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(is paper focuses on the comparative study of natural convection flow of fractional Maxwell fluid having uniform heat flux and
radiation. (e well-known Maxwell fluid equation with an integer-order derivative has been extended to a non-integer-order
derivative, i.e., fractional derivative. (e explicit expression for the temperature and velocity is acquired by utilizing the Laplace
transform (LT) technique. (e two fractional derivative concepts are used (Caputo and Caputo–Fabrizio derivatives) in the
formulation of the problem. Utilizing theMathcad programming, the effect of certain embedded factors and fractional parameters
on temperature and velocity profile is graphically presented.

1. Introduction

To specify the performance of non-Newtonian fluids, nu-
merous models have been applied. (e Maxwell fluid is the
first viscoelastic rate type fluid, which is also extensively
utilized. (e differential form and rate type models have
gotten a lot of attention among them. In recent years, this
model has shown some achievements in portraying the re-
actions of some polymeric liquids. In industry and engi-
neering, viscoelastic fluids pass through many processes, such
as synthetic propellants and so on. Because of the simplicity of
the Maxwell fluid, many investigators are paying particular
attention to it [1–4]. Khan et al. [5] researched on heat transfer
of Maxwell fluid through an infinite vertical plate. In this
study, they obtained the analytical solutions for temperature
and velocity via LT. Such a model was studied by Khan et al.
[6] using fractional CF derivative.

(e subject of fractional calculus is as old as standard
calculus. Fractional calculus began when L’ Hospital wrote

to Leibnitz about the significance of dny/dxn when n � 1/2.
Leibnitz replied in 1695 saying that it might be an apparent
paradox from which one day useful repercussions would be
drawn. Between the 17th century and the early 20th century,
the subject of fractional calculus stayed more or less dor-
mant. (e subject matter has been found in applications in
all kinds of problems in various fields over the last few years,
like fluid flow, reaction, diffusion, relaxation, rheology, re-
action-diffusion, oscillation, anomalous diffusion, physics,
electrical network, chemistry, dynamical problems, and so
on. Nowadays, many researchers are using the concept of
fractional derivative because fractional-order differential
equation solutions define real-life situations effectively than
the solution obtained through the corresponding integer-
order differential equations. Aman et al. [7] discussed about
heat, velocity, and shear stress of fractional Maxwell model
in a flexible medium using numerical LT.(e semianalytical
solutions for Maxwell fluid with fractional derivative were
discussed in [8, 9]. (e solutions for generalized Maxwell

Hindawi
Complexity
Volume 2021, Article ID 9401655, 16 pages
https://doi.org/10.1155/2021/9401655

mailto:getkamran@gmail.com
https://orcid.org/0000-0002-9897-1838
https://orcid.org/0000-0001-6070-3021
https://orcid.org/0000-0002-1878-5331
https://orcid.org/0000-0001-7747-8350
https://orcid.org/0000-0002-0681-6313
https://orcid.org/0000-0003-0437-0757
https://orcid.org/0000-0002-9620-7692
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9401655


fluid using Fourier and Laplace transform can be determined
by Fetecau et al. [10]. Maxwell nanofluids were examined by
Aman et al. [11] using four distinct molecular liquids. (e
impact of second-order fractional Maxwell (MHD) fluid was
investigated by Liu and Guo [12].(e flow of Maxwell fluid
with MHD effects flowing over a stretching sheet was in-
vestigated numerically by Shateyi and Marewo [13]. Mohi
[14] discussed the closed-form solution of fractional Max-
well of MHD effects using Laplace and Fourier transform.
(e comparative research was performed in [15] on MHD
Maxwell fluid with Newtonian heating on a boundary layer.
Abro and Shaikh [16] investigated the analytical solutions
for Maxwell fluid over a vibratory plane. Asjad et al. [17]
presented the comparisons between Caputo and Capu-
to–Fabrizio fractional derivatives on second-grade fluid over
Newtonian heating. Raza and Ullah [18] used the fractional
Maxwell fluid to compare the fractional derivatives of C and
CF using the Laplace transformation. Maxwell fluid’s natural
convection between two parallel plates was discussed by
Wang et al. [19]. (e exact solution for Maxwell MHD fluid
in a perforated medium was obtained by Khan et al. [20].
Zheng et al. [21] investigated extendedMaxwell flow due to a
vibratory and uniform moving plate. Fetecau et al. [22] used
the LT to solve the second problem of Stokes for Maxwell
fluids. Farooq et al. [23] presented the MHD Maxwell flow
through the infinitely stretched surface of nanomaterials.
Many interesting and very useful results related to the cy-
lindrical Maxwell model can be found in [24–27]. (e an-
alytical and semianalytical solutions for Maxwell fluid
between two moving plates were obtained by Hisham et al.
[28]. Free convection flow has many applications in science
and engineering like determining heat losses or heat load for
heating, ventilating, air conditioning, and so on. Azhar et al.
[29] considered the mixed convection flow of fractional
nanofluids with uniform heat flux and heat source. Toki [30]
examined the natural convection flow of unsteady MHD
fluid and found the exact solutions of flow parameters.
Fetecau et al. [31] studied the influence of radiation and
permeability onMHD flowmoving via an oscillating vertical
plate with uniform heat flux.

