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A new finding is proposed for multi-fractional order of neural networks by multi-time delay (MFNNMD) to obtain stable chaotic
synchronization. Moreover, our new result proved that chaos synchronization of two MFNNMDs could occur with fixed
parameters and initial conditions with the proposed control scheme called sliding mode control (SMC) based on the time-delay
chaotic systems. In comparison, the fractional-order Lyapunov direct method (FLDM) is proposed and is implemented to SMC to
maintain the systems’ sturdiness and assure the global convergence of the error dynamics. An extensive literature survey has been
conducted, and we found that many researchers focus only on fractional order of neural networks (FNNs) without delay in
different systems. Furthermore, the proposed method has been tested with different multi-fractional orders and time-delay values
to find the most stable MENNMD. Finally, numerical simulations are presented by taking two MFNNMDs as an example to

confirm the effectiveness of our control scheme.

1. Introduction

Although the concept and the knowledge of fractional-order
calculus have existed since L'Hdpital’s and Leibniz’s con-
tribution in 1695s [1, 2], its applications to the real world of
mathematics, physics engineering, and biology are only of
interest recently [3, 4]. As a result, it has captured the at-
tention of physicists and engineers over the last decade and
has been a new trend up until this point. In addition, due to
its universal application in different fields, such as brain
networks, fractional-order dynamical systems have gener-
ated significant study attention. As opposed to integer-order
systems, fractional-order systems exhibit long-term memory
effects, making them ideal for representing varied materials
and processing more precisely [5]. Fractional-order mod-
eling has the capacity to explain real-world phenomena
more realistically and precisely compared to the traditional
integer-order calculus [6-8], making it particularly well
adapted to study nonlinear systems, predominantly in bi-
ology and physics.

The fractional-order chaotic system synchronization has
recently garnered attention because of its capability of ap-
plication in a diversity of physics and engineering science
fields, including encryption and secure communication. As a
result, there is considerable interest in properly synchro-
nizing two chaotic systems with fractional order. Syn-
chronization behavior is a fundamental natural
phenomenon that frequently occurs in both the natural
world and engineering. Chaos synchronization has garnered
substantial interest and research over the last few years
because of its tenacity in numerous fields, including secure
communication, physical science, chemical reactors, and
information processing. Numerous intriguing discoveries
have been found thus far on chaotic synchronization [9-13].
However, the widely held research is based on synchroni-
zation asymptotically. Alternatively, we can say that syn-
chronization of chaos can occur individually when the time
approaches infinity.

As we all know, it is more useful in reality for chaotic
systems to be synchronized within finite time preferably
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compared to infinite time. As a result, much study has been
conducted on fixed-time synchronization [14-17]. Fixed-
time synchronization denotes the possibility of achieving
chaos synchronization within a finite time window for any
initial value of the examined system. In comparison to
synchronization asymptotically, fixed-time synchronization
has several advantages, including a faster convergence rate
and enhanced anti-interference capacity. The error system
must be stable for a defined period to maintain chaos
synchronization within a fixed time. Even though certain
conclusions have been recommended in the literature, the
study of chaotic systems’ fixed temporal stability is still in its
infancy. Thus, it is critical to continue developing some
innovative and effective fixed-time stability criteria.

Following Pecora and Carroll’s first work on chaotic
synchronization [18], synchronization of neural networks
(NNs) and complex networks has become an important
topic. Due to the enormous advantages of controlling a
problem and addressing complex nonlinear system analysis,
NN-based modeling has been an active study area in recent
years. Besides, there are some disadvantages in synchroni-
zation among NN systems, and the results of numerous
control methods have been proven to deal with drawbacks,
including adaptive [19], generalized projective [20], linear
feedback [21], and SMC [22]. The adaptive SMC approach is
an efficient technique for synchronizing chaotic systems
with a fractional order among the strategies outlined above.
The essential characteristics of this technique are its rapid
reaction, resistance to perturbations, sensitivity to parameter
disturbances, good momentary performance, and effort-
lessness of application in real-world applications. We dis-
covered that projective synchronization could achieve
remarkable performance in secure communication due to its
proportional function.

According to prior studies, synchronization of identical
or nonidentical FNNs occurs without delay [19, 22-24].
Indeed, there is always some noise and disturbances that
might impair performance and impair the synchronization’s
output. However, from the standpoint of practical engi-
neering, the work presented in the preceding publications is
insuflicient since they ignore the influence of time delays on
the system, which is another crucial component contributing
to the loss of system stability. Time delays are inevitable as a
result of information’s finite propagation velocity [25, 26],
the potential of feedback loops, and the finite switching
durations. In the real world, many channels of data alter-
nation, multiple switching mechanisms, and two or more
feedback systems may exist [27]. Conversely, multi-time
delay systems are frequently more accurate representations
of interacting complex systems than single-time-delay
systems.

FNNs with multi-time-delay synchronization are ex-
tremely important to study. In the later years, delayed
differential equations have been broadly studied as in
[28, 29]. Recently, chaotic systems have been developed with
temporal and time-varying delays; for example, see [30-33].
In addition, the first study on the significance of time delay
on chaotic behavior was in [34] based on the previous lit-
erature. Nevertheless, most of these papers concern about
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ordinary differential equations or integer orders, and there
are preliminary results concerning chaos synchronization of
FNNs with multi-time-delay systems. Numerous researchers
have attempted to employ the FNNs with multi-time-delay
systems to research secure communication, and they have
come up with some exciting results in [35-38].

