, 30} SCAD 1 0.047 1 0.046
MCP 1 0.033 1 0.039
Autometrics 1 0.01 1 0.013
{300, 20} SCAD 1 0.100 1 0.027
MCP 1 0.079 1 0.035
Autometrics 1 0.011 1 0.012
{300, 25} SCAD 1 0.070 1 0.031
MCP 1 0.048 0.999 0.026
Autometrics 1 0.010 1 0.009
{300, 30} SCAD 1 0.055 1 0.026
MCP 1 0.043 1 0.023

methods have correctly specified the relevant variables
in most cases, but shrinkage methods have retained
some irrelevant variables. In other words, it can be
concluded that shrinkage methods overspecified the
model.

Scenario III: Table 3 depicts the simulation findings for
Frechet distributed errors, with varying sample sizes
and covariates. The potency and gauge of almost all
methods are improving with increasing sample size. In
presence of low multicollinearity, all methods selected
100% relevant variables under a large sample. Auto-
metrics has often selected around 1% irrelevant vari-
ables (gauge), while shrinkage methods have selected a
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TaBLE 3: Simulation results for Frechet distributed errors.
0.25 0.90
{n, p} Methods
Potency Gauge Potency Gauge
Autometrics 0.995 0.01 0.719 0.032
{100, 20} SCAD 0.999 0.155 0.965 0.499
MCP 0.999 0.12 0.964 0.498
Autometrics 0.996 0.011 0.731 0.031
{100, 25} SCAD 0.999 0.115 0.937 0.438
MCP 0.999 0.079 0.94 0.441
Autometrics 0.995 0.011 0.734 0.050
{100, 30} SCAD 1 0.089 0.918 0.374
MCP 1 0.054 0.916 0.379
Autometrics 0.999 0.01 0.983 0.009
{300, 20} SCAD 1 0.091 0.999 0.179
MCP 1 0.078 0.998 0.18
Autometrics 1 0.010 0.987 0.010
{300, 25} SCAD 1 0.063 0.997 0.17
MCP 1 0.05 0.997 0.168
Autometrics 1 0.011 0.985 0.012
{300, 30} SCAD 1 0.045 0.995 0.153
MCP 1 0.032 0.995 0.141

large proportion of irrelevant variables. Increasing the
level of multicollinearity, all methods are adversely
affected. Autometrics retained 72% relevant variables
with approximately 3% irrelevant variables. On the
other hand, shrinkage methods hold more than 90%
active variables along with a massive set of irrelevant
variables. As we increase the number of observations,
resultantly the potency of Autometrics improved and
reduced the gauge to 1%. The improvement was
achieved in the gauge of shrinkage methods, but it is
still considered high.

Now we are comparing the potency and gauge of all
methods across various error distributions. We can see that
under the gamma distributed errors, the potency is higher
and gauge is lower than the potency and gauge what we
achieved under the exponentially and Frechet distributed
errors.

4. Empirical Analysis

Complementing the Monte Carlo experiments, this study
performs real data analysis using Pakistan financial data set.
The data set consists of 12 time series observed at annual
frequency spanning from 1981 to 2020 and is taken from the
world development indicators, international financial sta-
tistics, Yahoo! Finance website, and international country
risk guide. Among 12 variables, gold prices are the response
variable, and the remaining variables are treated as pre-
dictors in this study. The predictors are selected through
theories and literature to make a general model known as a
general unrestricted model (GUM). Before analysis, some
missing observations in the data set are replaced by aver-
aging the neighbor observations and then standardizing the
data set in order to reduce variation, which in turn provide
stable results [37]. Detail regarding the variables has been
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TaBLE 4: Variables description.

Sr. No Variables Symbols  Source of data
1 Gold prices GP Yahoo! Finance
2 Gross domestic growth GDP SBP

3 Inflation INF WDI

4 Interest rate IR WDI

5 Unemployment UEMP WDI

6 Trade openness TO WDI

7 Stock market performance SP IFS

8 Real effective exchange rate  REER WDI

9 Government stability GS ICRG

10 Credit premium risk CPR IES

11 Oil prices OP Yahoo! Finance
12 Market rate MR IES

Note: WDI stands for world development indicators; SBP stands for state
bank of Pakistan; IFS stands for international financial statistics; and ICRG
stands for international country risk guide.

given in Table 4. Table 4 describes the variables, symbols, and
source of data.

