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In this article, we consider estimation of the parameters of a generalized Pareto distribution and some lifetime indices such as
those relating to reliability and hazard rate functions when the failure data are progressive first-failure censored. Both classical and
Bayesian techniques are obtained. In the Bayesian framework, the point estimations of unknown parameters under both
symmetric and asymmetric loss functions are discussed, after having been estimated using the conjugate gamma and discrete
priors for the shape and scale parameters, respectively. In addition, both exact and approximate confidence intervals as well as the
exact confidence region for the estimators are constructed. A practical example using a simulated data set is analyzed. Finally, the
performance of Bayes estimates is compared with that of maximum likelihood estimates through a Monte Carlo simulation study.

1. Introduction

In life testing and reliability analysis, some units can be lost
or withdrawn from the experiment before failure occurs.
One of the major reasons for removal of the experimental
units is to save the working experimental units for future
use, thereby conserving the cost and time associated with
testing. 'is leads us to use the censoring schemes. 'e
type-II censoring can be considered a common type of
censored scheme. Many authors have studied the statistical
inference for different probability distributions using
progressive type-II censoring, including Balakrishnan and
Sandhu [1, 2], Cohen [3], Mann [4], Ng [5], Balakrishnan
et al. [6], Gibbons and Vance [7], Yuen and Tse [8], Ng et al.
[9], Balakrishnan [10], Soliman [11, 12], Madi and Raqab
[13], Mahmoud et al. [14], Mahmoud et al. [15], Soliman
et al. [16], El-Sagheer [17–19], Mahmoud et al. [20], El-
Sagheer and Hasaballah [21], El-Sagheer et al. [22], and
Soliman et al. [23]. Recently, Zhang and Gui [24] studied
the statistical inference for the lifetime performance index
of Pareto distribution based on progressive type-II cen-
sored sample.

On the other hand, Viveros and Balakrishnan [25]
have described a life test in which the experimenter can
decide to divide the items being tested into several groups
and then run all the items at the same time until oc-
currence of the first failure in each group. Such a cen-
soring scheme is called first-failure censoring. For more
details about statistical inference using first-failure cen-
soring, it is recommended that the reader refers toWu and
Yu [26], Wu et al. [27], Lee et al. [28], and Wu et al. [29].
However, using this censoring scheme does not enable the
experimenter to remove experimental units from the test
until the first failure is observed. For this reason, Wu and
Kuş [30] introduced a life testing scheme, which combines
first-failure censoring with a progressive type-II censoring
called a progressive first-failure censoring (Pro-F-F-C)
scheme. Many previous studies have discussed inference
under a Pro-F-F-C scheme for different lifetime distri-
butions, for example, Weibull by Wu and Kuş [30], Burr
Type XII by Soliman et al. [31, 32], Gompertz by Soliman
et al. [33], Lomax by Mahmoud et al. [34], Compound
Rayleigh by Abushal [35], Generalized Inverted Expo-
nential by Ahmed [36], the Mixture of Weibull and Lomax
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by Mahmoud et al. [37], and exponentiated Frechet by
Soliman et al. [38]. Recently, Cai and Gui [39] discussed
the classical and Bayesian inference for a Pro-F-F-C left-
truncated normal distribution.

Generalized Pareto distribution (GPD) is a significant
continuous lifetime distribution. It plays a key role in sta-
tistical inference studies and reliability problems. It is also
well known for being a distribution that has decreasing
failure rate property. 'e pdf and cdf of a random variable X
have a GPD given, respectively, as

fX(x; α, β) � αβα(x + β)
− (α+1)

, x> 0, α, β> 0, (1)

FX(x; α, β) � 1 − βα(x + β)
− α

, x> 0, α, β> 0, (2)

where α and β are the shape and scale parameters, re-
spectively. 'e survival and hazard rate functions of GPD at
mission time t are given by the following expressions:

s(t) � βα(t + β)
− α

, t> 0, (3)

h(t) � α(t + β)
− 1

, t> 0. (4)

For more details about GPD, its properties, and appli-
cations, see Kremer [40]. In this article, we obtain the Bayes
estimates and MLEs for the unknown quantities of the GPD
using a Pro-F-F-C scheme. 'e approximate confidence
intervals (ACIs) for α and β are constructed based on the
asymptotic normality of MLEs. In the Bayesian framework,
the point estimates of unknown parameters under squared
error (SE), linear-exponential (LINEX), and general entropy
(GE) showing loss functions are discussed. 'e process is
done using the conjugate gamma prior for the shape pa-
rameter and discrete prior for the scale parameter β. 'e
exact confidence interval and exact confidence region for the
estimators are then derived. To evaluate and compare the
performance of these proposed inference procedures, a
simulation study with different parameter values is under-
taken. Additionally, a numerical example using simulated
data set is studied to show the practicality and usefulness of
these proposed methods.

'e rest of the paper is arranged as follows. Section 2
deals with the classical method of estimation. Bayes esti-
mators relative to different loss functions are considered in
Section 3. In Section 4, the ACIs, exact confidence intervals,
and exact confidence regions for the parameters are dis-
cussed. In Section 5, the proposed procedures obtained in
the previous sections are investigated using simulated data.
A simulation study is conducted to compare the proposed
procedures in Section 6. Finally, a conclusion is provided in
Section 7.

