

# **Research Article**

# Inferences for Generalized Pareto Distribution Based on Progressive First-Failure Censoring Scheme

# Rashad M. El-Sagheer,<sup>1</sup> Taghreed M. Jawa,<sup>2</sup> and Neveen Sayed-Ahmed <sup>2</sup>

<sup>1</sup>Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt <sup>2</sup>Department of Mathematics and Statistics, College of Science, P.O. Box 11099, Taif University, Taif 21944, Saudi Arabia

Correspondence should be addressed to Neveen Sayed-Ahmed; nevensayd@yahoo.com

Received 22 October 2021; Accepted 15 November 2021; Published 7 December 2021

Academic Editor: Sameh S. Askar

Copyright © 2021 Rashad M. El-Sagheer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this article, we consider estimation of the parameters of a generalized Pareto distribution and some lifetime indices such as those relating to reliability and hazard rate functions when the failure data are progressive first-failure censored. Both classical and Bayesian techniques are obtained. In the Bayesian framework, the point estimations of unknown parameters under both symmetric and asymmetric loss functions are discussed, after having been estimated using the conjugate gamma and discrete priors for the shape and scale parameters, respectively. In addition, both exact and approximate confidence intervals as well as the exact confidence region for the estimators are constructed. A practical example using a simulated data set is analyzed. Finally, the performance of Bayes estimates is compared with that of maximum likelihood estimates through a Monte Carlo simulation study.

# 1. Introduction

In life testing and reliability analysis, some units can be lost or withdrawn from the experiment before failure occurs. One of the major reasons for removal of the experimental units is to save the working experimental units for future use, thereby conserving the cost and time associated with testing. This leads us to use the censoring schemes. The type-II censoring can be considered a common type of censored scheme. Many authors have studied the statistical inference for different probability distributions using progressive type-II censoring, including Balakrishnan and Sandhu [1, 2], Cohen [3], Mann [4], Ng [5], Balakrishnan et al. [6], Gibbons and Vance [7], Yuen and Tse [8], Ng et al. [9], Balakrishnan [10], Soliman [11, 12], Madi and Raqab [13], Mahmoud et al. [14], Mahmoud et al. [15], Soliman et al. [16], El-Sagheer [17-19], Mahmoud et al. [20], El-Sagheer and Hasaballah [21], El-Sagheer et al. [22], and Soliman et al. [23]. Recently, Zhang and Gui [24] studied the statistical inference for the lifetime performance index of Pareto distribution based on progressive type-II censored sample.

On the other hand, Viveros and Balakrishnan [25] have described a life test in which the experimenter can decide to divide the items being tested into several groups and then run all the items at the same time until occurrence of the first failure in each group. Such a censoring scheme is called first-failure censoring. For more details about statistical inference using first-failure censoring, it is recommended that the reader refers to Wu and Yu [26], Wu et al. [27], Lee et al. [28], and Wu et al. [29]. However, using this censoring scheme does not enable the experimenter to remove experimental units from the test until the first failure is observed. For this reason, Wu and Kuş [30] introduced a life testing scheme, which combines first-failure censoring with a progressive type-II censoring called a progressive first-failure censoring (Pro-F-F-C) scheme. Many previous studies have discussed inference under a Pro-F-F-C scheme for different lifetime distributions, for example, Weibull by Wu and Kuş [30], Burr Type XII by Soliman et al. [31, 32], Gompertz by Soliman et al. [33], Lomax by Mahmoud et al. [34], Compound Rayleigh by Abushal [35], Generalized Inverted Exponential by Ahmed [36], the Mixture of Weibull and Lomax

by Mahmoud et al. [37], and exponentiated Frechet by Soliman et al. [38]. Recently, Cai and Gui [39] discussed the classical and Bayesian inference for a Pro-F-F-C lefttruncated normal distribution.

Generalized Pareto distribution (GPD) is a significant continuous lifetime distribution. It plays a key role in statistical inference studies and reliability problems. It is also well known for being a distribution that has decreasing failure rate property. The pdf and cdf of a random variable *X* have a GPD given, respectively, as

$$f_X(x;\alpha,\beta) = \alpha \beta^{\alpha} (x+\beta)^{-(\alpha+1)}, x > 0, \alpha, \beta > 0, \qquad (1)$$

$$F_X(x;\alpha,\beta) = 1 - \beta^{\alpha} (x+\beta)^{-\alpha}, x > 0, \alpha, \beta > 0, \qquad (2)$$

where  $\alpha$  and  $\beta$  are the shape and scale parameters, respectively. The survival and hazard rate functions of GPD at mission time *t* are given by the following expressions:

$$s(t) = \beta^{\alpha} \left( t + \beta \right)^{-\alpha}, t > 0, \tag{3}$$

$$h(t) = \alpha (t + \beta)^{-1}, \quad t > 0.$$
 (4)

For more details about GPD, its properties, and applications, see Kremer [40]. In this article, we obtain the Bayes estimates and MLEs for the unknown quantities of the GPD using a Pro-F-F-C scheme. The approximate confidence intervals (ACIs) for  $\alpha$  and  $\beta$  are constructed based on the asymptotic normality of MLEs. In the Bayesian framework, the point estimates of unknown parameters under squared error (SE), linear-exponential (LINEX), and general entropy (GE) showing loss functions are discussed. The process is done using the conjugate gamma prior for the shape parameter and discrete prior for the scale parameter  $\beta$ . The exact confidence interval and exact confidence region for the estimators are then derived. To evaluate and compare the performance of these proposed inference procedures, a simulation study with different parameter values is undertaken. Additionally, a numerical example using simulated data set is studied to show the practicality and usefulness of these proposed methods.

The rest of the paper is arranged as follows. Section 2 deals with the classical method of estimation. Bayes estimators relative to different loss functions are considered in Section 3. In Section 4, the ACIs, exact confidence intervals, and exact confidence regions for the parameters are discussed. In Section 5, the proposed procedures obtained in the previous sections are investigated using simulated data. A simulation study is conducted to compare the proposed procedures in Section 7.

# 2. Maximum Likelihood Estimation

Let  $x_i = x_{i:m:n:k}^R$ , i = 1, 2, ..., m, be a Pro-F-F-C order statistics from the GPD with the progressive censoring scheme  $R = (R_1, R_2, ..., R_m)$ . According to Wu and Kuş [30], the joint probability density function can be written as

$$f_{1,2,\dots,m}\left(x_{1:\ m:\ n:\ k}^{R},\dots,x_{m:\ m:\ n:\ k}^{R}\right) \propto k^{m} \prod_{j=1}^{m} f\left(x_{j:\ m:\ n:\ k}^{R}\right)$$

$$\left(1 - F\left(x_{j:\ m:\ n:\ k}^{R}\right)\right)^{k\left(R_{j}+1\right)-1}.$$
(5)

From (1), (2), and (5), the likelihood function  $L(\underline{x}; \alpha, \beta)$  is given by

$$L(\underline{x};\alpha,\beta) \propto k^{m} \alpha^{m} \prod_{i=1}^{m} \beta^{\alpha k (R_{i}+1)} (x_{i}+\beta)^{-(\alpha k (R_{i}+1)+1)}.$$
 (6)

Thus, the log-likelihood function  $\ell(\underline{x}; \alpha, \beta)$  is

$$\ell(\underline{x}; \alpha, \beta) \propto m \log k + m \log \alpha + \sum_{i=1}^{m} \alpha k (R_i + 1) \log \beta$$
  
- 
$$\sum_{i=1}^{m} (\alpha k (R_i + 1) + 1) \log (x_i + \beta).$$
 (7)

By equating each result of the first-order derivatives of log-likelihood function with respect to  $\alpha$  and  $\beta$ , to zero, we obtain

$$\frac{\ell(\underline{x};\alpha,\beta)}{\partial\alpha} = \frac{m}{\alpha} + \sum_{i=1}^{m} k(R_i+1)\log\beta$$

$$-\sum_{i=1}^{m} k(R_i+1)\log(x_i+\beta) = 0,$$
(8)

$$\frac{\ell(\underline{x};\alpha,\beta)}{\partial\beta} = \sum_{i=1}^{m} \frac{\alpha k \left(R_i+1\right)}{\beta} - \sum_{i=1}^{m} \frac{\left(\alpha k \left(R_i+1\right)+1\right)}{\left(x_i+\beta\right)} = 0.$$
(9)

Hence,

$$\widehat{\alpha} = m \left( \sum_{i=1}^{m} k \left( R_i + 1 \right) \log \left( x_i + \widehat{\beta} \right) - \sum_{i=1}^{m} k \left( R_i + 1 \right) \log \widehat{\beta} \right)^{-1},$$
(10)

and  $\hat{\beta}$  the solution of

$$\sum_{i=1}^{m} \frac{\widehat{\alpha}k(R_i+1)}{\widehat{\beta}} - \sum_{i=1}^{m} \frac{(\widehat{\alpha}k(R_i+1)+1)}{(x_i+\widehat{\beta})} = 0.$$
(11)

Since there is no closed form of the solution to the above equations, the Newton–Raphson method (NRM) is widely used to obtain the desired MLEs in such situations. Once MLEs of  $\alpha$  and  $\beta$  are obtained, the MLEs of s(t) and h(t) for given t can be obtained by the invariant property of the MLEs as

$$\widehat{s}(t) = \widehat{\beta}^{\widehat{\alpha}}(t + \widehat{\beta})^{-\widehat{\alpha}}, t > 0,$$
(12)

$$\widehat{h}(t) = \widehat{\alpha}(t+\widehat{\beta})^{-1}, t > 0.$$
(13)

#### 3. Bayesian Estimation

Bayes estimation is quite different from the MLE method because it takes into consideration both the information from observed sample data and the prior information. Bayes' theorem is completely dependent on the parameter estimation through calculation of the posterior distribution. As calculating the posterior distribution is conditional on the data, this requires explicit specification of the prior distribution model parameters. Furthermore, in order to gain the best estimate of the unknown parameter, it is necessary to determine the appropriate loss functions.