From Figure 2, it can be observed that the frequency
distribution of the target variable (in our case, gold prices) is
right-skewed, and the boxplot in Figure 2(b) also reveals that
there are some outlying observations present in the series.
However, Gujarati et al. [4] considered graphical repre-
sentation as an informal approach therefore to reconfirm the
distribution of gold prices; we move towards a statistical test
that is known as the Shapiro test.

After applying the Shapiro test, we get a p-value that is
almost zero; then the null hypothesis that the data are
normally distributed is rejected. It implies that the distri-
bution under consideration is highly skewed. Table 5 depicts
the findings of real data considering 11 covariates. Auto-
metrics hold GDP, IR, UEMP, TO, SP, and REER, which
reveals that these covariates significantly contribute to gold
prices. MCP selected all covariates except inflation (INF)
and market rate (MR), and SCAD holds all covariates.

This is the fact that we do not know about the data-
generating process in the real world. Therefore, it is difficult
to compare the models” performance based on potency and
gauge using real data. In such circumstances, the best and a
widely used alternative approach is an out-of-sample fore-
cast for models’ assessment. But it requires dividing the data
into two parts: a training set and a testing set. Thus, in this
work, we split the data set into two parts: data from 1981 to
2010 are utilized to train the model, and the remaining data
(2011-2020) are used to evaluate their forecasting perfor-
mance. Root-mean-square error (RMSE) and mean absolute
error (MAE) are computed to evaluate the forecasting
performance of all considered methods, shown in Figure 3.
The smaller the values of RMSE and MAE, the closer the
predicted values to the actual values and resultantly indicates
better forecast. The forecast errors were shown by the bar in
Figure 3, which recommend that the Autometrics method
outperformed the rival methods in the out-of-sample
forecast. It illustrates that Autometrics has good predictive
power than other competitor models in the sense that it is
having the lowest prediction errors in multistep ahead
forecast.
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FiGure 2: Histogram and boxplot of gold prices.

TaBLE 5: Features selection based on real data.

Variables MCP Autometrics SCAD
GDP S S S
INF NS NS S
IR S S S
UEMP S S S
TO S S S
SP S S S
REER S S S
GS S NS S
CPR S NS S
OP S NS S
MR NS NS S

Note: “S” shows the selected variables, and “NS” shows the nonselected
variables.

MCP Autometrics

SCAD

m RMSE
1 MAE

FiGure 3: Forecast comparison.

5. Conclusion Remarks

In this work, we compare Autometrics with two penalization
techniques, that is, minimax concave penalty (MCP) and
smoothly clipped absolute deviation (SCAD) under asym-
metric error distributions such as exponential, gamma, and
Frechet with altering sample sizes as well as predictors.
Simulations using a wide variety of scenarios demonstrate
that all methods improve for a large sample size. In the case
of low multicollinearity, these methods perform well in
terms of potency, but in terms of gauge, the shrinkage

methods collapse. Higher gauge leads to overspecification of
the model. The increased level of multicollinearity among
regressors adversely affects the performance of Autometrics
and sparingly the shrinkage methods in terms of potency. At
the same time, shrinkage methods select a massive set of
irrelevant variables. We have observed that expanding the
data window alleviates the detrimental influence of high
multicollinearity on potency associated with Autometrics
rapidly and steadily rectifies the gauge of penalized
techniques.

For real data analysis, we consider the gold prices data
along 11 covariates spanning from 1981 to 2020. To compare
the forecasting performance of the selected methods, we
divide the data into two parts, that is, 1981-2010 as training
data and 2011-2020 as testing data. These methods are
trained on training data, and their performance is assessed
via testing data. Based on RMSE and MAE, Autometrics
remained best in handling the gold prices trend and pro-
viding better forecasts than MCP and SCAD. We observed
that penalization techniques hold many irrelevant covariates
in comparison with Autometrics and hence tend to increase
the forecast error comparatively.