2. Maximum Likelihood Estimation

Let xi � xR
i: m: n: k, i � 1, 2, . . . , m, be a Pro-F-F-C order sta-

tistics from the GPD with the progressive censoring scheme
R � (R1, R2, . . . , Rm). According to Wu and Kuş [30], the
joint probability density function can be written as

f1,2,...,m x
R
1: m: n: k, . . . , x

R
m: m: n: k􏼐 􏼑∝ k

m ∐
m

j�1
f x

R
j: m: n: k􏼐 􏼑

1 − F x
R
j: m: n: k􏼐 􏼑􏼐 􏼑

k Rj+1( 􏼁− 1
.

(5)

From (1), (2), and (5), the likelihood function L(x; α, β)

is given by

L x; α, β( 􏼁∝ k
mαm

􏽙

m

i�1
βαk Ri+1( ) xi + β( 􏼁

− αk Ri+1( )+1( ). (6)

'us, the log-likelihood function ℓ(x; α, β) is

ℓ x; α, β( 􏼁∝m log k + m log α + 􏽘
m

i�1
αk Ri + 1( 􏼁log β

− 􏽘
m

i�1
αk Ri + 1( 􏼁 + 1( 􏼁log xi + β( 􏼁.

(7)

By equating each result of the first-order derivatives of
log-likelihood function with respect to α and β, to zero, we
obtain

ℓ x; α, β( 􏼁

zα
�

m

α
+ 􏽘

m

i�1
k Ri + 1( 􏼁log β

− 􏽘
m

i�1
k Ri + 1( 􏼁log xi + β( 􏼁 � 0,

(8)

ℓ x; α, β( 􏼁

zβ
� 􏽘

m

i�1

αk Ri + 1( 􏼁

β
− 􏽘

m

i�1

αk Ri + 1( 􏼁 + 1( 􏼁

xi + β( 􏼁
� 0. (9)

Hence,

􏽢α � m 􏽘
m

i�1
k Ri + 1( 􏼁log xi + 􏽢β􏼐 􏼑 − 􏽘

m

i�1
k Ri + 1( 􏼁log􏽢β⎛⎝ ⎞⎠

− 1

,

(10)

and 􏽢β the solution of

􏽘

m

i�1

􏽢αk Ri + 1( 􏼁

􏽢β
− 􏽘

m

i�1

􏽢αk Ri + 1( 􏼁 + 1( 􏼁

xi + 􏽢β􏼐 􏼑
� 0. (11)

Since there is no closed form of the solution to the above
equations, the Newton–Raphson method (NRM) is widely
used to obtain the desiredMLEs in such situations. OnceMLEs
of α and β are obtained, the MLEs of s(t) and h(t) for given t

can be obtained by the invariant property of the MLEs as

􏽢s(t) � 􏽢β
􏽢α
(t + 􏽢β)

− 􏽢α
, t> 0, (12)

􏽢h(t) � 􏽢α(t + 􏽢β)
− 1

, t> 0. (13)

3. Bayesian Estimation

Bayes estimation is quite different from the MLE method
because it takes into consideration both the information
from observed sample data and the prior information. Bayes’
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theorem is completely dependent on the parameter esti-
mation through calculation of the posterior distribution. As
calculating the posterior distribution is conditional on the
data, this requires explicit specification of the prior distri-
bution model parameters. Furthermore, in order to gain the
best estimate of the unknown parameter, it is necessary to
determine the appropriate loss functions.

'e next step is to take into account different loss
functions. First, we consider the square error (SE) loss
function which is widely used in the literature. Because of the
symmetry nature of this function, it gives equal weight to
overestimation as well as underestimation. Under SE, the
Bayesian estimate (BE) of any function of parameters, say
ψ(Θ) � u(α, β, s, h), is the unconditional posterior mean
which is given as

􏽢ψBS(Θ) � E(ψ(Θ)) � 􏽚
Θ
ψ(Θ)π∗(Θ)dΘ. (14)

However, in many situations, the parameter may be
overestimated or show serious consequences of underesti-
mation, or vice versa. In such cases, an asymmetric loss
function, which associates greater importance to overesti-
mation or underestimation, can be taken into consideration
for parameters estimation. A beneficial asymmetric loss
function is the LINEX loss as follows:

LLINEX(􏽢ψ(Θ),ψ(Θ)) � e
a(􏽢ψ(Θ)− ψ(Θ))

− a(􏽢ψ(Θ) − ψ(Θ)) − 1,

(15)

where a is a shape parameter whose sign refers to the di-
rection and its magnitude represents the degree of sym-
metry. Moreover, for a figure close to zero, the LINEX loss
more or less becomes a SE loss. 'us, the BE of ψ(Θ) under
this loss function is given by

􏽢ψBL(Θ) � −
1
a
log E e

− aψ(Θ)
􏼐 􏼑􏽨 􏽩

� −
1
a
log􏽚
Θ

e
− aψ(Θ)π∗(Θ)dΘ.

(16)

Next, we consider the GE loss function as follows:

LGE(􏽢ψ(Θ),ψ(Θ)) �
􏽢ψ(Θ)

ψ(Θ)
􏼠 􏼡

q

− q log
􏽢ψ(Θ)

ψ(Θ)
􏼠 􏼡 − 1, (17)

where q is a shape parameter which represents departure
from symmetry. Subsequently, based on the GE loss func-
tions, the BE of ψ(Θ) is obtained as

􏽢ψBG(Θ) � E ψ(Θ)
− q

( 􏼁􏼂 􏼃
− 1/q

� 􏽚
Θ

ψ(Θ)
− q

( 􏼁π∗(Θ)dΘ􏼔 􏼕
− 1/q

.