There are two widely used techniques for dealing with
the degradation of system stability caused by time delays:
Lyapunov-Razumikhin functions (LRFs) and Lyapu-
nov-Krasovskii functions (LKFs) [37, 38]. In addition, the
separation technique is frequently used to decompose un-
known time-delayed functions into numerous continuous
functions [39]. In [37], a Lyapunov-Razumikhin approach
was created, and theoretical results established that systems
with varying time delays might be stable in infinite time.

Nonetheless, to the best of the authors’ understanding,
no researcher has yet examined the theoretical investigation
of MENNMD. Indeed, this fascinating subject remains an
open challenge, which prompted our investigation. As a
result, this study analyses the dynamic properties of
MFNNMD systems. We introduced the global Mit-
tag-Leffler MENNMD model of projective synchronization
in our work and designed a new multidelay SMC controller.
Following that, a new extended concept for cryptography
and safe communication is introduced for further research.
The following are the primary aspects of this article’s sig-
nificant contributions:

(1) For the first time, MFNNMD is investigated.

(2) We are constructing appropriate proposed multi-
time-delay SMC controller and FLDM of the error
system for global Mittag-Leffler synchronization of
MFNNMD to maintain their stability and ensure
global convergence of the error dynamics.

(3) To determine the practical significance of the the-
oretical outcomes, a numerical example is provided
with simulations. In addition, other examples are
included in the table.

(4) Finally, we hope that our research will provide
significant results to the real world, resulting in
increased security in secure communication
networks.

Our proposed technique is particularly well-suited for
secure communication. The transmission signal is trans-
ferred from the transmitter to the recipient by a chaotic
motion across an analogue network in a normal chaotic
synchronization communication technique. Numerous
methods for masking the data in transmission signals using
chaotic signals have been developed, including chaotic-
switching and chaotic-modulation approaches. However, it
has been demonstrated that the majority of these schemes
are insecure as the encrypted message signal may be hacked
or extracted from the transmitted chaotic signal using
several unmasking techniques. By employing our proposed
synchronization strategy to broadcast the signal, the
transmitted signal can be added to MFNNMD. We believe
that our proposed method can help chaotic communication
become more secure.
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The following is the organization of this article: Section 2
contains an explanation of the system and some relevant
prerequisites. In Section 3, we examine the synchronization
of chaotic systems with MFNNMD. In Section 4, we carry
out numerical simulations to confirm and validate our
theoretical results” practicality and discuss the implications
of varying fractional orders and time delays on synchro-
nization. Finally, in Section 5, we conclude the article.

2. Preliminaries and Description of the Model

Two definitions of the most conventional fractional-order
calculus derivatives used are mentioned in the literature: the
Caputo and the Riemann-Liouville. Then, the Caputo de-
rivative is implemented in this work because its initial
conditions may indeed be described in terms of integer-
order derivatives, which is more practical in practice.

Definition 1 (see [40]). For the u (t) function, the fractional
derivative of Caputo order « is described as

t
Put) =g [ -0 a0
I'(g—a) Jo
where t > t,, q is the integer, g — 1 <a < g, I'(-) is a Gamma
function, and T'(p) = [ P~ e 'dt.
In this research, we study the following NNs, which we
designate to as MENNMD, where the DS is denoted as

=
) @
+ Zlg,-jfj(fl”j(t ~1;)) + ¢a
£

where 0<a;<1,i,j=1,2,...,x, x represents the unit
number in a MENNMD, X, (t) signifies the i-th neuron’s
pseudo-state variable of the DS, and ¢; >0 is the ith unit
parameters. The external input of the ith unitis ¢;, a;; and g;;
denote the relation of the unit jth with the i th at time ¢ and
t — 7, respectively, 7;>0 is the delayed transmission, and
fj(fl"j(t)) and fj(fl"j(t— 77)) represent the j-th unit ac-
tivation function output at time ¢ and f — 7;, respectively.
Also, the vector form

DUI (1) = -CX() + Af (X () + Gf (X (t-1))) + o
(3)
The corresponding RS of MFNNMD is denoted as
Dy () = ~diy; () + 3 byg,(y; (O) + X hyg;(v,(t - 7))
= =1
+u; + 9; (1),
(4)

where 0<oa;<1,4,j=1,2,...,x, x represents the unit
number in a MENNMD, y,(t) represents the ith unit’s
pseudo-state variable of the RS, and d; > 0 is the ith neuron’s
parameters. y; represents the external input of the ith unit,
b;; and h;; denote the relation of the unit jth with the ith at
time t and t — 7, , respectively, 7; >0 is the delayed trans-
mission, and 9;(y;(1) and 9;(y;(t-1) denote the jth unit
activation function output at time f and £ — 7, respectively.
However, 9;(t) is an appropriate controller. For simplifi-
cations, in the next part, definition, lemmas, and theorems
are given.