The next step is to take into account different loss functions. First, we consider the square error (SE) loss function which is widely used in the literature. Because of the symmetry nature of this function, it gives equal weight to overestimation as well as underestimation. Under SE, the Bayesian estimate (BE) of any function of parameters, say  $\psi(\Theta) = u(\alpha, \beta, s, h)$ , is the unconditional posterior mean which is given as

$$\widehat{\psi}_{BS}(\Theta) = E(\psi(\Theta)) = \int_{\Theta} \psi(\Theta) \pi^*(\Theta) d\Theta.$$
 (14)

However, in many situations, the parameter may be overestimated or show serious consequences of underestimation, or vice versa. In such cases, an asymmetric loss function, which associates greater importance to overestimation or underestimation, can be taken into consideration for parameters estimation. A beneficial asymmetric loss function is the LINEX loss as follows:

$$L_{\text{LINEX}}\left(\widehat{\psi}\left(\Theta\right),\psi\left(\Theta\right)\right) = e^{a\left(\widehat{\psi}\left(\Theta\right)-\psi\left(\Theta\right)\right)} - a\left(\widehat{\psi}\left(\Theta\right)-\psi\left(\Theta\right)\right) - 1,$$
(15)

where *a* is a shape parameter whose sign refers to the direction and its magnitude represents the degree of symmetry. Moreover, for *a* figure close to zero, the LINEX loss more or less becomes a SE loss. Thus, the BE of  $\psi(\Theta)$  under this loss function is given by

$$\widehat{\psi}_{BL}(\Theta) = -\frac{1}{a} \log \left[ E\left(e^{-a\psi(\Theta)}\right) \right]$$

$$= -\frac{1}{a} \log \int_{\Theta} e^{-a\psi(\Theta)} \pi^*(\Theta) d\Theta.$$
(16)

Next, we consider the GE loss function as follows:

$$L_{GE}(\widehat{\psi}(\Theta), \psi(\Theta)) = \left(\frac{\widehat{\psi}(\Theta)}{\psi(\Theta)}\right)^{q} - q \log\left(\frac{\widehat{\psi}(\Theta)}{\psi(\Theta)}\right) - 1, \quad (17)$$

where q is a shape parameter which represents departure from symmetry. Subsequently, based on the GE loss functions, the BE of  $\psi(\Theta)$  is obtained as

$$\widehat{\psi}_{BG}(\Theta) = \left[E\left(\psi(\Theta)^{-q}\right)\right]^{-1/q} = \left[\int_{\Theta} \left(\psi(\Theta)^{-q}\right) \pi^*(\Theta) \mathrm{d}\Theta\right]^{-1/q}.$$
(18)

It is remarked that for q = -1, the BE of  $\psi(\Theta)$  concurs with the BE under SE loss function.

$$\mathbf{r}(\beta) = \Pr(\beta = \beta_j) = \eta_j, \tag{19}$$

where  $0 \le \eta_j \le 1$  and  $\sum_{j=1}^N \eta_j = 1$ . Further,  $\alpha$  has

$$\pi(\alpha|\beta=\beta_j) = \frac{a_j^{b_j}}{\Gamma(b_j)} \alpha^{b_j-1} \exp(-a_j\alpha), \ \alpha; a_j, b_j > 0.$$
(20)

Then, the posterior distribution of  $\alpha$  takes the form as follows:

$$\pi^{*}(\alpha|\beta=\beta_{j};T_{j}) = \frac{\left(T_{j}+a_{j}\right)^{\left(b_{j}+m\right)}}{\Gamma\left(b_{j}+m\right)} \alpha^{b_{j}+m-1} \exp\left(-\alpha\left(T_{j}+a_{j}\right)\right),$$
(21)

where

$$T_{j} = \sum_{i=1}^{m} k (R_{i} + 1) [\log(x_{i} + \beta_{j}) - \log \beta_{j}].$$
(22)

The joint posterior of  $\alpha$  and  $\beta_i$  using (6), (19), and (20) is

$$\pi^* \left( \alpha, \beta = \beta_j, T_j \right) = \frac{a_j^{b_j} v_j \eta_j}{k_2 \Gamma \left( b_j \right)} \alpha^{b_j + m - 1} \exp\left( -\alpha \left( T_j + a_j \right) \right),$$
(23)

where

$$k_{2} = \sum_{j=1}^{N} \frac{a_{j}^{b_{j}} v_{j} \eta_{j} \Gamma(b_{j} + m)}{\Gamma(b_{j}) (T_{j} + a_{j})^{(b_{j} + m)}},$$

$$v_{j} = \prod_{i=1}^{m} (x_{i} + \beta_{j})^{-1}.$$
(24)

By using the Bayes theorem for discrete variables, the marginal posterior probability of  $\beta$  is

$$P_{j} = \Pr\left(\beta = \beta_{j}|T_{j}\right) = \frac{a_{j}^{b_{j}}v_{j}\eta_{j}\Gamma\left(b_{j}+m\right)}{k_{2}\Gamma\left(b_{j}\right)\left(T_{j}+a_{j}\right)^{\left(b_{j}+m\right)}},$$
 (25)

where  $k_2$  and  $v_j$  are given in (24); the marginal posterior probability of  $\alpha$  is

$$\pi^*(\alpha|T_j) = \sum_{j=1}^m \pi^*(\alpha|\beta = \beta_j, T_j).$$
(26)

3.2. BE under SE Loss. In this subsection, we obtain the BE of  $\alpha$ ,  $\beta$ , s(t), and h(t) under SE loss function. By using (14), (21), and (25), the BEs  $\tilde{\alpha}_{BS}$ ,  $\tilde{\beta}_{BS}$ ,  $\tilde{s}_{BS}(t)$ , and  $\tilde{h}_{BS}(t)$  are given by

(28)

$$\widetilde{\alpha}_{BS} = \int_{0}^{\infty} \sum_{j=1}^{N} \alpha P_{j} \pi^{*} \left( \alpha | \beta = \beta_{j}, T_{j} \right) d\alpha = \sum_{j=1}^{N} P_{j} \frac{\left( b_{j} + m \right)}{\left( T_{j} + a_{j} \right)}, \\ \widetilde{\beta}_{BS} = E_{\beta} \left( \beta | \underline{x} \right) = \sum_{j=1}^{N} \beta_{j} P_{j}, \\ \widetilde{s}_{BS} \left( t \right) = \sum_{j=1}^{N} P_{j} \left[ 1 + \frac{\log \left( 1 + \left( t / \beta_{j} \right) \right)}{\left( T_{j} + a_{j} \right)} \right]^{\left( b_{j} + m \right)},$$

$$(27)$$

$$\widetilde{h}_{BS}(t) = \sum_{j=1}^{N} \frac{P_j(b_j + m)}{(t + \beta_j)(T_j + a_j)}.$$

3.3. BE under LINEX Loss. Based on (16), (21), and (25), the BEs  $\tilde{\beta}_{BL}$ ,  $\tilde{\alpha}_{BL}$ ,  $\tilde{s}_{BL}(t)$ , and  $\tilde{h}_{BL}(t)$  are

$$\widetilde{\beta}_{BL} = -\frac{1}{a} \log \left[ \sum_{j=1}^{N} P_j \exp(-a\beta_j) \right],$$

$$\widetilde{\alpha}_{BL} = -\frac{1}{a} \log \left[ \sum_{j=1}^{N} P_j \left( 1 + \frac{a}{(T_j + a_j)} \right)^{-(b_j + m)} \right],$$

$$\widetilde{s}_{BL}(t) = -\frac{1}{a} \log \left[ \sum_{j=1}^{N} \sum_{\varepsilon=1}^{\infty} \frac{(-a)^{\varepsilon}}{\varepsilon!} P_j \left( 1 + \frac{\varepsilon \log(1 + t/\beta_j)}{(T_j + a_j)} \right)^{-(b_j + m)} \right],$$
(29)

$$\widetilde{h}_{BL}(t) = -\frac{1}{a} \log \left[ \sum_{j=1}^{N} P_j \left( 1 + \frac{a}{\left(t + \beta_j\right) \left(T_j + a_j\right)} \right)^{-\left(b_j + m\right)} \right].$$
(30)