(18)

It is remarked that for q � − 1, the BE of ψ(Θ) concurs
with the BE under SE loss function.

3.1. Posterior Analysis. In this subsection, we consider that
the parameter β a discrete prior and α has a conjugate
gamma prior. Suppose that β � βj, j � 1, 2, . . . , N, then

π(β) � Pr β � βj􏼐 􏼑 � ηj, (19)

where 0≤ ηj ≤ 1 and 􏽐
N
j�1 ηj � 1. Further, α has

π α|β � βj􏼐 􏼑 �
a

bj

j

Γ bj􏼐 􏼑
αbj − 1 exp − ajα􏼐 􏼑, α; aj, bj > 0. (20)

'en, the posterior distribution of α takes the form as
follows:

π∗ α|β � βj; Tj􏼐 􏼑 �
Tj + aj􏼐 􏼑

bj+m( 􏼁

Γ bj + m􏼐 􏼑
αbj+m− 1 exp − α Tj + aj􏼐 􏼑􏼐 􏼑,

(21)

where

Tj � 􏽘

m

i�1
k Ri + 1( 􏼁 log xi + βj􏼐 􏼑 − log βj􏽨 􏽩. (22)

'e joint posterior of α and βj using (6), (19), and (20) is

π∗ α, β � βj, Tj􏼐 􏼑 �
a

bj

j vjηj

k2Γ bj􏼐 􏼑
αbj+m− 1 exp − α Tj + aj􏼐 􏼑􏼐 􏼑,

(23)

where

k2 � 􏽘
N

j�1

a
bj

j vjηjΓ bj + m􏼐 􏼑

Γ bj􏼐 􏼑 Tj + aj􏼐 􏼑
bj+m( 􏼁

,

vj � 􏽙
m

i�1
xi + βj􏼐 􏼑

− 1
.

(24)

By using the Bayes theorem for discrete variables, the
marginal posterior probability of β is

Pj � Pr β � βj|Tj􏼐 􏼑 �
a

bj

j vjηjΓ bj + m􏼐 􏼑

k2Γ bj􏼐 􏼑 Tj + aj􏼐 􏼑
bj+m( 􏼁

, (25)

where k2 and vj are given in (24); the marginal posterior
probability of α is

π∗ α|Tj􏼐 􏼑 � 􏽘
m

j�1
π∗ α|β � βj, Tj􏼐 􏼑. (26)

3.2. BEunder SELoss. In this subsection, we obtain the BE of
α, β, s(t), and h(t) under SE loss function. By using (14),
(21), and (25), the BEs 􏽥αBS, 􏽥βBS, 􏽥sBS(t), and 􏽥hBS(t) are given
by
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􏽥αBS � 􏽚
∞

0
􏽘

N

j�1
αPjπ
∗ α|β � βj, Tj􏼐 􏼑dα � 􏽘

N

j�1
Pj

bj + m􏼐 􏼑

Tj + aj􏼐 􏼑
, 􏽥βBS � Eβ β| x( 􏼁 � 􏽘

N

j�1
βjPj, 􏽥sBS(t) � 􏽘

N

j�1
Pj 1 +

log 1 + t/βj􏼐 􏼑􏼐 􏼑

Tj + aj􏼐 􏼑
⎡⎢⎣ ⎤⎥⎦

bj+m( 􏼁

,

(27)

􏽥hBS(t) � 􏽘
N

j�1

Pj bj + m􏼐 􏼑

t + βj􏼐 􏼑 Tj + aj􏼐 􏼑
. (28)

3.3. BE under LINEX Loss. Based on (16), (21), and (25), the
BEs 􏽥βBL, 􏽥αBL, 􏽥sBL(t), and 􏽥hBL(t) are

􏽥βBL � −
1
a
log 􏽘

N

j�1
Pj exp − aβj􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦,

􏽥αBL � −
1
a
log 􏽘

N

j�1
Pj 1 +

a

Tj + aj􏼐 􏼑
⎛⎝ ⎞⎠

− bj+m( 􏼁
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

􏽥sBL(t) � −
1
a
log 􏽘

N

j�1
􏽘

∞

ε�1

(− a)
ε

ε!
Pj 1 +

ε log 1 + t/βj􏼐 􏼑

Tj + aj􏼐 􏼑
⎛⎝ ⎞⎠

− bj+m( 􏼁
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(29)

􏽥hBL(t) � −
1
a
log 􏽘

N

j�1
Pj 1 +

a

t + βj􏼐 􏼑 Tj + aj􏼐 􏼑
⎛⎝ ⎞⎠

− bj+m( 􏼁
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(30)

3.4.BEunderGELoss. From (18), (21), and (25), the BEs 􏽥βBG,
􏽥αBG, 􏽥sBG(t), and 􏽥hBG(t) are, respectively,

􏽥βBG � 􏽘
N

j�1
β− q

j Pj
⎡⎢⎢⎣ ⎤⎥⎥⎦

(− 1/q)

,

􏽥αBG � 􏽘
N

j�1
Pj

Tj + aj􏼐 􏼑
q
Γ bj + m − q􏼐 􏼑

Γ bj + m􏼐 􏼑

⎡⎢⎢⎣ ⎤⎥⎥⎦

(− 1/q)

,

􏽥sBG(t) � 􏽘
N

j�1
Pj 1 −

q log 1 + t/βj􏼐 􏼑􏼐 􏼑

Tj + aj􏼐 􏼑
⎛⎝ ⎞⎠

− bj+m( 􏼁
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(− 1/q)

,

(31)

􏽥hBG(t) � 􏽘
N

j�1
Pj t + βj􏼐 􏼑

q
×

Tj + aj􏼐 􏼑
q
Γ bj + m − q􏼐 􏼑

Γ bj + m􏼐 􏼑

⎡⎢⎢⎣ ⎤⎥⎥⎦

(− 1/q)

.