Definition 2. By establishing the one-parameter Mit-
tag-Leffler function by setting « >0 and u € C, then

00 uk
E,(w) = kZ:(:)l"(ka+ Iy )

and by establishing the two-parameter Mittag-LefHler
function by setting «>0,3>0, and u € C, then

0 uk
E,p(u) = 1;7F(ka B (6)

According to Definition 2, it is not difficult to see
E,(u) = E,;(u) and E| ) (u) = e".

Definition 3 (see [19]). Suppose there is a constant of
nonzero, p, such that sufficiently for every result of X" () and
Y (¢) for systems (2) and (4) using distinct initial condition,
you may obtain

, lim Y (t) - pZ(t) =0. (7)
Therefore, DS (2) and RS (4) can accomplish globally

projective synchronization asymptotically, i representing the
vector’s Euclidean norm.

Lemma 1 (see [41]). Assume X (t) € R is a continuous
function of differentiable vector value. Hence, for whichever
time prompt >t,, we get the following:

DIt (X (t) <22 ()DX (), (8)

where 0< a < 1.

3. Controller Design and Stability Analysis

Two identical MFNNMD synchronization conditions are
achieved in this section by proposing an appropriate con-
troller. Define the errors of synchronization as (t) =Y, (f) -

pZ;(t) (i=1,2,...,x). Based on DS (2) and RS (4), the
control function 9;(¢t) (i = 1,2,...,x) can be designated as
follows:
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N
9 (8) = e + (M), (@)mer = i) €50 = [(ML3). o, (e €58 = 73) = p (6 = )5 (0) = 2. bysg [ 75 ()]
j=1

9)
R
S g (=)« a2 0] +p 30 [, 0] - s
j=1 j=1 j=1
where i, j,N,m=1,2,..., N and p is the projective coefhi-
cient. From (2), (4), and (9), you can get the 2*€ (¢) error
system as follows:
DUC (1) = die; (1) + 3 by[g;(Y;(0) = 9,(pX ;)] + D hisa,(Y,(t - 7)) = 9, (pZ (¢ - 7;))] + p(c; = d) (1)
= =i
+ Z bilg,(Z; )] + Z mila (et = wi))] = p 2 [F AT 0)] = p 2 a2t = 7)))] - poi+ i+ 8,0
= =
(10)
Now, (9) and (10) are combined together and the error
system of delayed sliding mode dynamics (DDMDEs),
D" (t), can be defined by
€0 = e+ (113) o @0~ [(11) o 6,05+ 3 0,0) 6, 0)
) - (11)
+ Zlh"f [9;(Y;(t = 7;)) = 9,(pZ (1 - 1;))].
=
Then, it follows from (11) that
700 - 0~ 53000 |6 0[S S )] -5+ S lo10) - o 07,0)
i=1 1=1 =11=1
(12)

* 2o (=) - 6t~ )]

X m X
To investigate the stability of DDMDEs (11) in this VY, := gl1<n [c Z ZKHJI wl,)ﬂ Z | |m ] >0
paper, Theorem 1 is stated. = s =1
X m X
Theorem 1 (see [42]). Assume that condition (H) is met and ¥y:= nax [Z [ZK (81')|:| + Z | 'l ] >0
. j=1LI=1 j=1
there are positive constants called m; and l; in such a way that
m; = max{|m; |, |m}|} and I; = max{|[;],|I}|} and constant | ¥, -¥,>0.

matrices that (ILj) x> (@) (€3)ixe and (13)
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Then, equation (11) is stable. . <9j [Yj (t)] -9 [sz (t)] o "
m, < <m;,
T (@) =(p; 1) !

Proof of Theorem 1. According to (H) and Theorem 1, we
h
SO0 () A (27 () B

(=)= (et -7;) 7

Next, we obtain that

{ '%[Y‘(t)] ‘9J[P*%‘(f)”< ‘KY‘(” (p; )]
(16)
9,05t = 7)) = 9o (= 7)) ]| <10t = 7)) = (p2 (e = 7))}
Generate the following function of Lyapunov: As a result of Lemma 1, by applying the Caputo de-
rivative’s upper right P¢[E(¢t)] along the trajectories,

VIE(1)] = Z|(s§ (®)]. (17)  equation (17) can be obtained as follows.
We defined the Lyapunov function by

VI[G; ()] = 29 1 (1) < - ) sgn[G, (] DG, (1)

i=1

) _ngn[@ o] Hci . i[i(nj,)(w,i)]}@;(t) +[

i= j=1li=1 =1

[i(nﬂ) (81,-)“55;0 —7;)+ ZX: bij[9,(Y; () —g,(p; (1))]

Sila0-5)- ooz, 0-0)]| < - Zeteol T[S [Sma) e o o 3 Sk e el
3| Sl )= )]« 3| Shblrte-) 6=
gmntgglgolJuo g5l S o)
Sl o) -G e
Sl g flsor]

0 Do ) R e
= {Eﬁf{z; [IZKHJZ) |] Z |h ll]|@ (t-1 | n<11<1}(|:c z{[IZKHﬂ) q Z |b |m:||(,f (0] <Y,V (G, (1)) +‘I’2 sup V((E )
=1 St g e A s
(18)
Note that We construct that (18) as
_sup V(€ w)<V(€i(®). (19) DUV (G, (1) <AV (G, (1)), (21)
Then, assuming that there is a constant A greater than SO
zero in conjunction with (18) and (19) and Theorem 1, one _
pero n con sl = (v, @) ~(e; )
(22)

{ DEV (6, (1) < - (¥, - W)V (6, (1)),

N
AN (20) = ;H(Yj(t)) ~(p; )|}



Finally, we can conclude that DDMDEs (9) are stable as
€, (t) — 0 as t approaches infinity.
This completes the proof. O

Remark 1. When = 1, projective synchronization is stan-
dardized by multiple time delays for the complete syn-
chronization of MENNMD.