(e above literature motivates us to work on the natural
convection flow of the fractional Maxwell model. (e Caputo
and CF fractional derivative approaches are used to determine
the solutions. (e numerical Laplace transform is utilized for
the solutions of velocity and temperature. We see the com-
parisons between standard-order derivative and fractional-
order derivative. Finally, we observe the graphical represen-
tation of various embedded parameters like Maxwell fluid
factor, fractional parameter, andGrashof and Prandtl numbers.

2. Mathematical Statement

Here, we will assume the unsteady oscillatory natural
convection flow of Maxwell fluid under the effects of ra-
diation and uniform heat flux. Initially, with the uniform
temperature T∞, the fluid and the plate are at rest. After
some time, at t � 0+, the plate begins to oscillate in x-di-
rection, and its velocity is given by

v � UH(t)Cos(ωt)i, t> 0. (1)

Following are the governing equations for the flow
model:
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Appropriate initial-boundary conditions are
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Using Rosseland approximations [22, 30–32] and
accepting the small temperature variation among the tem-
perature T∞ of the free stream and the fluid temperature T,

utilizing the Taylor theorem on T4 at T∞, and ignoring the
second- and higher-order terms, we obtain
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where σ∗, κ∗are, respectively, the Stefan Boltzman constant
and the mean absorption coefficient.

Substituting (7) into (6) and then into (3), we obtain (see
[30, 32]) the following form:
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Now, we will make use of the following similarity
transformations in order to reduce equations (2), (4), and (8)
into the dimensionless form
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Substituting the above dimensionless parameters into
equations (2), (4), and (8) and removing ∗ from
u, t,ω,ψ, and ζ¸ we get the following forms:
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To obtain the fractional model, we replace the inner time
derivative by the time fractional derivative and we acquire a
set of fractional PDEs as follows:
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By neglecting the ∗ sign and utilizing equation (9), we
will get the following initial and boundary conditions:

u(ζ, 0) � 0,

θ(ζ , 0) � 0,

u(0, t) � H(t)Cos(ωt),
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� − 1,

u(ζ, t) � 0,

S(ζ , t) � 0, ζ⟶∞.

(16)

3. Preliminaries

3.1. Caputo Fractional Derivative. (e Caputo fractional
derivative is given by
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(e LT of Caputo fractional derivative is given by
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3.2. Caputo–Fabrizio Fractional Derivative. (e Capu-
to–Fabrizio fractional derivative is given by
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(e LT of Caputo–Fabrizio fractional derivative is de-
fined by the following formula:
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lim
χ⟶1

L
C

D
χ
t g(y, t)  � lim

χ⟶1
L

CF
D

χ
t g(y, t)  � qL g(y, t) 

− g(y, 0) � L
zg(y, t)

zt
 .

(21)

4. Temperature Profile with Caputo Derivative

Taking the LT of equation (14) and utilizing the corre-
sponding ICs and BCs, we obtain the following form:
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(e inverse LT of equation (22) is given by convolution
product:
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where φ(x, y, z) � 
∞
n�0 zn/(Γ(n + 1)Γ(x + ny)); 0< α< 1.