3.4. *BE under GELoss.* From (18), (21), and (25), the BEs  $\tilde{\beta}_{BG}$ ,  $\tilde{\alpha}_{BG}$ ,  $\tilde{s}_{BG}(t)$ , and  $\tilde{h}_{BG}(t)$  are, respectively,

$$\begin{split} \widetilde{\beta}_{BG} &= \left[\sum_{j=1}^{N} \beta_{j}^{-q} P_{j}\right]^{(-1/q)}, \\ \widetilde{\alpha}_{BG} &= \left[\sum_{j=1}^{N} P_{j} \frac{\left(T_{j} + a_{j}\right)^{q} \Gamma\left(b_{j} + m - q\right)}{\Gamma\left(b_{j} + m\right)}\right]^{(-1/q)}, \\ \widetilde{s}_{BG}\left(t\right) &= \left[\sum_{j=1}^{N} P_{j} \left(1 - \frac{q \log\left(1 + \left(t/\beta_{j}\right)\right)}{\left(T_{j} + a_{j}\right)}\right)^{-\left(b_{j} + m\right)}\right]^{(-1/q)}, \end{split}$$

$$(31)$$

$$\widetilde{h}_{BG}(t) = \left[\sum_{j=1}^{N} P_j \left(t + \beta_j\right)^q \times \frac{\left(T_j + a_j\right)^q \Gamma\left(b_j + m - q\right)}{\Gamma\left(b_j + m\right)}\right]^{(-1/q)}.$$
(32)

To perform the calculations in these subsections, the values of  $a_j$  and  $b_j$  must be found in (20). We use the prior expectation of s(t) conditional on  $\beta = \beta_j$ . Thus, from (3) and (20), we get

$$E\left[s(t)|\beta_{j}\right] = \left(1 + \frac{\log\left(1 + \left(t/\beta_{j}\right)\right)}{a_{j}}\right)^{b_{j}}.$$
(33)

### 4. Interval Estimation

This section deals with ACIs, exact CIs, and exact confidence regions for the parameters  $\alpha$  and  $\beta$  of GPD based on Pro-F-F-C.

4.1. Asymptotic Confidence Intervals. The asymptotic normality of the MLEs can be used to construct ACIs for parameters  $\alpha$  and  $\beta$  by using Fisher information matrix (FIM). The FIM can be written as  $I = (I_{ij})$  where

$$I_{ij} = E\left[\frac{-\partial^2 \ell(\Phi)}{\partial \phi_i \partial \phi_j}\right], \quad i, j = 1, 2,$$
(34)

where  $\Phi = (\phi_1, \phi_2) = (\alpha, \beta)$ . The asymptotic variance-covariance matrix of the parameters  $\alpha$  and  $\beta$  can be obtained by inverting the observed FIM  $I_{ij}$  as follows:

$$I^{-1}(\widehat{\alpha},\widehat{\beta}) = \begin{bmatrix} -\frac{\partial^{2}\ell}{\partial\alpha^{2}} - \frac{\partial^{2}\ell}{\partial\alpha \ \partial\beta} \\ -\frac{\partial^{2}\ell}{\partial\beta \ \partial\alpha} - \frac{\partial^{2}\ell}{\partial\beta^{2}} \end{bmatrix}_{(\widehat{\alpha},\widehat{\beta})}^{-1} = \begin{bmatrix} \operatorname{var}(\widehat{\alpha}) \operatorname{cov}(\widehat{\alpha},\widehat{\beta}) \\ \operatorname{cov}(\widehat{\beta},\widehat{\alpha}) \operatorname{var}(\widehat{\beta}) \end{bmatrix},$$
(35)

with

$$\frac{\partial^{2} \ell}{\partial \alpha^{2}} = -\frac{m}{\alpha^{2}},$$

$$\frac{\partial^{2} \ell}{\partial \alpha \ \partial \beta} = \frac{\partial^{2} \ell}{\partial \beta \ \partial \alpha} = \sum_{i=1}^{m} \frac{k(R_{i}+1)}{\beta} - \sum_{i=1}^{m} \frac{k(R_{i}+1)}{(x_{i}+\beta)},$$
(36)

$$\frac{\partial^2 \ell}{\partial \beta^2} = \sum_{i=1}^m \frac{\alpha k \left(R_i + 1\right) + 1}{\left(x_i + \beta\right)^2} - \sum_{i=1}^m \frac{\alpha k \left(R_i + 1\right)}{\beta^2}.$$
 (37)

Thus,

$$(\widehat{\alpha},\widehat{\beta}) \sim N((\alpha,\beta), I_0^{-1}(\widehat{\alpha},\widehat{\beta})).$$
 (38)

The  $(1 - \delta)100\%$  ACIs for  $\alpha$  and  $\beta$  become

$$(\widehat{\alpha} - Z_{\delta/2} \sqrt{\operatorname{var}(\widehat{\alpha})}, \widehat{\alpha} + Z_{\delta/2} \sqrt{\operatorname{var}(\widehat{\alpha})}), \cdot (\widehat{\beta} - Z_{\delta/2} \sqrt{\operatorname{var}(\widehat{\beta})}, \widehat{\beta} + Z_{\delta/2} \sqrt{\operatorname{var}(\widehat{\beta})}),$$
(39)

where  $z_{\delta}$  is  $100(1-\delta)th$  upper percentile of standard normal variate N(0, 1).

4.2. Exact Confidence Intervals. Let  $x_{1:m:n:k}^{\mathbf{R}} < x_{2:m:n:k}^{\mathbf{R}} < \cdots < x_{m:m:n:k}^{\mathbf{R}}$  denote a Pro-F-F-C sample from GPD with parameters  $\alpha$  and  $\beta$ , and let

$$U_{i:\ m:\ n:\ k}^{R} = k\alpha \, \log \left(1 + \frac{x_{i:\ m:\ n:\ k}^{R}}{\beta}\right), \quad i = 1, 2, \dots, m.$$
(40)

It is remarked that  $U_{1:m:n:k}^R < U_{2:m:n:k}^R < \ldots < U_{m:m:n:k}^R$  is a progressively censored sample of exponential distribution (ED) with mean 1. Let us assume the following:

$$\begin{cases} W_{1} = nU_{1:\ m:\ n:\ k}^{\mathbf{R}} \\ W_{2} = (n - R_{1} - 1) \left( U_{2:\ m:\ n:\ k}^{\mathbf{R}} - U_{1:\ m:\ n:\ k}^{\mathbf{R}} \right) \\ W_{3} = (n - R_{1} - R_{2} - 2) \left( U_{3:\ m:\ n:\ k}^{\mathbf{R}} - U_{2:\ m:\ n:\ k}^{\mathbf{R}} \right) \\ \vdots \\ W_{m} = (n - R_{1} - \dots - R_{m-1} - m + 1) \left( U_{m:\ m:\ n:\ k}^{\mathbf{R}} - U_{m-1:\ m:\ n:\ k}^{\mathbf{R}} \right).$$
(41)

According to Thomas and Wilson [41], the generalized spacings  $W_1, W_2, \ldots, W_m$  are *iid* as standard ED; hence,

$$\zeta_j = 2\sum_{i=1}^j W_i,\tag{42}$$

 $\psi_j = 2 \sum_{i=j+1}^m W_i,$ (43)

has  $X^2 2(m - j)$ . To construct the confidence intervals for  $\alpha$  and  $\beta$ , we consider pivotal quantities:

has  $X^2(2j)$ , and

$$\xi_{j} = \frac{\psi_{j}/(2(m-j))}{\zeta_{j}/2j} = \frac{j}{(m-j)} \frac{2\sum_{i=j+1}^{m} W_{i}}{2\sum_{i=1}^{j} W_{i}}$$

$$= \frac{j}{(m-j)} \frac{\left(R_{1}+R_{2}+\dots+R_{j}+j-n\right) + \sum_{i=j+1}^{m} \left(R_{i}+1\right) \log\left(1+\left(x_{i:m:n:k}^{R}/\beta\right)\right)/\log\left(1+\left(x_{j:m:n:k}^{R}/\beta\right)\right)}{\left(n-R_{1}-R_{2}-\dots-R_{j-1}-j+1\right) + \sum_{i=1}^{j-1} \left(R_{i}+1\right) \log\left(1+\left(x_{i:m:n:k}^{R}/\beta\right)\right)/\log\left(1+\left(x_{j:m:n:k}^{R}/\beta\right)\right)}, \quad j = 1, 2, \dots, m-1,$$
(44)

$$\eta = \left(\psi_{j} + \zeta_{j}\right) = 2\sum_{i=1}^{m} W_{i} = 2\sum_{i=1}^{m} (R_{i} + 1)U_{i:\ m:\ n:\ k}^{R}$$

$$= 2k\alpha \sum_{i=1}^{m} (R_{i} + 1)\log\left(1 + \frac{x_{i:\ m:\ n:\ k}^{R}}{\beta}\right).$$
(45)

It can be easily shown that  $\xi_j \sim F(2(m-j), 2j)$  where j = 1, 2, ..., m-1, m > 1, and  $\eta \sim X^2(2m)$ . Also,  $\xi_j$  and  $\eta$  are independent. To construct an exact confidence interval for  $\beta$  and exact joint confidence region for  $\beta$  and  $\alpha$ , we need to analyze the following two lemmas.