Remark 2. When = -1, the projective synchronization is
standardized to the complete globally antisynchronization of
MFNNMD with multiple time delays.

Remark 3. No study on the topic of MFNNMD chaotic
synchronization has been published so far. As a result of
addressing these inadequacies, we developed for the first
time new necessary conditions for ensuring the chaos
synchronization of MFNNMD systems is archived. As a
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result, the paper’s primary findings are significantly new
compared to those found in the prior literature.

4. Numerical Experiments

The following example demonstrates that the control
method proposed in this study is capable of adequately
managing the time-delay system’s stability while guaran-
teeing that all state variables remain within the specified
ranges. Here, two types of experiments of time delay with
alpha are introduced.

4.1. Projective Chaos Synchronization of MENNMD Systems

4.1.1. Experiment A: Synchronization of MENNMD Systems
with Fixed Time Delay, 7=0.11. Assuming that two
MFNNMD systems are synchronized with each other, define
the drive system as

DX\ () = =, Xy +an [L(X1 (1) + anfr(X20) +ays f5(X5(1) + afa(Ls®) + g f1 (X1 (t - 1))
+ 90 f2 (Lo (t=1)) + 913f3 (X5 (t = 11) + guafa (X (t = 71)) + 915

DX, () = =05 + ay [1 (X2 (1) + an fr (X2 () + ags 5(X5(1) + ar f4 (L4 (D) + 9o f1 (X1 (t - 1))
+ 90 f2 (X2 (t=12)) + 93 f3 (X5 (t = 12)) + Goa f4 (X (t = 72)) + 92

DL (t) = —c3 X5 + ag f1 (X1 (1) + a5 fo (L5 (D) + 53 5 (X3 (1) + a3 f4 (L4 (D) + 931 f1 (X1 (£ 73))

+ g3 fo (X, (t -

73)) + g3 3 (X5 (t = 73)) + gsa fo (X (£ -

(23)

73)) + @3,

DUL, () = e, Ly + ay fL(X1 (D) + apfr (X2(1)) + as f35(X3() + aufi (L ®) + g f1 (X1 (- 14))
+ 9 f2 (Xy(t = 74) + 9us f5 (X3 (t = 74) + Gaa f4 (X4 (t = 74)) + 940

And, define the response system as

DY, () = ~d, Y, + by fL (Y1 (8) + by fr (Vo (1) +by5 5 (Y5 (1) + ayy fo (Yu () + by f1 (Y, (8- 17y))
+hy (Vo (t=75)) + his f3(Ys(E—75)) + hua fa (Yy(t = 75)) +py + 9, (1),
DY, (t) = ~dy) Y, + by f1 (Vo (8) + by o (Y2 (8)) + B33 5 (Y5 (8) + by f4 (Vy (8)) + By f 1 (X, (£ = 76))

+hyfr (Yo (t=76)) + hys f5 (Y5 (t -

7)) + oy fo (Yo (2 -

Tg)) +ty + 9, (1), (24)

DY (t) = =d3 Y5 + by f1 (Y1 (D) + b3 [, (Y5 () + b3 5 (Y5 (1)) + bay f4 (Y4 () + hay f1 (Y, (£ - 77))
+hyfr(Va(t-15)) + has f3 (V3 (E—77)) + hau fa (Ya (t = 77)) + 05 + 95 (1),

DY (1) = =d Yy + by f1 (V1 () + by [ (V2 () + by f5(Y5(8) + by f4 (Y4 () + hyy f1 (Y, (£ - 75))
+hy o (Yo (t=78)) + has f5 (Y5 (t = 75)) + haa fu (Yo (t = 75)) + 4y + 9, (D),

with the following parameters: &, = 0.985, a, = 0. 980, a5
0.975, a, = 0.970, a5 = 0.965, &g = 0.960, a; = 0.955, arg =
0.950, ¢; = ¢4 =-9.5, ¢, =-10.5, ¢ = -3.7,a;; = 2.0, a;, =
0.5, a;3 =5.5, a4, =2,a, =05, a,, =05, a,; =51, a,, =
0.5, a;; = 0.5, as, = 1.0, az3 = =5.5, a3, =5.1, a5 = 0.5,

ay =1.0,a,=-950a4=05 g, =7, 9g1,=7, g3 =41,
91 =791 =195 =1953=259,=19; =01

93 = —10.1, g33 = 4.5, 93, =0.1, g4 =7, 9 =7, gu3 =

—_
S
W
0
1]
N
o
S
=
by
|

. 0L, bs,
by =0.01,by, =3, by =3, by, =55,k =0.3,hy, = 5.5,
hy3 =55 h,=03, hy =05 hy=75 hy=001,
hy =05, hy =01, hy=-15 hy=15 hy=0.1,
hy =01, hy=55 hy=55 h,=01, f()=

f20)=f30) = f4() =tanh(X), ¢, =¢,=¢3=9,=0,
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o= py= =1 =0 and  9,(6)=9,(t) = 9 (1) = 9,
(t)=1.