(32)

To perform the calculations in these subsections, the
values of aj and bj must be found in (20). We use the prior
expectation of s(t) conditional on β � βj. 'us, from (3) and
(20), we get

E s(t)|βj􏽨 􏽩 � 1 +
log 1 + t/βj􏼐 􏼑􏼐 􏼑

aj

⎛⎝ ⎞⎠

bj

. (33)

4. Interval Estimation

'is section deals with ACIs, exact CIs, and exact confidence
regions for the parameters α and β of GPD based on Pro-F-
F-C.

4.1. Asymptotic Confidence Intervals. 'e asymptotic nor-
mality of the MLEs can be used to construct ACIs for pa-
rameters α and β by using Fisher information matrix (FIM).
'e FIM can be written as I � Iij􏼐 􏼑 where

Iij � E
− z

2ℓ(Φ)

zϕizϕj

􏼢 􏼣, i, j � 1, 2, (34)

where Φ � (ϕ1,ϕ2) � (α, β). 'e asymptotic variance-co-
variance matrix of the parameters α and β can be obtained by
inverting the observed FIM Iij as follows:

I
− 1

(􏽢α, 􏽢β) �

−
z2ℓ
zα2

−
z2ℓ

zα zβ

−
z2ℓ

zβ zα
−

z2ℓ
zβ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

(􏽢α,􏽢β)

�
var(􏽢α) cov(􏽢α, 􏽢β)

cov(􏽢β, 􏽢α) var(􏽢β)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

(35)

with

z
2ℓ

zα2
� −

m

α2
,

z
2ℓ

zα zβ
�

z
2ℓ

zβ zα
� 􏽘

m

i�1

k Ri + 1( 􏼁

β
− 􏽘

m

i�1

k Ri + 1( 􏼁

xi + β( 􏼁
,

(36)

z
2ℓ

zβ2
� 􏽘

m

i�1

αk Ri + 1( 􏼁 + 1
xi + β( 􏼁

2 − 􏽘
m

i�1

αk Ri + 1( 􏼁

β2
. (37)

'us,

(􏽢α, 􏽢β) ∼ N (α, β), I
− 1
0 (􏽢α, 􏽢β)􏼐 􏼑. (38)

'e (1 − δ)100% ACIs for α and β become

4 Complexity



􏽢α − Zδ/2

������
var(􏽢α)

􏽰
, 􏽢α + Zδ/2

������
var(􏽢α)

􏽰
􏼐 􏼑,

· 􏽢β − Zδ/2

������

var(􏽢β)

􏽱

, 􏽢β + Zδ/2

������

var(􏽢β)

􏽱

􏼒 􏼓,
(39)

where zδ is 100(1 − δ)th upper percentile of standard
normal variate N(0, 1).

4.2. Exact Confidence Intervals. Let xR
1: m: n: k <xR

2: m: n: k <
· · · <xR

m: m: n: k denote a Pro-F-F-C sample from GPD with
parameters α and β, and let

U
R
i: m: n: k � kα log 1 +

x
R
i: m: n: k

β
􏼠 􏼡, i � 1, 2, . . . , m.

(40)

It is remarked that UR
1: m: n: k <UR

2: m: n: k < . . . <
UR

m: m: n: k is a progressively censored sample of exponential
distribution (ED) with mean 1. Let us assume the following:

W1 � nU
R
1: m: n: k

W2 � n − R1 − 1( 􏼁 U
R
2: m: n: k − U

R
1: m: n: k􏼐 􏼑

W3 � n − R1 − R2 − 2( 􏼁 U
R
3: m: n: k − U

R
2: m: n: k􏼐 􏼑

⋮

Wm � n − R1 − . . . − Rm− 1 − m + 1( 􏼁 U
R
m: m: n: k − U

R
m− 1: m: n: k􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)

According to 'omas and Wilson [41], the generalized
spacings W1, W2, . . . , Wm are iid as standard ED; hence,

ζj � 2􏽘

j

i�1
Wi, (42)

has X2(2j), and

ψj � 2 􏽘

m

i�j+1
Wi, (43)

has X22(m − j). To construct the confidence intervals for α
and β, we consider pivotal quantities:

ξj �
ψj/(2(m − j))

ζj/2j
�

j

(m − j)
.
2􏽐

m
i�j+1 Wi

2􏽐
j
i�1 Wi

�
j

(m − j)
.

R1 + R2 + · · · + Rj + j − n􏼐 􏼑 + 􏽐
m
i�j+1 Ri + 1( 􏼁log 1 + x

R
i: m: n: k/β􏼐 􏼑􏼐 􏼑/log 1 + x

R
j: m: n: k/β􏼐 􏼑􏼐 􏼑

n − R1 − R2 − . . . − Rj− 1 − j + 1􏼐 􏼑 + 􏽐
j− 1
i�1 Ri + 1( 􏼁log 1 + x

R
i: m: n: k/β􏼐 􏼑􏼐 􏼑/log 1 + x

R
j: m: n: k/β􏼐 􏼑􏼐 􏼑

, j � 1, 2, . . . , m − 1,

(44)

η � ψj + ζj􏼐 􏼑 � 2􏽘
m

i�1
Wi � 2􏽘

m

i�1
Ri + 1( 􏼁U

R
i: m: n: k

� 2kα􏽘
m

i�1
Ri + 1( 􏼁log 1 +

x
R
i: m: n: k

β
􏼠 􏼡.

