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Corrosion is one of the main concerns in the field of structural engineering due to its effect on steel buried in soil. Currently, there
is no clearly established method that allows its calculation with precision and ensures the durability of this type of structures.
Qualitative methods are commonly used rather than quantitative methods. .e objective of this research is the development of a
multivariate quantitative predictive model for estimating the loss of thickness that will occur in buried hot-dip galvanized steel as a
function of time. .e technique used in the modelling is the Adaptive Regression of Multivariate Splines (MARS). .e main
drawback of this kind of studies is the lack of data since it is not possible to have a priori the corrosive behaviour that the buried
material will have as a function of time. To solve this issue, a solid and reliable database was built from the analysis and treatment
of the existing literature and with the results obtained from a predictive model to estimate the thickness loss of ungalvanized steel.
.e input variables of the model are 5 characteristics of the soil, the useful life of the structure, and the loss of corroded
ungalvanized steel in the soil. .is last data is the output variable of another previous predictive model to estimate the loss of
thickness of bare steel in a soil. .e objective variable of the model is the loss of thickness that hot-dip galvanized steel will
experience buried in the ground and expressed in g/m2. To evaluate the performance and applicability of the proposed model, the
statistical metrics RMSE, R2, MAE, and RAE and the graphs of standardized residuals were used. .e results indicated that the
model offers a very high prediction performance. Specifically, the mean square error was 290.6 g/m2 (range of the objective
variable is from 51.787 g/m2 to 5950.5 g/m2), R2 was 0.96, and from a relative error of 0.14, the success of the estimate was 100%.
.erefore, the use of the proposed predictive model optimizes the relationship between the amount of hot-dip galvanized steel and
the useful life of the buried metal structure.

1. Introduction

Soil is a complex and highly heterogeneous environment
whose local characteristics damage buried or semiburied
steel structures [1]. .e main cause of failure of this type of
structure is the corrosion [2, 3]. Corrosion is a mechanism of
steel degradation that deteriorates the metal until it ends up
causing the failure of the infrastructure [4, 5]. .roughout
history, there have been numerous environmental disasters
and risks to human health derived from this type of
structural failure [6, 7]. In addition to its consequences on
the resistance of structures, it also has an economic impact

[8]. .e corrosion that occurs in buried steel represents a
serious economic and environmental problem [9]. In 2016,
the National Association of Corrosion Engineers Interna-
tional revealed that the global cost triggered by corrosion in
2013 represented 3.4 of world Gross Domestic Product [10].

In the design of buried steel structures, it is intended to
define the appropriate amount of steel in accordance with
the required guarantees that ensure its useful life. Currently,
many infrastructure projects are being undertaken that
require a buried structure for which a long-term guarantee is
required, such as solar plants. .ese kinds of projects are
usually performed under the form of EPC (engineering,
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procurement, and construction) contracts. .e contractor
usually has to offer a long-life guaranty of the facility (e.g.,
solar plants could be more than 25 years). Under this
context, it is not enough following the existing standards for
the design of the structure, but they need to determine the
thickness of coating to have enough chance of accomplishing
the guaranty avoiding the expensive penalties. To achieve the
optimal trade-off between safety and cost of buried steel
structures, it is vital to provide designers with the optimal
tools [11]. .e problem is that there is no clearly established
method that provides quantitative values for the loss of
thickness that galvanized steel will experience over time
[12, 13]. .e engineer/designer has to study in depth the
effect of soil corrosion to size this type of infrastructure and
then look at the reference guides published by lobby of the
relevant industry sector and select the option that best fits
the calculation.

.emost accepted methodology for the evaluation of the
corrosive nature consists of using qualitative guidelines to
predict the aggressiveness of the soil on the metal and using
extrathicknesses to ensure the durability and safety of the
structure [14]. .ese methodologies are tables that relate the
fundamental variables that intervene in the loss of thickness
of the material with points. Depending on the result ob-
tained, they classify the soils according to their aggres-
siveness into generic groups, without distinguishing the
specific characteristics of each place or determining quan-
titative data that facilitate the design. Based on these
guidelines, the responsible engineer must decide the
thickness that will guarantee the useful life of the infra-
structure and that will not cause its collapse and its serious
consequences for humans, the environment, and the
economy.