**Lemma 1.** For any positive real numbers b > a > 0,  $q(\gamma) = \ln (1 + b^{\gamma})/\ln (1 + a^{\gamma})$  is a strictly increasing function of  $\gamma$ , where  $\gamma > 0$ .

**Lemma 2.** For a given set of observations  $0 < x_{1:m:n:k}^{\mathbb{R}} < x_{2:m:n:k}^{\mathbb{R}} < \ldots < x_{m:m:n:k}^{\mathbb{R}} < \infty$ , the function  $\xi_j$  is a strictly increasing function of  $\beta$  when  $\beta > 0$ . Furthermore,

- (I) For  $x_{m-1:m:n:k}^{\mathbb{R}} \leq 1$ , there is a unique solution for the given equation  $\xi_j = t$ , where t > 0.
- (II) Let  $x_{0:m:n:k}^{\mathbf{R}} = 0$ . For  $x_{1:m:n:k}^{\mathbf{R}} \le 1 < x_{l+1:m:n:k}^{\mathbf{R}}$ , there is a unique solution for the given equation  $\xi_j = t$  where

$$0 < t < \frac{j}{(m-j)} \frac{\sum_{i=j+1}^{m} (R_i+1) \log(x_{i:\ m:\ n:\ k}^R) - (n-R_1-R_2-\ldots-R_j-j) \log(x_{j:\ m:\ n:\ k}^R)}{(n-R_1-R_2-\ldots-R_{j-1}-j+1) \log(x_{j:\ m:\ n:\ k}^R) + \sum_{i=l+1}^{j-1} (R_i+1) \log(x_{i:\ m:\ n:\ k}^R)},$$
(46)

for l = 0, 1, ..., j - 1 and j = 1, 2, ..., m - 1. Using the same arguments and notations in Wu et al. [42], Lemma 1 and Lemma 2 can be proved.

4.3. Exact Confidence Interval for  $\beta$ . Suppose that  $x_{i,m,k,k}^{\mathbb{R}}$ , i = 1, 2, ..., m, denote a Pro-F-F-C sample from GPD  $(\alpha, \beta)$ , with censoring scheme  $(R_1, R_2, ..., R_m)$ . For any  $0 < \delta < 1$ ,  $a100(1 - \delta)$ % confidence interval for  $\beta$  is as follows. We know that  $\xi_j \sim F_{(2(m-j),2j)}$  by Lemma1 and Lemma 2  $\xi_j$  strictly increases in  $\beta$  when  $\beta > 0$ , where

(1) For  $x_{m-1:m:n:k}^{\mathbb{R}} \leq 1$ , there is a unique solution for the given equation  $\xi_i = t$ , where t > 0.

(2) Let 
$$x_{0:m:n:k}^{\mathbf{R}} = 0$$
. For  $x_{l:m:n:k}^{\mathbf{R}} \le 1 < x_{l+1:m:n:k}^{\mathbf{R}}$ , there is a unique solution for the equation  $\xi_j = t$ .

Hence, for  $0 < \delta < 1$ , from (44), we obtain

$$F_{1-\frac{\delta}{2}}(2(m-j),2j) < \frac{\xi_j < F_{\delta}}{2}(2(m-j),2j)$$
(47)

Thus, a  $100(1 - \delta)$ % confidence interval for  $\beta$  is

$$\left(\Phi\left(X^{R}, F_{1-\delta/2(2(m-j),2j)}\right) < \beta < \Phi\left(X^{R}, F_{\delta/2(2(m-j),2j)}\right)\right),$$
(48)

where  $X^R = (X_{1:m:n:k}^R, X_{2:m:n:k}^R, \dots, X_{m:m:n:k}^R)$  and  $\Phi(X^R, t)$  is the solution for  $\beta$  for the equation:

$$\frac{\left(R_{1}+R_{2}+\dots+R_{j}+j-n\right)+\sum_{i=j+1}^{m}\left(R_{i}+1\right)\log\left(1+x_{i:\ m:\ n:\ k}^{R}/\beta\right)/\log\left(1+x_{j:\ m:\ n:\ k}^{R}/\beta\right)}{\left(n-R_{1}-R_{2}-\dots-R_{j-1}-j+1\right)+\sum_{i=1}^{j-1}\left(R_{i}+1\right)\log\left(1+x_{i:\ m:\ n:\ k}^{R}/\beta\right)/\log\left(1+x_{j:\ m:\ n:\ k}^{R}/\beta\right)}=\frac{t\left(m-j\right)}{j}.$$
(49)

4.4. Exact Confidence Region for  $\beta$  and  $\alpha$ . By the same way, from (45), it is clear that

$$\eta = 2k\alpha \sum_{i=1}^{m} \left(R_i + 1\right) \log\left(1 + \frac{x_{i:m:n:k}^R}{\beta}\right), \quad (50)$$

where  $\eta \sim X^2(2m)$ . For  $0 < \delta < 1$ , we have

$$P\left(F_{(1+\sqrt{1-\delta}/2/2)(2(m-j),2j)} < \xi_j < F_{1-\sqrt{1-\delta}/2(2(m-j),2j)}\right) = \sqrt{1-\delta},$$
(51)

$$P\left(\chi_{1+\sqrt{1-\delta}/2(2m)}^{2} < \eta < \chi_{1-\sqrt{1-\delta}/2(2m)}^{2}\right) = \sqrt{1-\delta}.$$
 (52)

Then, we obtain

$$P\left(F_{1+\sqrt{1-\delta}/2(2(m-j),2j)} < \xi_j < F_{1-\sqrt{1-\delta}/2(2(m-j),2j)}, \\ \chi^2_{1+\sqrt{1-\delta}/2(2m)} < \eta < \chi^2_{1+\sqrt{1-\delta}/2(2m)}\right) = 1 - \delta.$$
(53)

This is equivalent to

$$P\left(\Phi\left(X^{R}, F_{1+\sqrt{1-\delta}/2(2(m-j),2j)}\right) < \beta < \Phi\left(X^{R}, F_{1-\sqrt{1-\delta}/2(2(m-j),2j)}\right), \frac{\chi_{1+\sqrt{1-\delta}/2(2m)}^{2}}{2k\sum_{i=1}^{m} (R_{i}+1)\log\left(1+x_{i:m:n:k}^{R}/\beta\right)} < \alpha < \frac{\chi_{1-\sqrt{1-\delta}/2(2m)}^{2}}{2k\sum_{i=1}^{m} (R_{i}+1)\log\left(1+x_{i:m:n:k}^{R}/\beta\right)}\right) = 1-\delta.$$
(54)

#### 5. Numerical Computations

Consider a Pro-F-F-C sample generated from GPD showing  $\alpha = 0.3$  and  $\beta = 1.5$ . The data consist of 120 observations, grouped into n = 30 sets, with 4 items within each group (k = 4). The Pro-F-F-C sample of size 10 out of 30 groups with the corresponding censoring scheme *R* is given in Table 1. The MLEs of  $\alpha$  and  $\beta$  using NRM are computed, and then both s(t) and h(t) are calculated at t = 0.451.

To compute the BEs, we first estimate two values of s(t) using a nonparametric procedure  $s(t_i = x_{i,m,n,k}^R) = m - i + 0.625/m + 0.25, i = 1, 2, ..., m$ . Using the available data, we

obtained  $s(t_1 = 0.1694) = 0.7439$  and  $s(t_2 = 4.8110) = 0.1585$ . These two priors are substituted into (33), where  $a_j$  and  $b_j$  are obtained numerically for each given  $\beta_j$ , and  $\eta_j$ , j = 1, 2, ..., 10, using the NRM. Table 2 displays the values of  $a_j$ ,  $b_j$ , and  $P_j$  for each given  $\beta_j$  and  $\eta_j$ . The results of MLE and BE for  $\alpha$ ,  $\beta$ , s(t), and h(t) are presented in Table 3. By using (45), the 95% ACIs of  $\alpha$  and  $\beta$  are (0, 0.7068) and (0, 4.4543). For j = 2, we need the percentiles  $F_{0.025}$  (18, 2) = 0.2193 and  $F_{0.975}$  (18, 2) = 39.4424 to construct the 95% CI for  $\beta$ . According to (44), the 95% exact confidence interval of  $\beta$  is calculated as (0.2193, 7.9943). For the given  $F_{0.0127}$  (18, 2) = 0.1780,  $F_{0.9873}$  (18, 2) = 78.1835,  $\chi^2_{(0.0127)(20)}$ 

Complexity

TABLE 1: Simulated Pro-F-F-C. 1 2 3 4 5 6 7 8 9 10 i  $R_i \\ x_i^R$ 10 0 1 1 5 1 1 1 0 0 0.0781 0.8912 1.0705 0.1582 0.1694 0.2040 0.3066 0.4909 4.811 14.123

TABLE 2: The hyperparameter values.