5. Temperature Profile with CF Derivative

Applying LT to equation (14) and introducing equations
(19) and (20), we get
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Inverse Laplace of equation (25) is obtained through the
Faltung theorem, and we have
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6. Nusselt Number

(eNusselt number Nu measures the rate of heat transfer at
the plate. (e Nusselt number for both equations (22) and
(25) is constant:

Nu(t) � 1. (28)

7. Temperature Profile in Ordinary
Case α⟶ 1

Taking LT on equation (11) and utilizing the related initial-
boundary conditions, we get
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and such solution was obtained by Abro and Shaikh [16].

8. Velocity Profile with Caputo Derivative

Taking LT on equation (13) and related initial-boundary
conditions and substituting equation (22) for S(ζ , q), we find
that
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9. Velocity Profile with CF Derivative

Taking the LTon equation (13) and related initial-boundary
conditions and substituting equation (25) for S(ζ , q), we
have
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10. Velocity Profile in Ordinary Case α⟶ 1

Now taking the Laplace transform on equation (10) and
related initial and boundary conditions and also substituting
equation (29) for S(ζ , q), we obtain
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On solving the ODE (33), then we acquire
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We can write equation (34) into the following equivalent
form:
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Figure 1: Variation of Nr with Pr � 4 and t � 7.
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where m1 � (1 − Preff )/λ, m2 � 1/λ, m3 � (Preff − 1)/λ.
Let
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Figure 2: Variation of t with Pr � 4 andNr � 7.
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Taking the inverse LT on equation (35) and by the
convolution theorem, we get
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11. Shear Stress with Caputo Time
Fractional Derivative

Taking Laplace transform on (15), we acquire
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(44)

Substituting (44) into (43), we obtain
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Figure 3: Variation of Pr with Nr � 7 and t � 7.
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12. Shear Stress with Caputo–Fabrizio Time
Fractional Derivative

Taking LT of Caputo–Fabrizio fractional derivative on (15),
we get

ψ(ζ, q) �
q + αm0( 

q + αm0 + λqm0
 

zu(ζ, q)

zζ
. (46)

Differentiating (32) w. r. t ζ, we have
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Figure 4: Comparison between fractional model and ordinary model, i.e., α⟶ 1.
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Figure 5: Variation of Gr with Nr � 7, λ � 0.1, and Pr � 4.

Table 1: Effects of fractional factor α on temperature and velocity profile for CF and C fractional models with
λ � 0.1, Gr � 7, Nr � 7, Pr � 4, t � 7, andω � π/2.

Parameter α S(ζ, t) (CF) S(ζ, t) (Caputo) u(ζ, t) (CF) u(ζ, t) (Caputo)
0.0 0.993 0.993 4.237 4.237
0.1 1.43 1.171 5.749 5.050
0.2 1.732 1.368 7.197 5.954
0.3 2.034 1.585 8.585 6.952
0.4 2.350 1.821 9.915 8.049
0.5 2.622 2.080 11.193 9.250
0.6 2.874 2.362 12.423 10.557
0.7 3.110 2.667 13.608 11.976
0.8 3.331 2.998 14.753 13.510
0.9 3.541 3.356 15.863 15.163
1.0 3.741 3.741 16.939 16.939

Table 2: Effects of ζ on temperature and velocity profile for CF and Caputo fractional models with
λ � 0.1, Gr � 7, Nr � 5, Pr � 4, t � 10, α � 0.5, andω � π/2.

ζ S(ζ, t) (Stehfest) S(ζ, t) (Tzou) S(ζ, t) (Zakian) u(ζ, t) (Stehfest) u(ζ, t) (Tzou) u(ζ, t) (Zakian)
0.2 2.973 2.961 2.973 5.743 4.551 4.965
0.4 2.785 2.768 2.785 10.628 9.427 10.035
0.6 2.607 2.586 2.607 14.765 13.696 14.326
0.8 2.436 2.415 2.436 18.224 17.356 17.918
1.0 2.274 2.253 2.274 21.070 20.418 20.875
1.2 2.119 2.100 2.119 23.362 22.910 23.259
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Substituting (47) into (46), we obtain the following form:

ψ(ζ, q) � Gr
q + αm0( 
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· e
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�����������������
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.