.e most widespread qualitative techniques are the
standards developed by the American Society for Testing
andMaterials (ASTMG187-18), the National Association of
Corrosion Engineers (NACE), and the American Associa-
tion of Works of Water (ANSI/AWWA C105) [15–17]. .e
NACE and ASTM methods are tables that relate soil re-
sistivity with the severity of corrosion. Depending on the
values presented by the soil, five corrosive degrees are dif-
ferentiated: negligible, mild, moderate, severe, and extreme.
.eir main drawback is that they only consider one pa-
rameter. .erefore, its applicability is very limited since the
final corrosion is due to the combined effect of several
factors [18, 19]. .e AWWA standard is the most widely
used method to predict the corrosive behaviour of buried
galvanized steel [20]. It consists of a point system that
qualitatively classifies corrosive behaviour. Each type of soil
is obtaining different qualifications depending on the re-
sistivity, the pH, and the redox power. Total amount of these
variables is classified into four corrosive categories: mild,
moderate, appreciable, and severe. Although it considers
more soil characteristics than the NACE and ASTM
methods, they are still few compared to the variables in-
volved in corrosion.

Although the most widely used methodologies are those
cited above, there are more studies that develop this qual-
itative approach of classifying the degree of soil corrosion

based on the factors that they consider to be the most in-
fluential in corrosion [21–23]. .e main advantage of all of
them is that they are generally simple formatting and
handling tables or diagrams. .is simplicity that allows an
agile use of the tool is also associated with its main disad-
vantage since it does not provide a numerical value.
.erefore, the engineer who uses this type of technique
obtains information on the rate of corrosivity of the soil that
will affect the buried metallic structure, but it is the designer
who decides the thickness of the galvanized steel. .ey are
methods strongly subject to interpretation and do not help
to decide optimal galvanized steel thicknesses based on the
lifetime of the structure.

.e work developed by Romanoff for the United States
National Standards Office (NBS) is one of the most out-
standing studies in the field of quantifying the loss of
thickness experienced by metals buried in the soil. In 1910,
this revolutionary scientist led the most comprehensive and
exemplary quantitative study on the corrosion experienced
by galvanized steel buried in the soil..e project consisted of
burying thousands of galvanized steel strips in soils with
different corrosive characteristics and analysing their evo-
lution over approximately 20 years. As a result, in 1957
Romanoff published a series of tables detailing the char-
acteristics of the soils and the evolution of the thickness loss
that had occurred in metals [24]. Later, he carried out an-
other series of works that supplemented his initial research
[25]. .e reason that it is considered the most important
study in the field of engineering related to corrosion is due to
the duration of the tests, the large number of samples, the
number of soils with different characteristics, and that it was
an experiment carried out in a real environment. However,
the project had the drawback that it focused especially on
bare steel and the number of samples dedicated to galvanized
steel being much smaller.

Subsequent quantitative studies have been carried out
based on burying galvanized steel samples in the soil and
periodically digging them up to calculate their mass loss
[26, 27]. .e main disadvantages that they present in
comparison to Romanoff tables are short duration of the test,
use of simulated environments in the laboratory, small
number of samples, small number of soils, or study of few
corrosive factors.

In recent years, a new quantitative approach has been
initiated in the field of soil corrosion, which consists of
modelling the results obtained in real or laboratory tests of
the evolution of corrosion over time. Several methods have
been used for modelling, mainly neural networks, genetic
algorithms, and fuzzy adaptive systems [28–32]. .e
problem is that these methods require very large databases,
and in most studies, the raw data tend to respond to tests of
short duration, with few soils or in simulated environments
that do not allow its use to be extrapolated to other locations.
In this study, the Multivariate Adaptive Regression Splines
(MARS) method has been used. It is a nonparametric re-
gression technique that provides optimal results when there
is a limited number of cases.