(45)

It can be easily shown that ξj ∼ F(2(m − j), 2j) where
j � 1, 2, . . . , m − 1, m> 1, and η ∼ X2(2m). Also, ξj and η
are independent. To construct an exact confidence interval
for β and exact joint confidence region for β and α, we need
to analyze the following two lemmas.

Lemma 1. For any positive real numbers b> a> 0, q(c) �

ln(1 + bc)/ln(1 + ac) is a strictly increasing function of c,
where c> 0.

Lemma 2. For a given set of observations 0< xR
1: m: n: k <

xR
2: m: n: k < . . . < xR

m: m: n: k <∞, the function ξj is a strictly
increasing function of β when β> 0. Furthermore,

(I) For xR
m− 1: m: n: k ≤ 1, there is a unique solution for the

given equation ξj � t, where t> 0.

(II) Let xR
0: m: n: k � 0. For xR

l: m: n: k ≤ 1<xR
l+1: m: n: k, there

is a unique solution for the given equation ξj � t

where
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0< t<
j

(m − j)
.

􏽐
m
i�j+1 Ri + 1( 􏼁log x

R
i: m: n: k􏼐 􏼑 − n − R1 − R2 − . . . − Rj − j􏼐 􏼑log x

R
j: m: n: k􏼐 􏼑

n − R1 − R2 − . . . − Rj− 1 − j + 1􏼐 􏼑log x
R
j: m: n: k􏼐 􏼑 + 􏽐

j− 1
i�l+1 Ri + 1( 􏼁log x

R
i: m: n: k􏼐 􏼑

, (46)

for l � 0, 1, . . . , j − 1 and j � 1, 2, . . . , m − 1. Using
the same arguments and notations in Wu et al. [42],
Lemma 1 and Lemma 2 can be proved.

4.3. Exact Confidence Interval for β. Suppose that xR
i,m,n,k,

i � 1, 2, . . . , m, denote a Pro-F-F-C sample from GPD (α, β),
with censoring scheme (R1, R2, . . . , Rm). For any 0< δ < 1,
a100(1 − δ)% confidence interval for β is as follows. We
know that ξj ∼ F(2(m− j),2j) by Lemma1 and Lemma 2 ξj

strictly increases in β when β> 0, where

(1) For xR
m− 1: m: n: k ≤ 1, there is a unique solution for the

given equation ξj � t, where t> 0.

(2) Let xR
0: m: n: k � 0. For xR

l: m: n: k ≤ 1<xR
l+1: m: n: k, there

is a unique solution for the equation ξj � t.

Hence, for 0< δ < 1, from (44), we obtain

F
1−
δ
2

(2(m − j), 2j)
< ξj <Fδ

2
(2(m − j), 2j)

.
(47)

'us, a 100(1 − δ)% confidence interval for β is

Φ X
R
, F1− δ/2(2(m− j),2j)􏼐 􏼑< β<Φ X

R
, Fδ/2(2(m− j),2j)􏼐 􏼑􏼐 􏼑,

(48)

where XR � (XR
1: m: n: k, XR

2: m: n: k, . . . , XR
m: m: n: k) and

Φ(XR, t) is the solution for β for the equation:

R1 + R2 + · · · + Rj + j − n􏼐 􏼑 + 􏽐
m
i�j+1 Ri + 1( 􏼁log 1 + x

R
i: m: n: k/β􏼐 􏼑/log 1 + x

R
j: m: n: k/β􏼐 􏼑

n − R1 − R2 − . . . − Rj− 1 − j + 1􏼐 􏼑 + 􏽐
j− 1
i�1 Ri + 1( 􏼁log 1 + x

R
i: m: n: k/β􏼐 􏼑/log 1 + x

R
j: m: n: k/β􏼐 􏼑

�
t(m − j)

j
. (49)

4.4. Exact Confidence Region for β and α. By the same way,
from (45), it is clear that

η � 2kα􏽘
m

i�1
Ri + 1( 􏼁log 1 +

x
R
i: m: n: k

β
􏼠 􏼡, (50)

where η ∼ X2(2m). For 0< δ < 1, we have

P F(1+
���
1− δ

√
/2/2)(2(m− j),2j) < ξj <F1−

���
1− δ

√
/2(2(m− j),2j)􏼐 􏼑 �

����
1 − δ

√
,

(51)

P χ21+
���
1− δ

√
/2(2m) < η< χ

2
1−

���
1− δ

√
/2(2m)􏼐 􏼑 �

����
1 − δ

√
. (52)

'en, we obtain

P F1+
���
1− δ

√
/2(2(m− j),2j) < ξj <F1−

���
1− δ

√
/2(2(m− j),2j),􏼐

χ21+
���
1− δ

√
/2(2m) < η< χ

2
1+

���
1− δ

√
/2(2m)􏼑 � 1 − δ.

(53)

'is is equivalent to

P Φ X
R
, F1+

���
1− δ

√
/2(2(m− j),2j)􏼐 􏼑< β<Φ X

R
, F1−

���
1− δ

√
/2(2(m− j),2j)􏼐 􏼑,

χ21+
���
1− δ

√
/2(2m)

2k 􏽐
m
i�1 Ri + 1( 􏼁log 1 + x

R
i: m: n: k/β􏼐 􏼑

⎛⎝

< α<
χ21−

���
1− δ

√
/2(2m)

2k 􏽐
m
i�1 Ri + 1( 􏼁log 1 + x

R
i: m: n: k/β􏼐 􏼑

⎞⎠ � 1 − δ.