With the above initial values, parameters, and controller
gain, we solve the numerical solutions of DS (21), RS (22),
and error system (11) using MATLAB tools. Furthermore,
we use the step-by-step iteration method to solve the
fractional differential-difference equations part. Then, they
are illustrated in Figures 1-4.

A graphical representation in phase portrait of the
consequences of MENNMD synchronization is shown in
Figure 1 using & and Y, as the dependent variables. At the
same time, ¢ is an independent variable function. Figure 2
shows a phase portrait of synchronization of MFNNMD,
when 7=0.11 and alpha =[0.995, 0.990, 0.985, 0.980, 0.975,
0.970, 0.965, 0.960]. Chaos synchronization of the
MFENNMD system with and without the controller activa-
tion is shown in Figure 3. As illustrated in Figure 4, the
dynamic error is unable to converge to zero when the
controller is not engaged. However, when the controller is
activated, the dynamic error does converge to zero in a
limited time. As illustrated in Figure 4, master-slave systems
(21) and (22) exhibit global Mittag-Leffler asymptotic
synchronization, confirming the validity and effectiveness of
the criteria specified in Theorem 1.

4.1.2. Experiment B: Synchronization of Two MFNNMD
Systems with Multi-Time Delay, v=[0.10, 0.11, 0.12, 0.13,
0.14, 0.15, 0.16, 0.17]. The numerical experiment of syn-
chronization of two MFNNMD systems is demonstrated in
this section. In this experiment, we consider system changes
at different fractional orders and different time delays. The
same systems of DS (21) and (22) are used. Figure 5 shows
that the systems have chaotic characteristics, while Figure 6
shows a phase portrait of synchronization of MFNNMD,
when 7 =1[0.10,0.11,0.12,0.13,0.14,0.15,0.16,0.17] and
alpha =[0.995, 0.990, 0.985, 0.980, 0.975, 0.970, 0.965, 0.960].
The synchronization of the MENNMD system with and
without the controller activation is shown in Figure 7.
Furthermore, for the error dynamics in Figure 8, we can see
that the dynamic error is unable to converge to zero when
the controller is not engaged. However, when the controller
is activated, the dynamic error does converge to zero in a
limited time.

4.2. Effects on Chaos Synchronization of a-Order and t-Time
Delay. According to the literature, a-order affects the
performance of fractional-order chaotic dynamical systems.
As previously demonstrated, time delay affects the perfor-
mance of chaotic dynamical systems. In the actual world,
time delays are pervasive and unavoidable. The time-delay
dynamic system exhibits complicated dynamic character-
istics that are frequently utilized to illustrate time-delayed
engineering issues. In this paper, two NN chaotic systems
that act as DS and RS are used to examine the dynamic
performance from the effect of multi-fractional order and
multi-time delay on nonlinear dynamic systems. Further-
more, the capability of the SMC design in this research is
studied to prove that it can control the MENNMD system.

From Figure 2, we consider system changes at different
fractional orders with the alpha =[0.995, 0.990, 0.985, 0.980,
0.975, 0.970, 0.965, 0.960] while fixing delay 7=0.11. We can
learn from Figure 2 that the system becomes chaotic and the
system trajectory becomes periodic. The system continues to
be chaotic as different values of alpha are applied, for ex-
ample, alpha = [0.895, 0.890, 0.885, 0.880, 0.875, 0.870, 0.865,
0.860] and alpha =[0.795, 0.790, 0.785, 0.780, 0.775, 0.770,
0.765, 0.760]. From Figures 9(a) and 9(b), if we continue
decreasing the value of fractional orders, we can see that the
systems slowly produce the intermittent chaos phenomenon.
Finally, when the value of alpha = [0.695, 0.690, 0.685, 0.680,
0.675, 0.670, 0.665, 0.660], as shown in Figure 9(c), the
system will be unstable and lose its chaotic characteristic.

This section addresses the effects of altering the a-order
and t-time delay on chaotic synchronization. We sum-
marised some observations about the error functions for
various values of « at specified time values in Table 1. As
shown in Table 1, the synchronization error reduces as the
order of « is raised. In other words, the synchronization
process begins earlier with a greater value of a.

Based on Experiment A, Table 1 contains some results on
the dynamic error for different order values in system (21)
and system (22). Here, trials are conducted with a fixed delay
value of 7=0.11. It is evident that as the order drops, the
synchronization error increases first and subsequently re-
duces, which is not the case in [43]. Simultaneously, we sum
up some data related to the dynamic error for a different
combination of fractional orders with the fixed time delay in
systems (21) and (22). As seen in Table 1, the dynamic errors
e, (t),e,(t),e;(t), and e, (t) converge to zero as time in-
creases. Precisely, the error function reduces first, then in-
creases, and eventually decreases over the time points for all
sets of fractional orders, and we show the evidence as in
Figure 9.