(48)

Table 3: Numerical values of temperature profile, velocity profile, and shear stress subjected to various physical factors.

t Gr Pr Nr λ S(ζ, t) (CF) u(ζ, t) (CF) ψ(ζ, t) (CF)
5 — — — — 2.187 8.250 12.634
7 — — — — 2.622 11.193 17.950
10 — — — — 3.182 16.078 26.449
— 7 — — — — 11.193 17.950
— 10 — — — — 16.032 25.628
— 14 — — — — 22.483 35.866
— — 2 — — 3.896 19.035 31.548
— — 4 — — 2.622 11.193 17.950
— — 6 — — 2.060 8.039 12.571
— — — 5 — 2.212 8.865 13.972
— — — 7 — 2.622 11.193 17.950
— — — 10 — 3.182 14.360 23.413
— — — - 0.1 — 11.193 17.950
— — — - 0.3 — 11.639 18.700
— — — — 0.7 — 12.531 20.197
t Gr Pr Nr λ S(ζ, t) CF u(ζ, t) CF ψ(ζ, t) CF
5 — — — — 1.879 7.491 11.555
7 — — — — 2.080 9.250 14.874
10 — — — — 2.313 11.915 19.479
- 7 — — — — 9.250 14.874
— 10 — — — — 13.255 21.234
— 14 — — — — 18.596 29.715
— — 2 — — 3.119 15.992 26.596
— — 4 — — 2.080 9.250 14.874
— — 6 — — 1.623 6.572 10.302
— — — 5 — 1.746 7.271 11.488
— — — 7 — 2.080 9.250 14.874
— — — 10 — 2.512 11.960 19.560
— — — — 0.1 — 9.250 14.874
— — — — 0.3 — 9.745 15.656
— — — — 0.7 — 10.714 17.172

Table 4: Nomenclature.

u Velocity of the fluid S Temperature of the fluid
U Amplitude of the fluid H(t) Heaviside step function
ω Frequency of oscillation qr Radiative heat flux
g Gravitational acceleration λ1 Maxwell fluid coefficient
cp Specific heat at constant pressure k (ermal conductivity
β Volumetric coefficient of thermal expansion ρ Fluid density
υ Kinematic viscosity μ Absolute viscosity
Pr Prandtl number Gr Grashof number
Nr Radiation parameter ψ Shear stress
C Caputo CF Caputo–Fabrizio
LT Laplace transform q Laplace transform parameter
α Fractional parameter t Time
q1 Constant heat flux i Unit vector in direction of y
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13. Shear Stress in Ordinary Case α⟶ 1

Taking Laplace transform on equation (12), we get

ψ(ζ, q) �
1

(1 + λq)

zu(ζ, q)

zζ
. (49)

Differentiating equation (34) w. r. t ζ, we get
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(e above equation can be written as
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Figure 6: Variation of Nr with Gr � 10, λ � 0.1, t � 7, Pr � 4, and t � 7.
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Substituting equation (51) into equation (49), we have

ψ(ζ, q) � D(q)F(ζ , q) −
Gr
����
Preff

 E(q)F(ζ , q)

+
Gr
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Preff

 K(q)M(ζ , q),

(52)
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(53)

Taking the inverse LT on equation (52) and utilizing
Faltung theorem, we get

ψ(ζ, t) � D(ζ, t)∗F(ζ, t) −
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(54)

Taking Laplace inverse transform on equation (53), we
get
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Figure 7: Variation of λ with Nr � 7, Gr � 10, and Pr � 4.
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K(t) � g(t)∗
m1λ − 1

m
2
1λ

n(t) +
1

m1λ


t

0
n(x)dx +

m1λ − 1
m

2
1λ

n(t) − m1 
t

0
e

− m1(t− x)[ ]n(x)dx  . (55)

Due to the complex combination of Laplace transform
in equations (32), (33), (47), and (50), analytical LP in-
version is very difficult, so for the Laplace inversion, we use
different numerical LP inversion methods like Stehfest’s
numerical method, Tzou’s algorithms, and Zakian’s
algorithms.