(54)

5. Numerical Computations

Consider a Pro-F-F-C sample generated from GPD showing
α � 0.3 and β � 1.5. 'e data consist of 120 observations,
grouped into n � 30 sets, with 4 items within each group
(k � 4). 'e Pro-F-F-C sample of size 10 out of 30 groups
with the corresponding censoring scheme R is given in
Table 1.'eMLEs of α and β using NRM are computed, and
then both s(t) and h(t) are calculated at t � 0.451.

To compute the BEs, we first estimate two values of s(t)

using a nonparametric procedure s(ti � xR
i,m,n,k) � m − i +

0.625/m + 0.25, i � 1, 2, . . . , m. Using the available data, we

obtained s(t1 � 0.1694) � 0.7439 and s(t2 � 4.8110) �

0.1585. 'ese two priors are substituted into (33), where aj

and bj are obtained numerically for each given βj, and ηj,
j � 1, 2, . . . , 10, using the NRM. Table 2 displays the values
of aj, bj, and Pj for each given βj and ηj. 'e results of MLE
and BE for α, β, s(t), and h(t) are presented in Table 3. By
using (45), the 95% ACIs of α and β are (0, 0.7068) and
(0, 4.4543). For j � 2, we need the percentiles F0.025(18, 2) �

0.2193 and F0.975(18, 2) � 39.4424 to construct the 95% CI
for β. According to (44), the 95% exact confidence interval of
β is calculated as (0.2193, 7.9943). For the given F0.0127
(18, 2) � 0.1780, F0.9873(18, 2) � 78.1835, χ2(0.0127)(20) �
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8.5737, and χ2(0.9873)(20) � 36.7141, the 95% joint confidence
region for β and α is

0.2193< β< 709943

8.5737
8􏽐

m
i�1 Ri + 1( 􏼁log 1 + x

R
i: m: n: k/β􏼐 􏼑

< α

<
36.7141

8􏽐
m
i�1 Ri + 1( 􏼁log 1 + x

R
i: m: n: k/β􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(55)

After the following integration,

􏽚
7.9943

0.2193

34.5235
2k 􏽐

m
i�1 Ri + 1( 􏼁log 1 + x

R
i: m: n: k/β􏼐 􏼑􏼐 􏼑

dβ. (56)

We obtain the confidence area at j � 2, by 74.2141.
Similarly, the confidence areas for some values of j are
presented in Table 4. Figure 1 shows the 95% confidence
region for β and α.

6. Simulation Study

To compare the proposed BEs with the MLEs, a simulation
study is performed using various combinations of n, m, and
k and different censored schemes of R (differentRi values). A

Table 1: Simulated Pro-F-F-C.

i 1 2 3 4 5 6 7 8 9 10
Ri 10 0 1 1 5 1 1 1 0 0
xR

i 0.0781 0.1582 0.1694 0.2040 0.3066 0.4909 0.8912 1.0705 4.811 14.123

Table 2: 'e hyperparameter values.

j 1 2 3 4 5 6 7 8 9 10
ηj 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
βj 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
aj 0.6995 0.5966 0.5184 0.4571 0.4087 0.3684 0.3349 0.3066 0.2824 0.2615
bj 1.4647 1.3743 1.3054 1.2457 1.1976 1.1574 1.1237 1.0938 1.0664 1.0434
Pj 0.1059 0.1058 0.1085 0.1052 0.1041 0.1023 0.0997 0.0961 0.0921 0.0857

Table 3: 'e MLEs and BEs of α, β, s(t), and h(t) where s(0.450) � 0.9243 and h(0.450) � 0.1538.

(.)ML (.)BS

(.)BL (.)BG

a q

− 1 1 2 − 1 1 2

α 0.297 5 0.315 9 0.321 3 0.310 7 0.305 8 0.315 9 0.283 2 0.266 9
β 1.5521 1.467 9 1.507 4 1.427 9 1.389 2 1.467 9 1.410 8 1.382 0
s(t) 0.9271 0.918 7 0.918 9 0.918 4 0.9181 0.918 7 0.918 0 0.917 7
h(t) 0.148 6 0.165 3 0.166 5 0.1641 0.162 9 0.165 3 0.150 4 0.142 8

Table 4: 'e interval lengths for β and 95% confidence area for α and β.

j Length Area
1 7.3419 198.238
2 6.1107 74.2141
3 5.7796 61.2357
4 4.3371 66.9821
5 4.7508 64.8714
6 4.2892 59.4761
7 4.2547 55.2478
8 4.0687 62.4790
9 4.3541 67.2178
10 5.1017 55.4785
11 5.1899 61.2587
12 4.6457 56.4512
13 5.2475 42.8979
14 4.5626 39.4872
15 6.9847 41.2789
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Figure 1: Joint confidence region for β and α.