For Experiment B, we consider system changes at dif-
ferent fractional orders and different time delays. When
7, =7,=---=1, =17, MENNMD with multidelay can be
treated as a single MENNMD, as explained in Experiment
A. Indeed, neurons may have varying communication de-
lays, necessitating the consideration of varied delays in
neural networks. Three examples with different values of
fractional orders are given with different values of time
delays. Figures 10(a) and 10(b) show that the system be-
comes chaotic, and Figure 10(c) shows that the systems start
to become unstable and lose their chaotic characteristics. The
summarization for Experiment B is shown in Table 2. All the
dynamic errors with different fractional orders and time
delay values show the same performance as with the fixed
time delays. The error function reduces first, then increases,
and eventually decreases over time. Finally, detailed time
taken for dynamic errors converging to zero for Experiments
A and B are shown in Tables 3 and 4.

We choose alpha=[0.995, 0.990, 0.985, 0.980, 0.975,
0.970, 0.965, 0.960] because based on the previous study,
these values are most stable compared to other values of
alpha. Besides, a fractional-order chaotic system will show
chaotic characteristics when the alpha value is 0.95 and
above. We decided to choose it and run the test on MATLAB
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to verify it, and we found that the error synchronization
approaches zero when the systems are synchronized with
each other. We also tried to run MATLAB with different
alpha values, summarized the system’s error synchroniza-
tion in Table 2, and provided the figures as the systems start
to lose their chaotic characteristics when the value of alpha
decreases. These are shown in Figures 6 and 10. Besides, the
main objective of our paper is to prove that with different
values of alpha and time delay, there exists a chaos syn-
chronization. Moreover, we prove that chaos

synchronization occurs with the proposed control function
introduced in the paper.

Besides, we choose 7=[0.10, 0.11, 0.12, 0.13, 0.14, 0.15,
0.16, 0.17] for practicability of calculation. In fact, the value
of 7 can be of any amount as long as the chaos characteristics
are not lost. Some problems are hard for computers because
of the number of combinations or the size of the data. Hence,
they are chosen to solve them efficiently and avoid incorrect
computations in results. We also show that these parameters
show the chaotic behavior from Figures 5 and 6.
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TaBLE 1: Dynamic errors for various values of alpha («) and 7 = 0.11.

[0.895, 0.890, 0.885, 0.880, 0.875,
[0.695, 0.690, 0.685, 0.680, 0.675, 0.670,

Value of alpha t e e, e e,
0.2 0.124658 2.168321 —2.763986 —3.362894
=0.995 0.4 —-2.401059 —-1.517229 -3.991367 —4.667138
a, =0.990 0.6 —4.364460 —2.557856 1.480212 -1.060209
a; =0.985 0.8 -3.045370 —-1.141878 2.916864 0.961262
a, =0.980 1.0 —-0.889277 1.038721 2.009267 0.697992
as =0.975 1.2 2.848753 4.206538 —2.248520 -1.196980
ag =0.970 1.4 —-0.405743 —-0.055542 —-5.719650 —-5.521897
a; = 0.965 1.6 —-5.144471 -3.832519 -0.562004 —-3.244713
ag = 0.960 1.8 —3.941395 —2.244955 2.778412 0.520882
2.0 -2.816576 -1.176782 3.246707 1.502449
02 0121047 1.547881 ~3.908083 ~3.985490
o, = 0.895 0.4 —3.456733 -1.662745 0.398536 —1.882546
a, = 0.890 0.6 -0.866910 1.064361 1.021344 —-0.378369
a; = 0.885 0.8 1.628960 2.425840 —4.054332 —-3.501186
a, = 0.880 1.0 —3.634861 —2.180439 —-0.506693 —2.636411
as = 0.875 1.2 —-1.890809 —-0.227439 1.540518 -0.197372
ag = 0.870 1.4 1.414375 2.816090 -1.083584 —-0.738211
o, = 0.865 1.6 -1.924365 —1.241058 —3.434225 —4.093808
ag = 0.860 1.8 —2.284485 —0.842659 1.033461 —0.840626
2.0 —-0.194050 1.222820 0.563513 -0.229726




Complexity 13

TaBLE 1: Continued.

Value of alpha t ¢ e, e e
0.2 —-2.602491 —-0.940676 -1.924003 —-3.521095
a; =0.795 0.4 0.209412 1.830452 —-1.281248 -1.679577
a, =0.790 0.6 —-1.436765 0.027426 -1.132682 -2.296571
az =0.785 0.8 0.058771 1.260416 -1.964939 —2.089092
a, =0.780 1.0 -0.882070 0.379702 —-1.004009 -1.839316
as =0.775 1.2 —-0.348953 0.717825 —1.659654 -1.952206
ag =0.770 1.4 —-0.523344 0.531580 -1.125355 —-1.656581
a, = 0.765 1.6 -0.355209 0.581332 -1.355911 —1.682493
ag = 0.760 1.8 —-0.379422 0.508523 —1.144286 —1.526037
2.0 -0.292112 0.519874 -1.172738 —1.468346
0.2 —-0.836829 0.855342 -1.077397 —-2.142311
a; =0.695 0.4 -0.760679 0.667618 -1.321963 —2.095273
a, = 0.690 0.6 -0.676870 0.599926 -1.329555 -1.973587
az; = 0.685 0.8 —-0.598096 0.566648 —1.282252 —1.845552
a, = 0.680 1.0 —-0.536008 0.536812 —-1.225057 —-1.731554
as = 0.675 1.2 —-0.484728 0.508685 -1.171231 -1.632134
ag = 0.670 1.4 —-0.439769 0.483483 -1.121826 —1.543438
a, = 0.665 1.6 —-0.399654 0.460903 -1.075778 —-1.462798
ag = 0.660 1.8 -0.363713 0.440376 -1.032476 —1.388736
2.0 —-0.331408 0.421524 —-0.991581 —-1.320280
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TaBLE 2: Dynamic errors for various values of alpha («) and 7=[0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17].