| j               | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     |
|-----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| $\eta_i$        | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    |
| $\hat{\beta}_i$ | 1.0    | 1.1    | 1.2    | 1.3    | 1.4    | 1.5    | 1.6    | 1.7    | 1.8    | 1.9    |
| $a_i$           | 0.6995 | 0.5966 | 0.5184 | 0.4571 | 0.4087 | 0.3684 | 0.3349 | 0.3066 | 0.2824 | 0.2615 |
| $b_i$           | 1.4647 | 1.3743 | 1.3054 | 1.2457 | 1.1976 | 1.1574 | 1.1237 | 1.0938 | 1.0664 | 1.0434 |
| $\vec{P_{i}}$   | 0.1059 | 0.1058 | 0.1085 | 0.1052 | 0.1041 | 0.1023 | 0.0997 | 0.0961 | 0.0921 | 0.0857 |

TABLE 3: The MLEs and BEs of  $\alpha$ ,  $\beta$ , s(t), and h(t) where s(0.450) = 0.9243 and h(0.450) = 0.1538.

|      |            |            |         | $(.)_{BL}$ |        |         | $(.)_{BG}$ |        |
|------|------------|------------|---------|------------|--------|---------|------------|--------|
|      | $(.)_{ML}$ | $(.)_{BS}$ |         | а          |        |         | 9          |        |
|      |            |            | -1      | 1          | 2      | -1      | 1          | 2      |
| α    | 0.297 5    | 0.3159     | 0.321 3 | 0.3107     | 0.3058 | 0.3159  | 0.2832     | 0.2669 |
| β    | 1.5521     | 1.467 9    | 1.5074  | 1.427 9    | 1.3892 | 1.467 9 | 1.4108     | 1.3820 |
| s(t) | 0.9271     | 0.9187     | 0.9189  | 0.9184     | 0.9181 | 0.9187  | 0.9180     | 0.9177 |
| h(t) | 0.1486     | 0.1653     | 0.1665  | 0.1641     | 0.1629 | 0.1653  | 0.1504     | 0.1428 |

TABLE 4: The interval lengths for  $\beta$  and 95% confidence area for  $\alpha$  and  $\beta$ .

| j  | Length | Area    |
|----|--------|---------|
| 1  | 7.3419 | 198.238 |
| 2  | 6.1107 | 74.2141 |
| 3  | 5.7796 | 61.2357 |
| 4  | 4.3371 | 66.9821 |
| 5  | 4.7508 | 64.8714 |
| 6  | 4.2892 | 59.4761 |
| 7  | 4.2547 | 55.2478 |
| 8  | 4.0687 | 62.4790 |
| 9  | 4.3541 | 67.2178 |
| 10 | 5.1017 | 55.4785 |
| 11 | 5.1899 | 61.2587 |
| 12 | 4.6457 | 56.4512 |
| 13 | 5.2475 | 42.8979 |
| 14 | 4.5626 | 39.4872 |
| 15 | 6.9847 | 41.2789 |

8.5737, and  $\chi^2_{(0.9873)(20)}$  = 36.7141, the 95% joint confidence region for  $\beta$  and  $\alpha$  is

$$\begin{cases} 0.2193 < \beta < 709943 \\ \frac{8.5737}{8\sum_{i=1}^{m} (R_i + 1)\log(1 + x_{i:m:n:k}^R/\beta)} < \alpha \\ < \frac{36.7141}{8\sum_{i=1}^{m} (R_i + 1)\log(1 + x_{i:m:n:k}^R/\beta)} \end{cases}$$
(55)

After the following integration,

$$\int_{0.2193}^{7.9943} \frac{34.5235}{2k \sum_{i=1}^{m} (R_i + 1) \log(1 + (x_{i:\ m:\ n:\ k}^R / \beta))} d\beta.$$
(56)

We obtain the confidence area at j = 2, by 74.2141. Similarly, the confidence areas for some values of j are presented in Table 4. Figure 1 shows the 95% confidence region for  $\beta$  and  $\alpha$ .

# 6. Simulation Study

To compare the proposed BEs with the MLEs, a simulation study is performed using various combinations of n, m, and k and different censored schemes of R (different  $R_i$  values). A



FIGURE 1: Joint confidence region for  $\beta$  and  $\alpha$ .

|   |                                                      |                                           |                                                                                                                                                                       |                                |         |         | В       | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |  |
|---|------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| k | п                                                    | т                                         | C.S                                                                                                                                                                   |                                | ML      | BS      | C       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7       |  |
|   |                                                      |                                           |                                                                                                                                                                       |                                |         |         | -1      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1       |  |
|   |                                                      |                                           |                                                                                                                                                                       | $\widetilde{\alpha}$           | 0.1576  | 0.092 0 | 0.0921  | 0.0920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.091 9 |  |
| 1 |                                                      |                                           | т                                                                                                                                                                     | $\widetilde{eta}$              | 0.7884  | 0.5711  | 0.5744  | 0.5669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c c} & q \\ \hline -1 \\ \hline 0.092 \ 0 & 0 \\ 0.571 \ 1 & 0 \\ 0.022 \ 3 & 0 \\ 0.004 \ 2 & 0 \\ 0.092 \ 2 & 0 \\ 0.092 \ 2 & 0 \\ 0.073 \ 5 & 0 \\ 0.023 \ 6 & 0 \\ 0.003 \ 6 & 0 \\ 0.004 \ 4 & 0 \\ 0.095 \ 6 & 0 \\ 0.095 \ 6 & 0 \\ 0.004 \ 4 & 0 \\ 0.095 \ 6 & 0 \\ 0.078 \ 8 & 0 \\ 0.023 \ 7 & 0 \\ 0.004 \ 6 & 0 \\ 0.095 \ 1 & 0 \\ 0.095 \ 1 & 0 \\ 0.004 \ 6 & 0 \\ 0.095 \ 1 & 0 \\ 0.004 \ 6 & 0 \\ 0.096 \ 7 & 0 \\ 0.004 \ 1 & 0 \\ 0.096 \ 7 & 0 \\ 0.004 \ 1 & 0 \\ 0.096 \ 7 & 0 \\ 0.004 \ 1 & 0 \\ 0.096 \ 7 & 0 \\ 0.004 \ 6 & 0 \\ 0.096 \ 9 & 0 \\ 0.575 \ 5 & 0 \\ 0.004 \ 6 & 0 \\ 0.096 \ 9 & 0 \\ 0.004 \ 7 & 0 \\ 0.008 \ 6 & 0 \\ 0.068 \ 6 & 0 \\ 0.068 \ 6 & 0 \\ 0.068 \ 7 & 0 \\ 0.004 \ 0 & 0 \\ 0.089 \ 7 & 0 \\ 0.068 \ 3 & 0 \\ 0.023 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 \ 1 & 0 \\ 0.004 $ | 0.565 5 |  |
|   |                                                      |                                           | 1                                                                                                                                                                     | $\widetilde{\underline{s}}(t)$ | 0.0256  | 0.022 3 | 0.0229  | 0.0223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.021 6 |  |
|   |                                                      |                                           |                                                                                                                                                                       | $\overline{h}(t)$              | 0.0056  | 0.004 2 | 0.0042  | 0.0041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0040  |  |
|   |                                                      |                                           |                                                                                                                                                                       | $\widetilde{\alpha}$           | 0.1699  | 0.092 2 | 0.0922  | 0.0921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.091 9 |  |
|   | 30                                                   | 20                                        | TT                                                                                                                                                                    | β                              | 0.8268  | 0.573 5 | 0.5770  | 0.5680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.573 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5584  |  |
|   | 50                                                   | 20                                        | 11                                                                                                                                                                    | $\widetilde{\underline{s}}(t)$ | 0.025 8 | 0.023 6 | 0.0236  | 0.0231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0221  |  |
|   |                                                      |                                           |                                                                                                                                                                       | h(t)                           | 0.005 8 | 0.004 4 | 0.0044  | 0.0042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0041  |  |
|   |                                                      |                                           |                                                                                                                                                                       | $\widetilde{\alpha}$           | 0.1801  | 0.095 6 | 0.0957  | 0.0939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0938  |  |
|   |                                                      | $\widetilde{eta}$ 0.831 4 0.578 8 0.578 9 | 0.5695                                                                                                                                                                | 0.5788                         | 0.5595  |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |  |
|   |                                                      |                                           | 111                                                                                                                                                                   | $\widetilde{s}(t)$             | 0.025 9 | 0.023 7 | 0.0239  | BL         BG           a $q$ 1 $-1$ 1           0.0920         0.0920         0.0919           0.5669         0.5711         0.5655           0.0223         0.0223         0.0216           0.0041         0.0042         0.0040           0.0921         0.0922         0.0919           0.5680         0.5735         0.5584           0.0231         0.0236         0.0221           0.0042         0.0044         0.0041           0.0939         0.0956         0.0938           0.5695         0.5788         0.5595           0.0235         0.0237         0.0227           0.0045         0.0046         0.0043           0.0948         0.0951         0.0944           0.5673         0.5717         0.5663           0.0147         0.0151         0.0146           0.0046         0.0041         0.0035           0.0963         0.0967         0.0953           0.5682         0.5724         0.5674           0.0149         0.0152         0.0148           0.0968         0.0969         0.0955           0.568 | 0.0227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |  |
|   |                                                      |                                           |                                                                                                                                                                       | h(t)                           | 0.0061  | 0.0046  | 0.0048  | 0.004 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0043  |  |
|   |                                                      |                                           |                                                                                                                                                                       | $\tilde{\alpha}$               | 0.1588  | 0.0951  | 0.0952  | 0.0948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0944  |  |
|   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                           | T                                                                                                                                                                     | $\overline{\beta}$             | 0.645 3 | 0.5717  | 0.5748  | 0.5673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5663  |  |
|   |                                                      | 0.0147                                    | 0.0151                                                                                                                                                                | 0.0146                         |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |  |
|   |                                                      |                                           |                                                                                                                                                                       | $\overline{h}(t)$              | 0.004 9 | 0.0041  | 0.0042  | 0.0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0039  |  |
|   |                                                      |                                           |                                                                                                                                                                       | $\tilde{\alpha}$               | 0.1597  | 0.0967  | 0.096 5 | 0.0963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0953  |  |
| 5 | 30                                                   | 20                                        | II                                                                                                                                                                    | $\overline{\beta}$             | 0.6680  | 0.5724  | 0.5751  | 0.5682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5674  |  |
| 5 | 50                                                   | 20                                        | II $\begin{array}{ccccccccccc} \beta & 0.668 \ 0 & 0.572 \ 4 & 0.575 \ 1 & 0.568 \ 2 \\ \widetilde{s}(t) & 0.016 \ 8 & 0.015 \ 2 & 0.015 \ 3 & 0.014 \ 9 \end{array}$ | 0.015 2                        | 0.0148  |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |  |
|   |                                                      |                                           | III                                                                                                                                                                   | $\overline{h}(t)$              | 0.005 2 | 0.0046  | 0.0049  | 0.0045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0043  |  |
|   |                                                      |                                           |                                                                                                                                                                       | $\widetilde{\alpha}$           | 0.1602  | 0.096 9 | 0.0976  | 0.0968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0957  |  |
|   |                                                      |                                           |                                                                                                                                                                       | β                              | 0.6692  | 0.575 5 | 0.5783  | 0.5684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.575 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5683  |  |
|   |                                                      |                                           | 111                                                                                                                                                                   | $\widetilde{\underline{s}}(t)$ | 0.017 5 | 0.0157  | 0.0158  | 0.015 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0152  |  |
|   |                                                      |                                           |                                                                                                                                                                       | h(t)                           | 0.0057  | 0.0047  | 0.0051  | 0.0048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.004 5 |  |
|   |                                                      |                                           |                                                                                                                                                                       | $\widetilde{\alpha}$           | 0.1501  | 0.0886  | 0.0889  | 0.0885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0881  |  |
|   |                                                      |                                           | T                                                                                                                                                                     | β                              | 0.7861  | 0.567 9 | 0.5680  | 0.5593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.527 5 |  |
|   |                                                      |                                           | 1                                                                                                                                                                     | $\widetilde{\underline{s}}(t)$ | 0.0254  | 0.021 8 | 0.0222  | 0.0217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.021 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.021 5 |  |
|   |                                                      |                                           |                                                                                                                                                                       | h(t)                           | 0.005 3 | 0.0040  | 0.0041  | 0.0039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.003 6 |  |
|   |                                                      |                                           |                                                                                                                                                                       | $\widetilde{\alpha}$           | 0.1524  | 0.0897  | 0.0898  | 0.0889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | q           1         -1         1           1920         0.0920         0.095           5669         0.5711         0.56           10920         0.0223         0.02           10921         0.0922         0.092           10921         0.0922         0.092           10041         0.0042         0.002           10042         0.002         0.092           10042         0.0044         0.002           10042         0.0044         0.002           10042         0.0044         0.002           10042         0.0044         0.002           10042         0.0044         0.002           10042         0.0044         0.002           10045         0.0046         0.002           10045         0.0046         0.002           10040         0.0041         0.002           10040         0.0041         0.002           10040         0.0046         0.002           10045         0.0046         0.002           10045         0.0046         0.002           10045         0.0047         0.002           10048         0.0047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0886  |  |
| 1 | 30                                                   | 25                                        | П                                                                                                                                                                     | β                              | 0.7952  | 0.568 3 | 0.568 5 | 0.5596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5297  |  |
| 1 | 50                                                   | 23                                        | 11                                                                                                                                                                    | $\widetilde{\underline{s}}(t)$ | 0.0259  | 0.0231  | 0.0239  | 0.0229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0227  |  |
|   |                                                      |                                           |                                                                                                                                                                       | h(t)                           | 0.0054  | 0.0041  | 0.0042  | 0.0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.003 8 |  |
|   |                                                      |                                           |                                                                                                                                                                       | $\widetilde{\alpha}$           | 0.1537  | 0.0898  | 0.0899  | 0.0892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.088 9 |  |
|   |                                                      |                                           | III                                                                                                                                                                   | β                              | 0.7959  | 0.5692  | 0.5695  | 0.5608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5343  |  |
|   |                                                      |                                           | 111                                                                                                                                                                   | $\widetilde{\underline{s}}(t)$ | 0.0266  | 0.0246  | 0.0248  | 0.0245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.023 9 |  |
|   |                                                      |                                           |                                                                                                                                                                       | h(t)                           | 0.005 5 | 0.004 5 | 0.0048  | 0.0044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.004 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0041  |  |