Data Availability

Data can be provided upon special request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] H. Zou and H. H. Zhang, “On the Adaptive Elastic-net with a
diverging number of parameters,” Annals of Statistics, vol. 37,
no. 4, pp. 1733-1751, 2009.

[2] G. James, D. Witten, T. Hastie, and R. Tibshirani, An In-
troduction to Statistical Learning, Springer, vol. 112, p. 18,
New York, NY, USA, 2013.

[3] L. Breiman, “Better subset regression using the nonnegative
garrote,” Technometrics, vol. 37, no. 4, pp. 373-384, 1995.

[4] D. N. Gujarati, D. C. Porter, and S. Gunasekar, Basic
Econometrics, Tata McGraw-Hill Education, New York, NY,
USA, 2012.



[5] S. Ali, H. Khan, I. Shah, M. M. Butt, and M. Suhail, “A
comparison of some new and old robust ridge regression
estimators,” Communications in Statistics - Simulation and
Computation, vol. 50, no. 8, pp. 2213-2231, 2021.

[6] J. Inglis and E. E. Leamer, “Specification searches: ad hoc
inference with nonexperimental data,” Technometrics, vol. 23,
no. 1, p. 112, 1981.

[7] H. R. Varian, “Big data: new tricks for econometrics,” The
Journal of Economic Perspectives, vol. 28, no. 2, pp. 3-28,
2014.

[8] N. R. Swanson and W. Xiong, “Big data analytics in eco-
nomics: what have we learned so far, and where should we go
from here?” Canadian Journal of Economics/Revue cana-
dienne d’économique, vol. 51, no. 3, pp. 695-746, 2018.

[9] J. L. Castle, J. A. Doornik, and D. F. Hendry, “Modelling non-
stationary “Big data”,” International Journal of Forecasting,
vol. 37, no. 4, pp. 1556-1575, 2020.

[10] N. R. Ericsson, Detecting Crises, Jumps, and Changes in Re-
gime, Board of Governors of the Federal Reserve System,
Washington, DC, USA, 2012.

[11] J. L. Castle, M. P. Clements, and D. F. Hendry, “Forecasting by
factors, by variables, by both or neither?” Journal of Econo-
metrics, vol. 177, no. 2, pp. 305-319, 2013.

[12] J. Castle, J. Doornik, D. Hendry, and F. Pretis, “Detecting
location shifts during model selection by step-indicator sat-
uration,” Econometrics, vol. 3, no. 2, pp. 240-264, 2015.

[13] J. A. Doornik and D. F. Hendry, “Statistical model selection

with “big data”,” Cogent Economics & Finance, vol. 3, no. 1,

Article ID 1045216, 2015.

F. Pretis, L. Schneider, J. E. Smerdon, and D. F. Hendry,

“Detecting volcanic eruptions in temperature reconstructions

by designed break-indicator saturation,” Journal of Economic

Surveys, vol. 30, no. 3, pp. 403-429, 2016.

C. Epprecht, D. Guégan, A. Veiga, and J. Correa da Rosa,

“Variable selection and forecasting via automated methods

for linear models: LASSO/adaLASSO and Autometrics,”

Communications in Statistics - Simulation and Computation,

vol. 50, no. 1, pp. 103-122, 2021.

[16] J. V. Rocha and P. L. V. Pereira, The Effects of Estimation

Sample Size in Forecast Performance: The Case of Brazilian

Industrial Production Index, UDES, South Region, Brazil,

2019.

C. De Mol, D. Giannone, and L. Reichlin, “Forecasting using a

large number of predictors: is bayesian regression a valid

alternative to principal components?” SSRN Electronic Jour-

nal, vol. 146, no. 2, pp. 318-328, 2006.

A. Inoue and L. Kilian, “How useful is bagging in forecasting

economic time series? a case study of U.S. Consumer price

inflation,” Journal of the American Statistical Association,

vol. 103, no. 482, pp. 511-522, 2008.