Value of alpha t e e, N e,
0.2 —2.022495 —0.065686 2.853049 1.205545
a; =0.995 0.4 —-4.080703 -2.293218 2.687597 0.311466
a, =0.990 0.6 -1.320927 —-1.122006 -5.013653 —-5.232768
az =0.985 0.8 —0.214395 1.082445 1.686627 0.853142
a, =0.980 1.0 —-2.728065 -1.613715 2.429691 0.460877
as =0.975 1.2 —2.354545 —-1.618750 —1.338532 —2.756335
ag = 0.970 1.4 —-0.410080 0.051628 —1.815041 —1.838976
a; = 0.965 1.6 —-0.134854 0.233707 —1.195806 —-1.213489
ag = 0.960 1.8 0.002574 0.298025 —-0.846826 —-0.835130
2.0 0.051801 0.297613 —-0.650303 -0.630223
0.2 0.940363 2.652079 —-0.323689 -0.373100
a; =0.895 0.4 1.032723 2.446092 —-0.593181 —-0.486812
a, = 0.890 0.6 1.516537 2.179133 —2.695674 —2.141750
az; = 0.885 0.8 -1.193599 -0.160199 -1.124218 —1.989497
o, = 0.880 1.0 —-0.095008 0.720590 -0.875975 -1.115168
as = 0.875 1.2 -0.187524 0.466583 —1.086851 -1.240937
ag = 0.870 1.4 -0.150788 0.407471 —-0.926858 —-1.065040
o, = 0.865 1.6 -0.102513 0.370933 —-0.828564 -0.929539
ag = 0.860 1.8 -0.067105 0.336450 —0.742594 —0.814420
2.0 —-0.040825 0.304890 —-0.665046 —-0.714429
0.2 —0.628486 0.752827 —1.065626 -1.705763
a; =0.795 0.4 —-0.616681 0.508169 -1.175186 -1.674920
a, =0.790 0.6 —-0.501480 0.455924 —1.084421 —-1.493109
az =0.785 0.8 -0.413107 0.413356 —-0.992929 -1.334976
a, =0.780 1.0 —0.341905 0.377650 -0.910913 —-1.198937
as =0.775 1.2 —-0.283942 0.346661 —-0.836579 -1.080232
as =0.770 1.4 —-0.236418 0.319153 —-0.768815 -0.975700
a, =0.765 1.6 -0.197244 0.294346 -0.706797 -0.883013
ag = 0.760 1.8 —-0.164814 0.271723 —0.649864 —-0.800362
2.0 —-0.137868 0.250926 -0.597470 -0.726300
0.2 ~0.726436 0.450155 ~0.988908 ~1.560065
a; = 0.695 0.4 —-0.607764 0.387185 —0.887064 -1.357983
a, = 0.690 0.6 -0.520729 0.344249 —-0.808443 -1.210932
az = 0.685 0.8 -0.451719 0.310852 —-0.741817 —-1.091060
a, = 0.680 1.0 -0.395014 0.283278 —0.683254 —-0.988966
as = 0.675 1.2 —-0.347410 0.259682 —-0.630746 —-0.899911
ag = 0.670 1.4 —-0.306854 0.238995 -0.583070 -0.821019
a, = 0.665 1.6 -0.271920 0.220533 —-0.539396 -0.750353
ag = 0.660 1.8 —-0.241567 0.203835 —-0.499119 —-0.686514
2.0 -0.215007 0.188574 —-0.461779 —-0.628448

TaBLE 3: Error dynamics of MENNMD time taken for the system to converge to zero at 12.5s.

t e e, e e,

0.5 —4.543203 —-3.139601 —0.945464 —-3.280529
1.0 —-0.889277 1.038721 2.009267 0.697992

1.5 -3.304613 —-2.685071 -3.987378 —5.315820
2.0 —2.816576 -1.176782 3.246707 1.502449

2.5 2.721507 3.151517 —-4.530053 -3.481734
3.0 —-3.859544 —2.409818 2.681677 0.432567

35 —0.254657 1.163567 1.698179 0.839844

4.0 -3.870729 —3.410456 —2.468871 —4.284681
4.5 —2.467705 -1.337839 3.105034 1.449527

5.0 2.6571946 3.142837 —2.195461 -1.082126
5.5 —-3.088547 —2.128426 1.827998 —-0.297806
6.0 —-0.697681 0.166480 1.893956 0.911106