When comparing quantitative and qualitative methods,
it is evident that the first are a more precise tool in the design

2 Complexity



of buried steel structures. However, the use of the qualitative
approach is much more extended. .e main reason is that
there is no clearly established quantitative method and those
that do exist are complex and require more time to use. In
addition, the most important quantitative research led by
Romanoff are data tables published in 1952 that describe the
effect of corrosion over time of steels and steel alloys that
were used at that time in the construction of buried metal
structures.

In this sense, the predictive model developed in this
research allows to automatically obtain the loss of thickness
of the buried material. It is a model fed by a database created
from the tests that Romanoff carried out in a real envi-
ronment and for more than 20 years with galvanized steel.
.e database includes the physical, chemical, granulometric,
and climatological characteristics of the soil that influence
the rate of corrosion and the real effect that they caused on
the metal. To complete this information, the output variable
of another predictive model on the loss of thickness of bare
steel in the soil due to corrosion has been introduced as an
input variable, for which there is a more extensive database
[33]. Once these data have been processed, the duration and
number of soils analysed allows the results to be extrapolated
to any type of soil.

.e material used in the development of this work is a
reference steel in construction models: hot galvanized steel.
Currently, it is used in partially or fully buried in soil in
power transmission and distribution structures, solar
projects, or storage of different chemicals [34–36]. Metallic
coatings of zinc and their alloys are widely used to protect
the base steel against corrosion phenomena that can take
place in the steel/environment interaction [37, 38]. In 2003,
the International Lead Zinc Research Organization led a
project that concluded that zinc coatings reduce corrosion
rates, promote uniform attack, and ultimately increase the
life of structures in the ground [39]. .e hot galvanizing
technique consists of immersing a suitably conditioned steel
strip in a bath of molten zinc [40]. .us, a rapid reaction is
generated between the molten zinc and the steel, producing
an intimate union (intermetallic layer) between both ma-
terials. Control of the thickness of the intermetallic layer is
done by adding aluminium to the bath.

A fact that Romanoff himself was able to conclude in his
research was the existence of similar behaviours in terms of
corrosion experienced by galvanized steel in the different
groups of soils (reducing, oxidizing, alkaline, acidic, etc.),
being the behaviours between groups much more diverse
than in the case of bare steel, while within each group they
are more homogeneous. For instance, on acid-oxidizing
inorganic soils, the galvanized coating remained virtually
intact even after 13 years of exposure. On the contrary, acid-
reducing organic soils presented a more heterogeneous
behaviour in terms of their corrosion rate, although in all
cases, the galvanized coating used in the tests (with a
thickness of 3 oz/ft2, which is equivalent to about 915 g/m2)
ends up being consumed at the end of the tests.

.ese behaviours show that the oxidizing or reducing,
acidic to alkaline, and organic or inorganic nature of the soil
where the structure is buried plays a very important role.

.erefore, it is possible to draw conclusions by classifying
soils based on three main variables: if the soil was organic or
inorganic, if the soil was acidic or alkaline, and if the en-
vironment was oxidizing or reducing. Based on these three
characteristics, the soils have been classified as follows:
Cinders (Cin), Acid Oxidizing Inorganic (AOI) soils, In-
organic Oxidizing Alkaline (IOA) soils, Acid Reducing
Inorganic (ARI) soils, Inorganic Alkaline Reducing (IAR)
soils, and Acid Reducing Organic (ARO) soils. It should be
noted that, for the rest of the possible combinations of values
of these variables, there was no soil among those studied by
Romanoff that fulfilled them. To determine the group to
which the case under study belongs, the factors, degree of
soil aeration, organic or inorganic nature, pH value (acidic
or basic nature), and whether the water table is reached must
be studied.

.e objective of this study is the construction of a
quantitative predictive model that estimates the thickness of
hot-dip galvanized steel buried in the soil that will be lost
over time due to the effect of corrosion. In this way, the
engineer in charge of the design of this type of the structure
will have a quantitative value of the loss of the material that
the buried galvanized steel will experience as a function of
time.

.e paper is organized as follows. First, the composition
of the studied galvanized steel is presented. .en, the steps
for the construction of the database were described and how
the model was built using the MARS technique. Finally, the
results are presented and discussed, and the conclusions
obtained in the investigation are detailed.