Table 5: MSE of MLEs and BEs with true values.

k n m C.S ML BS

BL BG
a q

− 1 1 − 1 1

1 30 20

I

􏽥α 0.157 6 0.092 0 0.0921 0.092 0 0.092 0 0.091 9
􏽥β 0.788 4 0.571 1 0.574 4 0.566 9 0.571 1 0.565 5

􏽥s(t) 0.025 6 0.022 3 0.022 9 0.022 3 0.022 3 0.021 6
􏽥h(t) 0.005 6 0.004 2 0.004 2 0.0041 0.004 2 0.004 0

II

􏽥α 0.169 9 0.092 2 0.092 2 0.0921 0.092 2 0.091 9
􏽥β 0.826 8 0.573 5 0.577 0 0.568 0 0.573 5 0.558 4

􏽥s(t) 0.025 8 0.023 6 0.023 6 0.0231 0.023 6 0.0221
􏽥h(t) 0.005 8 0.004 4 0.004 4 0.004 2 0.004 4 0.0041

III

􏽥α 0.1801 0.095 6 0.095 7 0.093 9 0.095 6 0.093 8
􏽥β 0.831 4 0.578 8 0.578 9 0.569 5 0.578 8 0.559 5

􏽥s(t) 0.025 9 0.023 7 0.023 9 0.023 5 0.023 7 0.022 7
􏽥h(t) 0.0061 0.004 6 0.004 8 0.004 5 0.004 6 0.004 3

5 30 20

I

􏽥α 0.158 8 0.0951 0.095 2 0.094 8 0.0951 0.094 4
􏽥β 0.645 3 0.571 7 0.574 8 0.567 3 0.571 7 0.566 3

􏽥s(t) 0.016 0 0.0151 0.014 9 0.014 7 0.0151 0.014 6
􏽥h(t) 0.004 9 0.0041 0.004 2 0.004 0 0.0041 0.003 9

II

􏽥α 0.159 7 0.096 7 0.096 5 0.096 3 0.096 7 0.095 3
􏽥β 0.668 0 0.572 4 0.5751 0.568 2 0.572 4 0.567 4

􏽥s(t) 0.016 8 0.015 2 0.015 3 0.014 9 0.015 2 0.014 8
􏽥h(t) 0.005 2 0.004 6 0.004 9 0.004 5 0.004 6 0.004 3

III

􏽥α 0.160 2 0.096 9 0.097 6 0.096 8 0.096 9 0.095 7
􏽥β 0.669 2 0.575 5 0.578 3 0.568 4 0.575 5 0.568 3

􏽥s(t) 0.017 5 0.015 7 0.015 8 0.015 5 0.015 7 0.015 2
􏽥h(t) 0.005 7 0.004 7 0.0051 0.004 8 0.004 7 0.004 5

1 30 25

I

􏽥α 0.1501 0.088 6 0.088 9 0.088 5 0.088 6 0.0881
􏽥β 0.7861 0.567 9 0.568 0 0.559 3 0.567 9 0.527 5

􏽥s(t) 0.025 4 0.021 8 0.022 2 0.021 7 0.021 8 0.021 5
􏽥h(t) 0.005 3 0.004 0 0.0041 0.003 9 0.004 0 0.003 6

II

􏽥α 0.152 4 0.089 7 0.089 8 0.088 9 0.089 7 0.088 6
􏽥β 0.795 2 0.568 3 0.568 5 0.559 6 0.568 3 0.529 7

􏽥s(t) 0.025 9 0.0231 0.023 9 0.022 9 0.0231 0.022 7
􏽥h(t) 0.005 4 0.0041 0.004 2 0.004 0 0.0041 0.003 8

III

􏽥α 0.153 7 0.089 8 0.089 9 0.089 2 0.089 8 0.088 9
􏽥β 0.795 9 0.569 2 0.569 5 0.560 8 0.569 2 0.534 3

􏽥s(t) 0.026 6 0.024 6 0.024 8 0.024 5 0.024 6 0.023 9
􏽥h(t) 0.005 5 0.004 5 0.004 8 0.004 4 0.004 5 0.0041
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Pro-F-F-C sample from GPD with the parameters (α, β) �

(0.5, 2), (0.3, 1) is generated.'e true values of s(t) and h(t)

at time t � 0.4 and 0.5 are evaluated to be
(s(t) � 0.9129, h(t) � 0.2083) and (s(t) � 0.8855, h(t) �

0.2). 'e performance of the resulting estimators of α, β,
s(t), and h(t) has been considered in terms of the mean
squared error (MSE), which are computed, for l � 1, 2, 3, 4,
M � 1000, ϕ1 � α, ϕ2 � β, ϕ3 � s(t), and ϕ4 � h(t) as
MSE � 1/M 􏽐

M
j�1 (􏽢ϕ(j)

l − ϕl)
2. 'ese results were obtained

using Mathematica ver. 13. Considering two different group
sizes k � 1, 5 and the following censoring schemes,

Scheme I: R1 � n − m andRi � 0 for i≠ 1

Scheme II: Rm+1/2 � n − m andRi � 0 for i≠m + 1/2 if
m odd, and Rm/2 � n − m andRi � 0 for i≠m/2 if m

even
Scheme III: Rm � n − m andRi � 0 for i≠m

'e results of MSE of estimates are reported in Tables 5
and 6.