6.5 —-1.516066 —-1.314321 —-2.716662 —-3.184804

7.0 -1.203530 -0.667153 1.428096 0.132208




Complexity 15

TaBLE 3: Continued.

t e e, e e,

7.5 1.119343 1.305388 —1.469884 —-0.739766
8.0 —-0.711474 —-0.424856 —-0.134413 -0.805776
8.5 0.280983 0.492073 -0.270894 —-0.141005
9.0 0.000535 0.142655 —-0.714078 —0.668082
9.5 -0.025467 0.097831 -0.166414 -0.245520
10.0 0.101626 0.181401 —-0.299729 —-0.226463
11.5 0.028709 0.062857 —-0.127231 -0.108899
12.0 0.020033 0.045478 -0.101927 —-0.088572
12.5 0.014275 0.033330 —-0.074386 —0.065294
13.0 0.011821 0.025848 -0.056715 —-0.048516
13.5 0.009202 0.019420 —0.043685 —-0.036732
14.0 0.006896 0.014234 —-0.032887 -0.027252
14.5 0.005236 0.010356 —0.024558 —-0.019813
15.0 0.003951 0.007358 -0.018224 -0.014137
15.5 0.002916 0.004999 -0.013279 -0.009730
16.0 0.002105 0.003155 —-0.009405 —-0.006271
16.5 0.001471 0.001710 —-0.006375 —-0.003556
17.0 0.000969 0.000569 —0.003990 —-0.001413
17.5 0.000570 —-0.000338 —0.002098 0.000291
18.0 0.000251 —-0.001064 —0.000589 0.001658
18.5 —5.147413 —0.001651 0.000624 0.002762
19.0 -0.000213 —-0.002128 0.001609 0.003663
19.5 —-0.000384 —-0.002521 0.002415 0.004405
20.0 —-0.000525 —-0.002847 0.003082 0.005023

TaBLE 4: Error dynamics of MENNMD time taken for the system to converge to zero at 42.0s.

t ¢ e, e ey

2.0 —2.022495 —-0.065686 2.853049 1.205545
4.0 —4.080703 —2.293218 2.687597 0.311466
6.0 -1.320927 —-1.122006 —-5.013653 —5.232768
8.0 —-0.214395 1.082445 1.686627 0.853142
10.0 —2.728065 -1.613715 2.429691 0.460877
12.0 —2.354545 —-1.618750 —-1.338532 —2.756335
14.0 —0.410080 0.051628 —1.815041 -1.838976
16.0 —0.134854 0.233707 -1.195806 —-1.213489
18.0 0.002574 0.298025 —0.846826 —-0.835130
20.0 0.051801 0.297613 -0.650303 -0.630223
22.0 0.059929 0.260617 —0.534643 —-0.512342
24.0 0.060217 0.222786 —0.450020 —0.424671
26.0 0.057451 0.189368 —-0.378857 -0.352509
28.0 0.052952 0.160436 —-0.318578 -0.293027
30.0 0.047683 0.135605 —-0.267669 —-0.243969
32.0 0.042246 0.114409 —0.224808 —-0.203483
34.0 0.037000 0.096395 —-0.188799 -0.170031
36.0 0.032138 0.081131 —-0.158585 —-0.142347
38.0 0.027746 0.068226 —0.133245 —-0.119397
40.0 0.023848 0.057329 —-0.111995 -0.100333
42.0 0.020428 0.048135 —0.094166 —0.084467
44.0 0.017455 0.040379 -0.079199 -0.071235
46.0 0.014886 0.033835 —-0.066623 —-0.060178
48.0 0.012674 0.028311 —0.056043 —0.050918
50.0 0.010777 0.023645 —-0.047133 —-0.043149
52.0 0.009152 0.019700 —-0.039617 —0.036617
54.0 0.007763 0.016360 —-0.033269 -0.031113
56.0 0.006575 0.013529 -0.027897 —0.026465
58.0 0.005559 0.011126 —-0.023343 —-0.022532
60.0 0.004690 0.009082 —-0.019476 -0.019197
62.0 0.003946 0.007340 —-0.016184 —-0.016360
64.0 0.003308 0.005853 -0.013377 —-0.013943
66.0 0.002760 0.004580 —-0.010976 -0.011877
68.0 0.002289 0.003488 —-0.008918 -0.010107

70.0 0.001883 0.002548 —-0.007148 —0.008585
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5. Conclusions

The chaos synchronization of MENNMD is evaluated in this
article. The conditions for synchronization of MENNMD
systems are examined using FLDM and sliding mode
techniques. We have demonstrated that MENNMD systems
can archive chaos synchronization with distinct fractional
orders when the parameters and beginning conditions are
fixed. Numerical simulations are used to authenticate the
suggested technique’s feasibility and effectiveness. It has
been demonstrated that the provided strategy is capable of
ensuring that all error signals converge to zero and remain
within the system. Then, an example of graphical results is
given to authenticate our proposed method’s effectiveness.
Finally, the impacts of multi-fractional order and multi-time
delay on synchronization are addressed in greater detail. In
addition, we anticipate some applications to the actual world
that relate to secure communication.
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