2. Materials and Methods

Starting from the data collected in the literature, a solid and
robust database of hot-dip galvanized steel samples has been
analysed, transformed, and prepared. Finally, a model has
been developed to quantitatively estimate the loss of
thickness that will occur in buried galvanized steel. .e
process is detailed below.

2.1. Hot-Dip Galvanized Steel. .e material studied in this
research is hot-dip galvanized steel. .e approximate
composition of steel (wt. %) is 0.09% carbon, 0.39% man-
ganese, 0.08% phosphorus, and 0.04% sulphur, and its
density is greater than that attributed to iron, reaching
7850 kg/m3. .e galvanized coating used has a thickness of 3
oz/ft2 equivalent to about 915 g/m2 and consists of a con-
tinuous zinc coating with a density of 7140 kg/m3.

2.2. Database. .e database that feeds the models has been
constituted from two different sources: on the one hand,
from the values compiled in the tables prepared by Romanoff
andDenison [24, 25]; on the other hand, from the results of a
predictive model that estimates the corrosion of buried bare
steel. To continue, it is detailed how the data collected in the
literature has been analysed and refined. .en, the intro-
duction of the output variable of the other model in the
database is explained.
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Romanoff led a project that studied the corrosion of
galvanized steel in 62 different soils. In 47 of them, only a
point value of the loss of thickness of galvanized steel is
available, which was taken around 10 years after burial. In
the remaining 15 soils, various corrosion measurements are
available at different times between the start of the exper-
iment and its completion. .e collection of these data
provides much information on the evolution of corrosion
over time and provides a detailed characterization of the soil
variables involved in corrosion.

Once the raw data was configured, the next step was to
assess the quality of the information contained in that set.
After an exhaustive analysis, it was determined that there
were deficiencies in the set that had to be solved for the
database to be solid and reliable. .ese limitations had al-
ready been previously detected in other publications [41]. All
of them are summarized in two groups: lack of data for some
variables in the original trials and identification of unusual
values.

To detect unusual values, the dispersion of each variable
in each soil was studied. For instance, Figure 1 shows the
scatter plot of the total acidity variable where the 62 soils
studied by Romanoff are located on the x-axis and the y-axis
showing its total acidity value. As can be seen, there is a value
that is far to the rest of the values that the variable usually
takes..ese results that come out of the range of usual values
of the variables have been defined as outliers.

After its identification, each specific outlier was studied,
grouping its causes into two types: on the one hand, strange
values due to errors in measurement, annotation, or tran-
scription in the original tests; on the other hand, rare data
due to real measurements in soils with special characteristics
and, therefore, not caused by measurement or transcription
errors.

.e solution that has been adopted for the problem of
the absence of data is not to fill in empty values by cases. .e
reason is that entering new data would distort the initial
information. For unusual values, only cases where they have
been shown with certainty to be errors have been removed.
.e selection of the MARS algorithm as a prediction
technique has allowed working with a limited set of samples
since this technique adjusts to this type of dataset better than
other modelling techniques that require a more abundant
dataset.

In summary, the treatment of the Romanoff data that has
been carried out to achieve a reliable and representative
database is described in Table 1.

Once the limitations of Romanoff’s research were re-
solved, the way to solve the problem of data scarcity was
studied. After multiple tests, it was concluded that the only
possible way to generate a reliable model to predict the
corrosion of galvanized steel was to add to the database the
parameter thickness loss in g/m2 experienced by bare steel
buried in the ground..e problem is that when a soil is to be
studied to bury a galvanized steel structure, the loss of
thickness that bare steel will experience in that same soil is
not available. .e decision taken to compensate for the lack
of information was to enter into the database the infor-
mation on the estimate of the loss of thickness of bare steel

provided by the basic predictive model of a previous study
[33].

Once the modifications explained have been made, a
reliable dataset is available which constitutes a firm foun-
dation to feed the predictive models.