7. Conclusion

'e main aim of this article is to develop different methods to
estimate the unknown quantities of the GPD based on a Pro-F-
F-C scheme, which was introduced by Wu and Kuş [30]. We
applied the classical and the Bayesian inferential procedures for
the unknown parameters and reliability measures. 'e ACIs
have been derived based on the asymptotic normality of MLEs.
Under the Bayesian approach, we obtained the BEs based on
the SE, LINEX, and GE loss functions. Furthermore, we as-
sumed the conjugate gamma prior for the shape parameter and
discrete prior for the scale parameter. 'e exact confidence
interval and exact confidence region for the estimators have
been constructed based on pivotal quantities. A numerical

Table 5: Continued.

k n m C.S ML BS

BL BG
a q

− 1 1 − 1 1

5 30 25

I

􏽥α 0.150 4 0.089 4 0.089 8 0.089 3 0.089 4 0.088 3
􏽥β 0.642 2 0.568 2 0.568 7 0.559 5 0.568 2 0.5361

􏽥s(t) 0.015 2 0.014 3 0.014 4 0.014 2 0.014 3 0.0141
􏽥h(t) 0.0041 0.003 8 0.003 9 0.003 7 0.003 8 0.003 4

II

􏽥α 0.151 7 0.092 6 0.092 8 0.092 5 0.092 6 0.092 3
􏽥β 0.6521 0.5691 0.569 5 0.559 8 0.5691 0.536 9

􏽥s(t) 0.0161 0.014 6 0.014 5 0.014 3 0.014 6 0.014 2
􏽥h(t) 0.004 7 0.0041 0.004 2 0.003 9 0.0041 0.003 7

III

􏽥α 0.153 7 0.095 4 0.095 9 0.0951 0.095 4 0.093 6
􏽥β 0.654 7 0.569 5 0.570 7 0.561 7 0.569 5 0.548 7

􏽥s(t) 0.016 6 0.014 9 0.015 2 0.0151 0.014 9 0.014 3
􏽥h(t) 0.005 2 0.004 5 0.004 7 0.004 2 0.004 5 0.003 9

Table 6: MSE of MLEs and BEs with true values.

k n m C.S ML BS

BL BG

a q

− 2 2 − 2 2

1 50 30

I

􏽥α 0.091 4 0.079 4 0.083 4 0.075 6 0.083 8 0.067 4
􏽥β 0.653 8 0.413 0 0.4871 0.342 5 0.438 9 0.335 2

􏽥s(t) 0.024 2 0.022 2 0.022 2 0.022 2 0.022 2 0.022 2
􏽥h(t) 0.005 4 0.003 8 0.003 7 0.003 8 0.003 7 0.003 6

II

􏽥α 0.094 2 0.079 8 0.087 9 0.078 8 0.088 3 0.068 6
􏽥β 0.6541 0.414 0 0.487 8 0.345 0 0.439 7 0.337 9

􏽥s(t) 0.025 5 0.0231 0.0231 0.0231 0.0231 0.0231
􏽥h(t) 0.005 8 0.003 9 0.004 0 0.003 8 0.0041 0.003 7

III

􏽥α 0.094 5 0.080 6 0.088 8 0.079 6 0.0891 0.070 8
􏽥β 0.655 8 0.430 4 0.505 2 0.357 5 0.456 6 0.350 3

􏽥s(t) 0.027 9 0.024 5 0.024 5 0.024 5 0.024 5 0.024 5
􏽥h(t) 0.005 9 0.0041 0.004 2 0.004 0 0.004 3 0.003 9

5 50 30

I

􏽥α 0.091 9 0.081 2 0.084 3 0.0771 0.084 7 0.069 8
􏽥β 0.648 3 0.417 5 0.487 9 0.363 3 0.463 9 0.356 0

􏽥s(t) 0.019 4 0.018 2 0.018 2 0.018 2 0.018 2 0.018 2
􏽥h(t) 0.005 3 0.003 4 0.003 5 0.003 4 0.003 5 0.003 4

II

􏽥α 0.092 3 0.082 6 0.0861 0.079 7 0.088 7 0.072 7
􏽥β 0.649 9 0.426 3 0.491 7 0.3721 0.492 7 0.364 8

􏽥s(t) 0.019 6 0.018 4 0.018 4 0.018 4 0.018 4 0.018 4
􏽥h(t) 0.005 4 0.003 7 0.003 8 0.003 7 0.003 8 0.003 5

III

􏽥α 0.0941 0.084 3 0.087 7 0.080 6 0.0891 0.075 6
􏽥β 0.651 2 0.434 4 0.504 2 0.385 2 0.498 8 0.377 8

􏽥s(t) 0.019 8 0.018 7 0.018 7 0.018 8 0.018 7 0.018 8
􏽥h(t) 0.005 5 0.003 8 0.004 0 0.003 9 0.004 0 0.003 7
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example using a simulated data set has been studied to show the
practicality of these proposed procedures. 'e performance of
the different estimation methods is realized via a simulation
study which is revealed in the following:

(1) 'e BEs based on SE, LINEX, and GE loss functions
perform better than the MLEs, in terms of MSEs

(2) 'e BEs based on LINEX and GE loss functions
when a � 1 and 2 and q � 1 and 2 perform better
than BEs based on SE, in terms of MSEs

(3) 'e BEs based on the SE loss function perform better
than BEs based on LINEX and GE loss functions
when a � − 1 and − 2 and q � − 1 and − 2, in terms of
MSEs

(4) From Tables 5 and 6, for a fixed scheme, the MSE
values of all estimates, a model’s parameters, and the
reliability measures decrease as m/n increases which
is consistent with the statistical theory that the larger
the sample size, the more accurate the estimate

(5) It can be seen from Tables 5 and 6 that the three CS
methods vary in terms of preference and sometimes
CS I is the best while at other times the CS II or III is
the best in the sense of having smaller MSEs

(6) 'e MSEs for α and β estimates based on the Pro-F-
F-C scheme with k � 5 increase in those for P-type-
II-C with k � 1 while the MSEs for s(t) and h(t)

estimates based on the Pro-F-F-C scheme with k � 5
decrease in those for P-type-II-C with k � 1
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