14. Numerical Discussion and Graphs

(e aim of this research is to study theMaxwell fluid’s natural
convection flow with radiation and consistent heat flow. (e
differential model is developed into fractional order.(ere are
two fractional derivative concepts that we used (Caputo and
Caputo–Fabrizio derivatives). Solutions for temperature and
velocity are extended to Caputo and Caputo–Fabrizio de-
rivatives. Solutions are obtained through the Laplace trans-
form method. (e effect of various embedded factors on
temperature and velocity is a key feature of the model. We are
also interested in comparing the Caputo and Caputo–Fabrizio
derivative results. Figure 1 shows the behavior of radiation
parameter Nr on temperature. (e Caputo fractional model

has a smaller temperature as compared to Caputo–Fabrizio.
(e enhancement of radiation parameter Nrenhances the
fluid temperature. (e variation of time t on temperature is
shown in Figure 2. Figure 2 presents the same behavior of
fractional models like Figure 1. (e fluid temperature in-
creases with increasing time. Due to this, the boundary layer
increases with increasing time. (e impact of Pr is indicated
in Figure 3. It is stated that incrementing the Prandtl number
Pr decrements the temperature. Physically, the higher the
value of Pr, the higher the fluid viscosity and the lower the
thermal conductivity. Because of this, the thickness of the
boundary layer falls. Figure 4 shows the comparison between
the fractional model and ordinary model, i.e., α⟶ 1. (e
temperature of the ordinary model is higher than that of the
fractional model.

Tables 1–3 show some basic findings of the given work.
Table 4 depicts a numerical solution for temperature and
velocity profiles calculated using the CF and Caputo time
derivatives for different values of fractional factor α. It
indicates that increasing the fractional factor’s value en-
hances the fluid’s temperature and velocity. It suggests that
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Figure 8: Variation of t with Gr � 10, λ � 0.1, t � 7, Nr � 7, and Pr � 4.
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CF has a greater velocity and temperature than Caputo.
Table 2 shows the comparisons between various numerical
inverse LT algorithms like Stehfest’s algorithm and Tzou’s
algorithm with the exact solution. It verifies the validity and
correctness of solutions up to the desired level of precision.
Table 3 presents the relationships between the solutions
obtained for temperature, velocity, and shear stress using
various embedded factors. From this, we can see that the
increase of various embedded parameters increases the
fluid temperature, velocity, and shear stress except for the
Prandtl number which shows the inverse effects from other
parameters.

(e effect of the velocity curve for the Grashof number is
presented in Figure 5. It shows that the enhancement of the
value of Gr enhances the velocity of both the models. (is
behavior is due to the rise in buoyancy force because of
temperature gradient. Figure 6 shows the influence of ra-
diation factor Nr on velocity. Clearly, Figure 6 shows that

the velocity of fluid with C and CF variants of fractional
derivatives increases due to increasing value of the radiation
factor. Figure 7 portrays the behavior of Maxwell fluid factor
on velocity field. It shows the same effect as Figure 6.
Incrementing the value of the Maxwell fluid factor incre-
ments the velocity of the Caputo and Caputo–Fabrizio
models. In Figure 8, the impact of time is shown for velocity.
It is noted that the fluid velocity increases with the increase
in time. (e temperature is greater near the plate and de-
creases as we go away from the plate and finally becomes
zero in the free stream region. From Figure 9, we can see that
the fluid velocity decreases when the value of Prandtl
number Pr increases. Moreover, the enhancement of Pr
decreases the thickness of the boundary layer. Figure 10
shows the comparison between the fractional model and
ordinary fluid model. It shows that the velocity of the or-
dinary fluid model, i.e., α⟶ 1, is greater than the velocity
of the fractional model.
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Figure 9: Variation of Pr with Nr � 7, Gr � 10, t � 7, and λ � 0.1.
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15. Conclusion

(e objective of the present work is to conduct a com-
parative study of the natural convection flow of fractional
Maxwell fluid in the presence of radiation and uniform heat
flux. (e two fractional derivative definitions are used (C
and CF) in the formulation of the problem.(e solutions for
heat and velocity are obtained through the Laplace trans-
form method. (e following are the study’s key findings:

(i) (e temperature of the fluid increases with increase
in the embedded factors like Nr and t.

(ii) Increasing the Prandtl number reduces the fluid’s
temperature.

(iii) (e enhancement of the fluid parameters like
Gr, Nr, λ, and t enhances the fluid’s velocity for
both models, while the Prandtl number shows the
adverse effects from other factors.

(iv) Increasing the value of Gr, Nr, and λ increases the
shear stress of the fluid, while the Prandtl number
has the opposite effect.
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