2.3. Predictive Model. .e technique used for the develop-
ment of the predictive corrosion estimation model is the
MARS algorithm. .is algorithm was designed by Friedman
in 1991 to solve difficult, multivariate regression problems
with complex nonlinear relationships. Regression problems
are those in which a model must predict a numerical value.
Its selection is based on its predictive capacity, its multi-
dimensional adjustment, its robustness, and that once
trained, it can be easily implemented in an application [42].

.e MARS algorithm consists of finding a set of simple
linear functions (splines) that characterize the data and uses
them together to obtain the best predictive performance..e
procedure consists of partitioning the definition domain of
the function into different regions and adjusting each of
them to a spline-type function. .e MARS algorithm gen-
erates many of these simple linear functions, called base
functions for one or more input variables.

.e construction of the MARS model to fit the data is
carried out in two phases [43]. In the first, an algorithm is
used to select the base functions and the nodes. In the
second, an algorithm is used to eliminate base functions,
until the best set of these is found. At each step, the base
function is suppressed, the elimination of which improves
the degree of fit or causes the least loss of information. .e
purpose of this last stage is to reduce the degree of com-
plexity of the model and significantly reduce the high di-
mensionality of the problem.
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Figure 1: Scatter plot of the total acidity variable.

Table 1: Treatment of the database.

Database problems Solution
Empty values Not to falsify data
Outliers:

Errors Elimination
Soil with special characteristics Not worked
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MARS is a multidimensional fitting method, and its
objective is to approximate an unknown function f defined
in a domainD contained in the vector space Rn, to a domain
D′ defined in R, from the projection of a sample of data
from the input space onto the space of exit. For this, the
algorithm looks for the approximation function f ″(x1, x2,
. . ., xn), by means of the linear combination of a set of base
functions Bi (x) parameterized by the position of the nodes.

.e final approximation provided by MARS is in the
form of the following equation:

f′ x1, x2, . . . , xn(  � 
M

i�1
aiBi(x), (1)

where x belongs to D′ contained in Rm and 1≤m≤ n is the
number of variables involved in the construction of the base
function Bi.

.e coefficients of the base functions Bi are ai variables,
and M is the number of base functions of the model.

.e base functions used by MARS are built as products
of base functions:

bk(x) � x − tk( + � Max 0, x − tk( , (2)

where tk is the position of node k and the subscript “+”
denotes the positive part of the affected parentheses.

.e maximum number of base functions involved in the
construction (number of products) is called the number of
interactions between the variables. .e value of this pa-
rameter is set by the user, and it remains fixed during al-
gorithm training.

.us, the base functions used by the MARS algorithm
have the following form:

Bi(x) �

1, i � 1,



Ji

j�1
Sji · xv(j,i) − tji  

+
, i � 2, 3, . . . ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where Ji is the degree of interaction of the Bi functions, Sji is
the sign indicator (±1), v (j, i) is the index of the independent
variable that is being divided, and tji the position of the
division and is called the node.

In this paper, the input variables of the algorithm are 7,
and they are detailed in Table 2. .e output of the model is
the loss of mass due to corrosion that galvanized steel will
experience on the soil, expressed in g/cm2.

.e performance of this tool for the design of a galva-
nized steel structure on a soil consists in introducing in the
model the 7 input variables of Table 2. .en, the developed
model provides a quantitative value in g/m2 of the loss of
thickness that the material will experience.

3. Results and Discussion

A key phase in the development of a predictive model is the
evaluation of the reliability of its predictions. .e aim is to
compare the estimates proposed by the model with the real
corrosion values in the training and test phases of the model.

.e problem is that it is not possible to have a priori the
corrosive behaviour that galvanized steel buried in soil will
suffer over time. .erefore, the only way to evaluate the
accuracy of the model is by dividing the database created
with the actual values of thickness loss of galvanized steel
due to corrosion in training and test patterns.

It was decided to allocate 90% of the cases to training
patterns and 10% to test patterns. .e reason for choosing a
90/10 ratio is based on the fact that removing more than 10%
of the information that feeds the model in the training phase
could distort the results due to the loss of relevant information.