| TABLE 5: MSE of MLEs at | d BEs with true values. |
|-------------------------|-------------------------|
|-------------------------|-------------------------|

9

|   |    |    |     |                      |         |         | E       | BL      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BG     |  |
|---|----|----|-----|----------------------|---------|---------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| k | п  | т  | C.S |                      | ML      | BS      |         | а       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9      |  |
|   |    |    |     |                      |         |         | -1      | 1       | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1      |  |
|   |    |    |     | $\widetilde{\alpha}$ | 0.1504  | 0.0894  | 0.0898  | 0.0893  | 0.0894                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0883 |  |
|   |    |    | т   | $\widetilde{\beta}$  | 0.6422  | 0.568 2 | 0.5687  | 0.5595  | 0.5682                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5361 |  |
|   |    |    | 1   | $\tilde{s}(t)$       | 0.015 2 | 0.0143  | 0.0144  | 0.0142  | 0.014 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0141 |  |
|   |    |    |     | $\tilde{h}(t)$       | 0.0041  | 0.003 8 | 0.003 9 | 0.0037  | BG           q           -1           3         0.089 4         0.0           5         0.568 2         0.5           2         0.014 3         0.0           7         0.003 8         0.0           5         0.569 1         0.5           3         0.014 6         0.0           9         0.004 1         0.0           1         0.095 4         0.0           7         0.569 5         0.5           1         0.014 9         0.0           2         0.004 5         0.0 | 0.0034 |  |
|   |    |    |     | $\widetilde{\alpha}$ | 0.1517  | 0.0926  | 0.0928  | 0.092 5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0923 |  |
| - | 20 | 25 | TT  | $\widetilde{\beta}$  | 0.6521  | 0.5691  | 0.5695  | 0.5598  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5369 |  |
| 5 | 30 | 25 | 11  | $\tilde{s}(t)$       | 0.0161  | 0.0146  | 0.0145  | 0.0143  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0142 |  |
|   |    |    |     | $\tilde{h}(t)$       | 0.0047  | 0.0041  | 0.0042  | 0.0039  | 0.0041                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0037 |  |
|   |    |    |     | $\tilde{\alpha}$     | 0.1537  | 0.095 4 | 0.095 9 | 0.0951  | 0.0954                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0936 |  |
|   |    |    | 111 | $\widetilde{\beta}$  | 0.6547  | 0.569 5 | 0.5707  | 0.5617  | 0.5695                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5487 |  |
|   |    |    | 111 | $\tilde{s}(t)$       | 0.0166  | 0.0149  | 0.0152  | 0.0151  | 0.014 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0143 |  |
|   |    |    |     | $\tilde{h}(t)$       | 0.0052  | 0.004 5 | 0.0047  | 0.0042  | 0.0045                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0039 |  |

TABLE 5: Continued.