[19] J. Bai and S. Ng, “Forecasting economic time series using
targeted predictors,” Journal of Econometrics, vol. 146, no. 2,
pp. 304-317, 2008.

[20] H. H. Kim and N. R. Swanson, “Forecasting financial and
macroeconomic variables using data reduction methods: new
empirical evidence,” Journal of Econometrics, vol. 178,
pp. 352-367, 2014.

[21] N. R. Swanson, “Mining big data using parsimonious factor,
machine learning, variable selection and shrinkage methods,”
International Journal of Forecasting, vol. 34, no. 2, pp. 339-354,
2018.

[22] M. Luciani, “Forecasting with approximate dynamic factor
models: the role of non-pervasive shocks,” International
Journal of Forecasting, vol. 30, no. 1, pp. 20-29, 2014.

(14

(15

(17

(18

Complexity

[23] N. R. Swanson and W. Xiong, Predicting Interest Rates Using
Shrinkage Methods, Real-Time Diffusion Indexes, and Model
Combinations, Rutgers University, Newark, NJ, USA, 2018.

[24] N. R. Swanson, W. Xiong, and X. Yang, “Predicting interest
rates using shrinkage methods, real-time diffusion indexes,
and model combinations,” Journal of Applied Econometrics,
vol. 35, no. 5, pp. 587-613, 2020.

[25] K. Maehashi and M. Shintani, “Macroeconomic forecasting
using factor models and machine learning: an application to
Japan,” Journal of the Japanese and International Economies,
vol. 58, p. 101104, 2020.

[26] D. F. Hendry and H. M. Krolzig, “The p,” The Economic
Journal, vol. 115, no. 502, pp. C32-C61, 2005.

[27] J. A. Doornik, Econometric Model Selection with More Var-
iables than Observations, Economics Department, University
of Oxford, Oxford, UK, 2009.

[28] I Barrodale and F. D. K. Roberts, “An improved algorithm for
discrete $1_1 $ linear approximation,” SIAM Journal on
Numerical Analysis, vol. 10, no. 5, pp. 839-848, 1973.

[29] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” Journal of the Royal Statistical Society: Series B, vol. 58,
no. 1, pp. 267-288, 1996.

[30] Z.Y. Algamal and M. H. Lee, “Regularized logistic regression
with adjusted adaptive elastic net for gene selection in high
dimensional cancer classification,” Computers in Biology and
Medicine, vol. 67, pp. 136-145, 2015.

[31] J. Fan and R. Li, “Variable selection via nonconcave penalized
likelihood and its oracle properties,” Journal of the American
Statistical Association, vol. 96, no. 456, pp. 1348-1360, 2001.

[32] M. Lu, J. Zhou, C. Naylor et al.,, “Application of penalized
linear regression methods to the selection of environmental
enteropathy biomarkers,” Biomarker research, vol. 5, no. 1,
pp. 1-10, 2017.

[33] C. H. Zhang, “Nearly unbiased variable selection under
minimax concave penalty,” Annals of Statistics, vol. 38, no. 2,
pp. 894-942, 2010.

[34] A. Wahid, D. M. Khan, and I. Hussain, “Robust Adaptive
Lasso method for parameter’s estimation and variable se-
lection in high-dimensional sparse models,” PLoS one, vol. 12,
no. 8, Article ID e0183518, 2017.

[35] Z. Ahmad, E. Mahmoudi, and O. Kharazmi, “On modeling
the earthquake insurance data via a new member of the T-X
family,” Computational Intelligence and Neuroscience,
vol. 2020, Article ID 7631495, 20 pages, 2020.

[36] F. Pretis, J. Reade, and G. Sucarrat, “Automated General-to-
Specific (GETS) regression modeling and indicator saturation
methods for the detection of outliers and structural breaks,”
Journal of Statistical Software, vol. 86, no. 3, 2018.

[37] I. Tsamardinos, G. Borboudakis, P. Katsogridakis,
P. Pratikakis, and V. Christophides, “A greedy feature se-
lection algorithm for big data of high dimensionality,” Ma-
chine Learning, vol. 108, no. 2, pp. 149-202, 2019.