.e model has been trained with the degree of inter-
action between variables equal to 2 and maximum number
of model terms before pruning, i.e., the maximum number
of terms created by the forward pass equal to 35.

.e following sections detail the evaluation of the pre-
dictive model. In addition, an analysis of the results
according to the type of soil has been carried out to study the
homogeneity of the corrosive behaviour in soils with the
same typology.

3.1. PredictiveModel. .e statistical metrics used to evaluate
the goodness of the model are Root Mean Square Error
(RMSE), Coefficient of Determination (R2), Mean Absolute
Error (MAE), and Relate Absolute Error (RAE).

In addition, a graphic study of standardized residuals has
been carried out..e residual concept refers to the difference
between the real value and the result predicted by the model
and is therefore the estimation error. .e graphs that have
been used in this paper were regression error characteristic
curve (REC), observed vs predicted, density of residuals,
normal Q-Q, and scale location.

3.1.1. RMSE and R2. It is important to highlight that the
object variable has a variation interval between 51.87 and
5950.5 g/m2. .e RMSE and R2 results obtained in the
training and the model test are shown in Table 3.

An RMSE (train)� 280.43 and RMSE (test)� 290.60
have been obtained. As the variation range of the object
variable is from 51.87 to 5950.5, the errors generated by the
model in both cases are low for the slack experienced by the
variable. .e behaviour in both phases is very similar, so we
can conclude that the model is stable.

.e R2 value is very close to 1 in themodel in the training
phase and in the test phase. In the latter case, the result is
slightly higher due to the smaller number of cases.

Table 2: Input variables for the predictive model of galvanized
steel.

Input variables Unit
Resistivity Ohm m
Temperature °C
Precipitation mm/year
Soil moisture %
pH —
Time years
Loss of mass due to corrosion of bare steel g/m2
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3.1.2. REC. .e purpose of Regression Error Characteristic
curves is to compare different regression models. To do this,
they plot the tolerance for error on the x-axis versus the
precision of a regression model on the y-axis [44]. .is
accuracy value is calculated as the percentage of cases that fit
each relative error tolerance.

Figure 2 shows the REC curve that results from com-
paring the training model (green line) and the test model
(blue line). In addition, a control model (red line) has been
considered that corresponds to the mean value of the cor-
roded thickness. .e quick rising of the curve to the top
entails that the model provides correct predictions.

Table 4 shows the relationship between the RAE and the
precision of the estimate in a quantitative way. In addition, it
adds the MAE metric that expresses the loss of thickness in
g/m2 that each percentage of relative error supposes.

As we can see in Table 4, the test phase and the training
have a similar behaviour, which makes the model stable.
Furthermore, for a relative error of 0.1, a precision of 0.95
over 1 is reached, and from a relative error of 0.14, the
precision is maximum. In addition, it provides a significant
improvement over the defined control.

3.1.3. Predicted vs Predicted Plot. Figure 3 reflects the results
obtained when comparing the real corrosion values of
galvanized steel with the values estimated by the model. In
Figure 3(a), we can see the result of the training model, and
in 3(b), the behaviour in the test phase. .e blue line cor-
responds to the theoretical evolution of the model, and the
points are the estimates it provides. .e further the pre-
dictions are from the blue reference line, the points are
represented by colours ranging from green (optimal) to red
(maximum error).

.e only difference between the behaviour in the
training phase and in the test phase is the amount of data. In
both cases, the points are adjusted to the theoretical evo-
lution of the model, indicating an optimal behaviour of the
predictive model.

3.1.4. Density of Residuals’ Plot. .e density plot detects the
incorrect behaviour of the residuals and shows us the shape
of the distribution of the relative error of the model. .e
peaks of the function reflect where the error values are
concentrated.

Figure 4 shows the density plot of the predictive model in
the training phase and in the test phase. As we can see, in
both cases, the model of the relative error distribution is
adjusted to the normal distribution.

.e curves are highly centred on the mean errors, in-
dicating that there are few modelling failures.

3.1.5. Normal Q-Q. A Q-Q graph has been made to know
the distribution of the error in the model. As we can see in
Figure 5, both in the case of training and in the test, the
points fall on the diagonal. .is means that the model error
follows a normal distribution.