TABLE 6: MSE of MLEs and BEs with true values.

|   |    |    |     |                      |         |         | В       | L                                                    | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G       |
|---|----|----|-----|----------------------|---------|---------|---------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| k | п  | т  | C.S |                      | ML      | BS      | 4       | 1                                                    | í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1       |
|   |    |    |     |                      |         |         | -2      | 2                                                    | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2       |
|   |    |    |     | ã                    | 0.091 4 | 0.0794  | 0.083 4 | 0.0756                                               | 0.0838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0674  |
|   |    |    | т   | $\tilde{\beta}$      | 0.6538  | 0.4130  | 0.4871  | 0.342 5                                              | 0.4389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.3352  |
|   |    |    | 1   | $\tilde{s}(t)$       | 0.0242  | 0.0222  | 0.0222  | 0.0222                                               | 0.0222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0222  |
|   |    |    |     | $\tilde{h}(t)$       | 0.0054  | 0.003 8 | 0.0037  | 0.003 8                                              | -2<br>0.083 8<br>0.438 9<br>0.022 2<br>0.003 7<br>0.088 3<br>0.439 7<br>0.023 1<br>0.004 1<br>0.089 1<br>0.456 6<br>0.024 5<br>0.004 3<br>0.084 7<br>0.463 9<br>0.018 2<br>0.003 5<br>0.088 7<br>0.492 7<br>0.018 4<br>0.003 8<br>0.089 1<br>0.498 8<br>0.018 7<br>0.498 8<br>0.018 7<br>0.004 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0036  |
|   |    |    |     | $\tilde{\alpha}$     | 0.0942  | 0.0798  | 0.0879  | 0.0788                                               | 0.0883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0686  |
| 1 | 50 | 20 | П   | $\tilde{\beta}$      | 0.6541  | 0.4140  | 0.4878  | 0.3450                                               | 0.4397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.3379  |
| 1 | 30 | 30 | 11  | $\tilde{s}(t)$       | 0.025 5 | 0.0231  | 0.0231  | 0.0231                                               | 0.0231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0231  |
|   |    |    |     | $\widetilde{h}(t)$   | 0.0058  | 0.003 9 | 0.0040  | 0.003 8                                              | 0.0041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0037  |
|   |    |    |     | $\tilde{\alpha}$     | 0.094 5 | 0.0806  | 0.0888  | 0.0796                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0708  |
|   |    |    | III | $\overline{\beta}$   | 0.6558  | 0.4304  | 0.505 2 | 0.357 5                                              | 0.4566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.3503  |
|   |    |    | 111 | $\tilde{s}(t)$       | 0.027 9 | 0.024 5 | 0.024 5 | 0.024 5                                              | 0.4397<br>0.0231<br>0.0041<br>0.0891<br>0.4566<br>0.0245<br>0.0043<br>0.0847<br>0.4639<br>0.0182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.024 5 |
|   |    |    |     | $\overline{h}(t)$    | 0.0059  | 0.0041  | 0.0042  | 0.0040                                               | 0.0043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0039  |
|   |    |    |     | $\tilde{\alpha}$     | 0.091 9 | 0.081 2 | 0.0843  | 0.0771                                               | 0.0847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0698  |
|   |    |    | т   | $\overline{\beta}$   | 0.6483  | 0.417 5 | 0.4879  | 0.363 3                                              | 0.463 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3560  |
|   |    |    | 1   | $\tilde{s}(t)$       | 0.0194  | 0.0182  | 0.0182  | 0.018 2                                              | 0.024 5<br>0.004 3<br>0.084 7<br>0.463 9<br>0.018 2<br>0.003 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0182  |
|   |    |    |     | $\widetilde{h}(t)$   | 0.005 3 | 0.003 4 | 0.003 5 | 0.003 4                                              | 0.003 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.003 4 |
|   |    |    |     | $\tilde{\alpha}$     | 0.0923  | 0.0826  | 0.0861  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.0887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0727  |
| 5 | 50 | 30 | П   | $\overline{\beta}$   | 0.6499  | 0.4263  | 0.4917  | 0.3721                                               | -2         56       0.083 8       0         25       0.438 9       0         22       0.022 2       0         38       0.003 7       0         88       0.088 3       0         50       0.439 7       0         31       0.023 1       0         38       0.004 1       0         96       0.089 1       0         75       0.456 6       0         40       0.004 3       0         71       0.084 7       0         33       0.463 9       0         82       0.018 2       0         34       0.003 5       0         97       0.088 7       0         21       0.492 7       0         84       0.018 4       0         37       0.003 8       0         06       0.089 1       0         52       0.498 8       0         88       0.018 7       0         39       0.004 0       0 | 0.3648  |
| 5 | 50 | 50 | 11  | $\tilde{s}(t)$       | 0.0196  | 0.018 4 | 0.0184  | 0.018 4                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.018 4 |
|   |    |    |     | $\overline{h}(t)$    | 0.0054  | 0.003 7 | 0.003 8 | 0.0037                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.003 5 |
|   |    |    |     | $\widetilde{\alpha}$ | 0.0941  | 0.0843  | 0.0877  | 0.0806                                               | 0.0891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0756  |
|   |    |    | III | $\overline{\beta}$   | 0.651 2 | 0.4344  | 0.5042  | 0.3852                                               | 0.498 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3778  |
|   |    |    | 111 | $\widetilde{s}(t)$   | 0.0198  | 0.018 7 | 0.0187  | 0.0188                                               | 0.0187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.018 8 |
|   |    |    |     | h(t)                 | 0.005 5 | 0.003 8 | 0.0040  | 0.003 9                                              | 0.0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0037  |

Pro-F-F-C sample from GPD with the parameters  $(\alpha, \beta) = (0.5, 2), (0.3, 1)$  is generated. The true values of s(t) and h(t) at time t = 0.4 and 0.5 are evaluated to be (s(t) = 0.9129, h(t) = 0.2083) and (s(t) = 0.8855, h(t) = 0.2). The performance of the resulting estimators of  $\alpha$ ,  $\beta$ , s(t), and h(t) has been considered in terms of the mean squared error (MSE), which are computed, for l = 1, 2, 3, 4,  $M = 1000, \phi_1 = \alpha, \phi_2 = \beta, \phi_3 = s(t), \text{ and } \phi_4 = h(t)$  as MSE =  $1/M \sum_{j=1}^{M} (\hat{\phi}_l^{(j)} - \phi_l)^2$ . These results were obtained using Mathematica ver. 13. Considering two different group sizes k = 1, 5 and the following censoring schemes,

Scheme I:  $R_1 = n - m$  and  $R_i = 0$  for  $i \neq 1$ 

Scheme II:  $R_{m+1/2} = n - m$  and  $R_i = 0$  for  $i \neq m + 1/2$  if *m* odd, and  $R_{m/2} = n - m$  and  $R_i = 0$  for  $i \neq m/2$  if *m* even

Scheme III:  $R_m = n - m$  and  $R_i = 0$  for  $i \neq m$ 

The results of MSE of estimates are reported in Tables 5 and 6.

## 7. Conclusion

The main aim of this article is to develop different methods to estimate the unknown quantities of the GPD based on a Pro-F-F-C scheme, which was introduced by Wu and Kuş [30]. We applied the classical and the Bayesian inferential procedures for the unknown parameters and reliability measures. The ACIs have been derived based on the asymptotic normality of MLEs. Under the Bayesian approach, we obtained the BEs based on the SE, LINEX, and GE loss functions. Furthermore, we assumed the conjugate gamma prior for the shape parameter and discrete prior for the scale parameter. The exact confidence interval and exact confidence region for the estimators have been constructed based on pivotal quantities. A numerical example using a simulated data set has been studied to show the practicality of these proposed procedures. The performance of the different estimation methods is realized via a simulation study which is revealed in the following:

- (1) The BEs based on SE, LINEX, and GE loss functions perform better than the MLEs, in terms of MSEs
- (2) The BEs based on LINEX and GE loss functions when a = 1 and 2 and q = 1 and 2 perform better than BEs based on SE, in terms of MSEs
- (3) The BEs based on the SE loss function perform better than BEs based on LINEX and GE loss functions when a = -1 and -2 and q = -1 and -2, in terms of MSEs
- (4) From Tables 5 and 6, for a fixed scheme, the MSE values of all estimates, a model's parameters, and the reliability measures decrease as *m/n* increases which is consistent with the statistical theory that the larger the sample size, the more accurate the estimate
- (5) It can be seen from Tables 5 and 6 that the three CS methods vary in terms of preference and sometimes CS I is the best while at other times the CS II or III is the best in the sense of having smaller MSEs
- (6) The MSEs for α and β estimates based on the Pro-F-F-C scheme with k = 5 increase in those for P-type-II-C with k = 1 while the MSEs for s(t) and h(t) estimates based on the Pro-F-F-C scheme with k = 5 decrease in those for P-type-II-C with k = 1

# **Data Availability**

The data used are theoretically generated from the equations in the manuscript.

## **Conflicts of Interest**

The authors declare that they have no conflicts of interest.

#### Acknowledgments

This research was supported by Taif University Researchers Supporting Project (number TURSP-2020/318), Taif University, Taif, Saudi Arabia.

### References

- N. Balakrishnan and R. A. Sandhu, "A simple simulational algorithm for generating progressive type-II censored samples," *The American Statistician*, vol. 49, no. 2, pp. 229-230, 1995.
- [2] N. Balakrishnan and R. A. Sandhu, "Best linear unbiased and maximum likelihood estimation for exponential distributions under general progressive Type-II censored samples," *Sankhya Series B*, vol. 58, no. 1, pp. 1–9, 1996.
- [3] A. C. Cohen, "Progressively censored samples in life testing," *Technometrics*, vol. 5, no. 3, pp. 327–339, 1963.
- [4] N. R. Mann, "Best linear invariant estimation for weibull parameters under progressive censoring," *Technometrics*, vol. 13, no. 3, pp. 521–533, 1971.