.e training phase and the test phase indicate that the
predictive model follows a normal error distribution.
.erefore, for errors that are associated with randomness,
there is no cause of failure in the model.

3.1.6. Scale-Location Plot. Scale location plot is used to
assess the independence of the model residuals. For a correct
functioning of the model, they must respond to a cloud of
points without any pattern. In Figure 6 we see that, in both
the training and test models, there is no pattern in the
placement of the points.

In this graph, the model in the training phase and the test
phase do not follow any pattern; therefore, no anomalies are
detected.

.e statistical values RMSE, R2, MAE, and RAE that have
been obtained in the training and test models are very
similar and reflect a stable and precise behaviour of the
model. .e standardized residual plots confirm that there
are no anomalies in the performance and that the distri-
bution of the errors adjusts to the normal distribution, which
show the success of the estimates.

.erefore, according to the comparative evaluation of
the training and testing phase carried out in this study, the
results obtained show that the predictive model developed in
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Figure 2: REC plot of the predictive model.

Table 4: RAE, MAE, and model accuracy training results.

RAE (%) MAE (g/m2) Accuracy
0.01 59 0.11
0.05 295 0.75
0.10 590 0.95
0.14 826 1
0.20 1180 1
0.25 1475 1

Table 3: RMSE and R2 of the model in the training and analysis
phase.

Phase RMSE (g/m2) R2

Train analysis 280.43 0.93
Test analysis 290.60 0.96
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this paper allows to successfully estimate the loss of thickness
of hot-dip galvanized steel buried in a soil. .e main ad-
vantage of the developed model is that it provides the
quantitative value of the thickness that will be lost due to the
corrosion of the steel in the useful life of the structure. In this
way, the quantity of the material is optimized with its service
time. In addition, it eliminates the subjectivity in the

dimensioning of the structure, avoiding an excess of
thickness that increases the cost of the structures.

3.2. Study of the Influence of the Type of Soil. As already
mentioned in this paper, the existing literature in the field of
corrosion corroborates similar behaviours of galvanized
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Figure 3: Real value vs estimate in the training phase (a) and in the test phase (b).
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Figure 4: Density plot of the model in the training phase (a) and in the test phase (b).
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Figure 5: Normal Q-Q plot of the predictive model in training (a) and in test (b).
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Figure 6: Scale-location plot in the training phase (a) and in the test (b).

Table 5: Analysis of the number of cases and the average thickness loss by soil type.

Soil group Number of cases (%) Average thickness loss
Cin 4.39 2704.31
AOI 28.95 247.07
IOA 9.65 469.66
ARI 18.42 664.98
IAR 18.42 1114.37
ARO 20.17 1918.90
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Figure 7: Predicted vs actual plot for each soil type.
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steel buried in soils of the same typology. For this reason, the
study of the object variable, metal thickness loss, has been
considered relevant, depending on the soil groups. Re-
member that the soils collected in the database are divided
into Cin, AOI, IOA, ARI, IAR, and ARO.

Table 5 shows the amount of data available for each of
them and the average loss of thickness of galvanized steel
buried in each type of soil.

Figure 7 shows the progression of the model results in
the optimal case (blue line) and the predictions made by the
model for each of the soil types (points).

In all types of soil, the trend of the points is close to the
main diagonal that represents the theoretical behaviour of
the model; therefore, the behaviour is stable.

.e distribution of the results for each type of soil is
grouped in different areas of the main diagonal; accordingly,
it is evident that the loss of thickness is similar to each type of
soil.

.e density graph has been constructed for each one of
the soils to detect if there is any anomalous behaviour of the
errors (Figure 8).

.e functions are highly centred on the mean of the
errors, which indicates the goodness of the model. .ere is
an anomalous behaviour in the case of the Cin soil type, and
the reason is that, of this soil, we have very few cases in the
database (less than 5%).

.e analysis of results by type of soil shows similar
behaviours for soils belonging to the same typology, as
shown in the existing bibliography.

4. Conclusions

.e most widely used methods to estimate the thickness
loss suffered by steel buried in a soil are qualitative
guidelines that provide information on the aggressiveness
of the corrosion. .erefore, the dimensioning of the
structure depends on the responsible engineer. .e pre-
dictive model developed in this paper consists of a mul-
tivariate quantitative model that provides the loss of
thickness in g/m2 as a function of the useful life of the
structure. .e model is fed from a database consisting of
real tests that Romanoff carried out for more than 20 years
and is completed with the results of a multivariate pre-
dictive model that estimates the loss of ungalvanized steel
in the soil due to corrosion.

One of the most remarkable points of the model is that
we are introducing as input of the model the output given by
other model that predicts the loss of thickness that a bare
steel will experience in the same conditions. So, with this
information, the model is able to learn the inherent relations
and extrapolate all this information to forecast the loss of
thickness of the galvanized steel.

.e use of the model makes the dimensioning of the
structure independent of the engineer, and an efficient re-
lationship between the amount of material and durability is
achieved. .e results were evaluated through a comparative
statistical analysis between the model in the training and
testing phase, which confirmed the reliability of the esti-
mates and the good performance of themodel. In addition, it
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Figure 8: Density plot for each type of soil.
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shows the homogeneity of the corrosion behaviour in soils of
similar typologies.

.e major limitation of this study is the lack of data.
Accordingly, the recommendations for future research are to
carry out new tests in the areas of the multidimensional
space that present lower density of points in order to achieve
a more representative dataset. Due to the large time frames
required to carry out representative tests on the evolution of
corrosion over time, the database can be supplemented with
accelerated corrosion tests to study the effect of specific
conditions on the metal. Furthermore, a limitation of the
research is that it responds to a single construction material.
.erefore, the introduction of other reference materials in
the field of structural engineering is proposed as a future line
of research.
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J. Villanueva-Balsera, and F. Ortega-Fernández, “Design of
predictive models to estimate corrosion in buried steel
structures,” Sustainability, vol. 12, no. 23, p. 9879, 2020.

[34] D. Nakhaie, A. Kosari, J. M. C. Mol, and E. Asselin, “Cor-
rosion resistance of hot-dip galvanized steel in simulated soil
solution: a factorial design and pit chemistry study,”Corrosion
Science, vol. 164, Article ID 108310, 2020.

[35] L. Hanson, “Increase stell service life using hot-dip galva-
nizing,” Building blocks, vol. 11, 2015.

[36] American Galvanizers Association, Performance of Hot-Dip
Galvanized Steel Products, American Galvanizers Association,
Centennial, CO, USA, 2010.

[37] Robinson, J; Ltd, P., Predicting the In-Ground Performance of
Galvanized Steel, Robinson, J; Ltd, P, Rock Hill, South Car-
olina, 2005.

[38] R. F. D. C. Pereira, E. S. D. D. Oliveira, M. A. G. D. A. Lima,
and S. L. D. C. Brasil, “Corrosion of galvanized steel under
different soil moisture contents,” Materials Research, vol. 18,
no. 3, pp. 563–568, 2015.

[39] International Lead Zinc Research Organization Review of
Data Available on the Corrosion Rate of Galvanized Steel in
Soil, 2003.

[40] J. Bian, Y. Zhu, X.-H. Liu, and G.-D. Wang, “Development of
hot dip galvanized steel strip and its application in automobile
industry,” Journal of Iron and Steel Research International,
vol. 13, no. 3, pp. 47–50, 2006.

[41] R. E. Ricker, “Analysis of pipeline steel corrosion data from
NBS (NIST) studies conducted between 1922-1940 and rel-
evance to pipeline management,” Journal of research of the
National Institute of Standards and Technology, vol. 115, no. 5,
p. 373, 2010.

[42] J. H. Friedman, “Multivariate adaptive regression splines,”
Annals of Statistics, vol. 19, pp. 1–67, 1991.

[43] M. Kuhn and K. Johnson, Applied Predictive Modelling,
vol. 26, Springer, Berlin, Germany, 2003.
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