- [5] H. K. T. Ng, "Parameter estimation for a modified weibull distribution, for progressively type-II censored samples," *IEEE Transactions on Reliability*, vol. 54, no. 3, pp. 374–380, 2005.
- [6] N. Balakrishnan, N. Kannan, C. T. Lin, and H. K. T. Ng, "Point and interval estimation for Gaussian distribution, based on progressively type-II censored samples," *IEEE Transactions on Reliability*, vol. 52, no. 1, pp. 90–95, 2003.
- [7] D. I. Gibbons and L. C. Vance, "Estimators for the 2-parameter weibull distribution with progressively censored samples," *IEEE Transactions on Reliability*, vol. R-32, no. 1, pp. 95–99, 1983.
- [8] H.-K. Yuen and S.-K. Tse, "Parameters estimation for weibull distributed lifetimes under progressive censoring with random removeals," *Journal of Statistical Computation and Simulation*, vol. 55, no. 1-2, pp. 57–71, 1996.
- [9] H. K. T. Ng, P. S. Chan, and N. Balakrishnan, "Estimation of parameters from progressively censored data using EM algorithm," *Computational Statistics & Data Analysis*, vol. 39, no. 4, pp. 371–386, 2002.
- [10] N. Balakrishnan, "Progressive censoring methodology: an appraisal," *Test*, vol. 16, no. 2, pp. 211–259, 2007.
- [11] A. A. Soliman, "Estimation of parameters of life from progressively censored data using Burr-XII model," *IEEE Transactions on Reliability*, vol. 54, no. 1, pp. 34–42, 2005.
- [12] A. A. Soliman, "Estimations for Pareto model using general progressive censored data and asymmetric loss," *Communications in Statistics - Theory and Methods*, vol. 37, no. 9, pp. 1353–1370, 2008.
- [13] M. T. Madi and M. Z. Raqab, "Bayesian inference for the generalized exponential distribution based on progressively censored data," *Communications in Statistics - Theory and Methods*, vol. 38, no. 12, pp. 2016–2029, 2009.
- [14] M. A. W. Mahmoud, M. Moshref, N. M. Yhiea, and N. M. Mohamed, "Progressively censored data from the weibull gamma distribution moments and estimation," *Journal of Statistics Applications & Probability*, vol. 3, no. 1, pp. 45–60, 2014.
- [15] M. A. W. Mahmoud, R. M. El-Sagheer, A. A. Soliman, and A. H. Abd-Ellah, "Inferences of the lifetime performance index with Lomax distribution based on progressive type-II censored," *Economic Quality Control*, vol. 29, pp. 39–51, 2014.
- [16] A. A. Soliman, A. H. Abd Ellah, N. A. Abou-Elheggag, and R. M. El-Sagheer, "Inferences using type-II progressively censored data with binomial removals," *Arabian Journal of Mathematics*, vol. 4, no. 2, pp. 127–139, 2015.
- [17] R. M. El-Sagheer, "Estimation using progressively Type-II censored data from Rayleigh distribution with binomial removals: Bayesian and non-Bayesian approach," JP J. Fund. Appl. Stat.vol. 8, no. 1, pp. 17–39, 2015.
- [18] R. M. El-Sagheer, "Estimation of parameters of Weibull-Gamma distribution based on progressively censored data," *Statistical Papers*, vol. 59, no. 2, pp. 725–757, 2018.
- [19] R. M. El-Sagheer, "Estimating the parameters of Kumaraswamy distribution using progressively censored data," *Journal of Testing and Evaluation*, vol. 47, no. 2, pp. 905–926, 2019.
- [20] M. A. W. Mahmoud, R. M. El-Sagheer, and S. H. M. Abdallah, "Inferences for new Weibull-Pareto distribution based on progressively Type-II censored data," *Journal of Statistics Applications & Probability*, vol. 5, no. 3, pp. 501–514, 2016.
- [21] R. M. El-Sagheer and M. M. Hasaballah, "Inference of process capability Index Cpy for 3-Burr-XII distribution based on progressive Type-II censoring," *International Journal of*

Mathematics and Mathematical Sciences, vol. 2020, pp. 1–13, 2020.

- [22] R. M. El-Sagheer, E. M. Shokr, M. A. W. Mahmoud, and B. S. El-Desouky, "Inferences for weibull fréchet distribution using a bayesian and non-bayesian methods on gastric cancer survival times," *Computational and Mathematical Methods in Medicine*, vol. 2021, pp. 1–12, 2021.
- [23] A. A. Soliman, E. A. Ahmed, A. H. Abd Ellah, and A. A. Farghal, "Bayesian estimation from exponentiated Frechet model using MCMC approach based on progressive Type-II censoring data," *Statistics Applications & Probability*, vol. 4, no. 3, pp. 387–403, 2015.
- [24] Y. Zhang and W. Gui, "Statistical inference for the lifetime performance index of products with Pareto distribution on basis of general progressive type II censored sample," *Communications in Statistics - Theory and Methods*, vol. 50, no. 16, pp. 3790–3808, 2021.
- [25] R. Viveros and N. Balakrishnan, "Interval estimation of parameters of life from progressively censored data," *Technometrics*, vol. 36, no. 1, pp. 84–91, 1994.
- [26] J.-W. Wu and H.-Y. Yu, "Statistical inference about the shape parameter of the Burr type XII distribution under the failurecensored sampling plan," *Applied Mathematics and Computation*, vol. 163, no. 1, pp. 443–482, 2005.
- [27] J.-W. Wu, W.-L. Hung, and C.-H. Tsai, "Estimation of the parameters of the Gompertz distribution under the first failure-censored sampling plan," *Statistics*, vol. 37, no. 6, pp. 517–525, 2003.
- [28] W.-C. Lee, J.-W. Wu, and H.-Y. Yu, "Statistical inference about the shape parameter of the bathtub-shaped distribution under the failure-censored sampling plan," *International Journal on Information and Management Sciences*, vol. 18, pp. 157–172, 2007.
- [29] J.-W. Wu, T.-R. Liang-Yuh Ouyang, and L.-Y. Ouyang, "Limited failure-censored life test for the Weibull distribution," *IEEE Transactions on Reliability*, vol. 50, no. 1, pp. 107–111, 2001.
- [30] S.-J. Wu and C. Kuş, "On estimation based on progressive first-failure-censored sampling," *Computational Statistics & Data Analysis*, vol. 53, no. 10, pp. 3659–3670, 2009.
- [31] A. A. Soliman, A. H. A. Ellah, N. A. Abou-Elheggag, and A. A. Modhesh, "Bayesian inference and prediction of Burr type XII distribution for progressive first failure censored sampling," *Intelligent Information Management*, vol. 03, no. 05, pp. 175–185, 2011.
- [32] A. A. Soliman, A. H. Abd Ellah, N. A. Abou-Elheggag, and A. A. Modhesh, "Estimation of the coefficient of variation for non-normal model using progressive first-failure-censoring data," *Journal of Applied Statistics*, vol. 39, no. 12, pp. 2741–2758, 2012.
- [33] A. A. Soliman, A. H. Abd-Ellah, N. A. Abou-Elheggag, and G. A. Abd-Elmougod, "Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data," *Computational Statistics & Data Analysis*, vol. 56, no. 8, pp. 2471–2485, 2012.
- [34] M. A. W. Mahmoud, A. A. Soliman, A. H. Abd-Ellah, and R. M. El-Sagheer, "Bayesian inference and prediction using progressive first-failure censored from generalized Pareto distribution," *Journal of Statistics Applications & Probability*, vol. 2, no. 3, pp. 269–279, 2013.
- [35] T. A. Abushal, "Estimation of the unknown parameters for the Compound Rayleigh distribution based on progressive firstfailure-censored sampling," *Open Journal of Statistics*, vol. 01, no. 03, pp. 161–171, 2011.

- [36] E. A. Ahmed, "Estimation and prediction for the generalized inverted exponential distribution based on progressively firstfailure-censored data with application," *Journal of Applied Statistics*, vol. 44, no. 9, pp. 1576–1608, 2017.
- [37] M. M. Mahmoud, M. M. Nassar, and M. A. Aefa, "Bayesian estimation and prediction based on progressively first failure censored scheme from a mixture of Weibull and Lomax distributions," *Pakistan Journal of Statistics and Operation Research*, vol. 16, no. 2, pp. 357–372, 2020.
- [38] A. A.-E. Soliman, E. A. Ahmed, A. H. Abd Ellah, and A. A. Farghal, "Assessing the lifetime performance index using exponentiated Frechet distribution with the progressive first-failure-censoring scheme," *American Journal of Theoretical and Applied Statistics*, vol. 3, no. 6, pp. 167–176, 2014.
- [39] Y. Cai and W. Gui, "Classical and Bayesian inference for a progressive first-failure censored left-truncated normal distribution," *Symmetry Plus*, vol. 13, no. 3, p. 490, 2021.
- [40] E. Kremer, "A characterization of the generalized Paretodistribution with an application to reinsurance," *Blätter der DGVFM*, vol. 23, no. 1, pp. 17–19, 1997.
- [41] D. R. Thomas and W. M. Wilson, "Linear order statistic estimation for the two-parameter weibull and extreme-value distributions from type II progressively censored samples," *Technometrics*, vol. 14, no. 3, pp. 679–691, 1972.
- [42] S.-F. Wu, C.-C. Wu, Y.-L. Chen, Y.-R. Yu, and Y. P. Lin, "Interval estimation of a two-parameter Burr-XII distribution under progressive censoring," *Statistics*, vol. 44, no. 1, pp. 77–88, 2010.