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,e ubiquity of image and video applications in our daily lives makes data security and privacy prominent concerns for everyone.
Among others, various image cryptosystems are relied upon to provide the necessary safeguards. With the inevitable realisation of
quantum computing hardware, however, the anticipated quantum supremacy entails effortless violation of the integrity of even
the best cryptosystems. Quantum walks (QWs) utilise the potent properties of quantum mechanics to provide randomness via
stochastic transitions between states. Our study exploits these properties of QWs to design a multi-image cryptosystem. Fur-
thermore, we infuse the symmetricity and orthogonality of Chebyshev maps into the QWs to realise a powerful cryptosystem that
guarantees data integrity, authentication, and anonymity of the resulting images. ,ese properties are validated via extensive
simulation-based experiments that produce average values of NPCR as 99.606%, UACI as 33.45%, global entropy as 7.9998, and
chi-square test as 238.14.,erefore, the proposed cryptosystem provides ordnance to protect images from illicit tampering during
the era.

1. Introduction

Today, data security and privacy are integral to our daily
lives where more than 300 million images are unloaded on
the internet daily [1]. Mylio, software company, estimates
that 9.3 trillion images will be stored online by 2022 [2].
Considering the varying levels of confidentiality and pre-
cious memories in these images, their security and privacy is
a major concern to many of us.

Presently, various technologies and cryptographic
mechanisms are employed to encrypt, watermark, and
secure these images including the use of steganographic
data hiding schemes. While data encryption pervades
access to unauthorised users by making such images
unintelligible, chaotic systems exhibit sensitive depen-
dence on original conditions, which implies that, for any

small alteration, the dynamics of the system persistently
magnifies the original conditions. ,is according to [3]
implies that “two trajectories with initial conditions that
are arbitrarily close will diverge at an exponential rate.”
,ere are many single-image cryptosystems that have
been proposed, including those based on colour codes
[4], dynamic filtering [5], imitating jigsaw method [6],
bit-level permutation [7], DNA sequence operation [8],
and particle swarm optimization [9], besides chaos-based
image cryptosystems.

Meanwhile, there are two major classifications of chaotic
maps: one- and multi-dimensional chaotic systems. One-
dimensional (1D) chaotic maps offer low computational
complexity, simple architecture, and structure as well as
accelerated processing [10]. Despite the enumerated prop-
erties, 1D chaotic systems are exposed to attacks due to their
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small key space and the chaotic discontinuous ranges of their
primary values [11].

Due to the developments in communication networks
and prevalence of bulk data processing, multiple-image
cryptosystems potentially have important roles in data se-
curity and privacy in the emerging era of big data whereas
single-image cryptosystems can be utilised to protect mul-
tiple images in a per process approach, but these processes
pile up to reduce the effectiveness of encryption scheme [12].
To enhance this, various scholars have invested in utilising
multi-image cryptosystems to protect multiple images. In
doing so, the highlighted properties of chaotic systems are
exploited to design multiple-image encryption schemes with
many seemingly tamper-proof cryptosystems realised
[13–19]. For example, in [13], Shao et al. presented a new
multiple-image encryption mechanism using logistic map
and quaternion gyrator transform, while in [14], Zarebnia
et al. suggested a multi-image encryption approach using
chaotic maps and cyclic shift operation. Furthermore, in
[15], Li et al. proposed amulti-image encryption approach in
wavelet transformation domain based on a chaotic map.
Similarly, in [18], Zhang andWang presented a multi-image
encryption mechanism using piecewise linear chaotic map
and mixed image elements. While the highlighted schemes
offer platforms to secure the images, our push towards the
triple-S (speed, security, and size) limits of today’s tech-
nologies compels the need for more advanced computing
infrastructure.

Quantum computers offer the promise of information
processing beyond the capabilities of even the best of today’s
supercomputers. ,e inevitable realisation of such hardware
portends huge implications for available cryptosystems,
making them vulnerable to many types of violations [20, 21].
Consequently, it is important to consider integrating this
apparent “quantumness” into existing schemes to safeguard
the confidentiality and integrity of images.

Quantum walks (QWs), which are quantum computing
equivalents of the classical (i.e., nonquantum, or digital)
random walks, provide high sensitivity to initial parameters
and astounding nonperiodicity [22]. Furthermore, they
exhibit significant stability and theoretically infinite key
space allowance. ,ese properties arise through reversible
unitary evolution, nonrandom, quantum superposition of
states, and collapse of the wave function due to state
measurements [22]. ,e use of quantum walks in building
efficient cryptosystems has been explored in many studies
[20, 21, 23–25]. Moreover, QWs have been used to construct
exponential speed up algorithms, quantum simulations,
universal quantum gates, etc. [22].

For example, in [23], Vlachou et al. proposed a public
cryptographic system that utilises QW to generate a public
key, which is similar to its use by Yang et al. to propose an
image encryption approach based on QW in [25]. In their
contribution [20], Abd-El-Atty et al. considered an optical
image encryption based on QW. Specifically, they used the
alternate QW in a dual encryption strategy that, first, uses
double random phase encoding that is executed using
permutation followed by substitution, and second, genera-
tion of random masks.

Similarly, in [8], Yan and Li utilised the controlled
alternate QWs and DNA sequence operations for colour
image encryption. ,ey used controlled alternate QWs to
generate pseudorandom number generator and two
rounds of DNA operation rules to encrypt plaintext
images. Furthermore, in [26], Shi et al. proposed a
quantum blind signature approach with cluster states
using a QW-based cryptosystem. ,ey claim that in the
initial signing and verification phases, a message
encrypted using QW is sent to the receiver, who requests
a blind signature. Subsequently, in the verification phase,
the authenticity and integrity of the transmitted message
is verified. Finally, in [27], Abd El-Latif et al. considered
the use of cascaded QWs with induced chaotic dynamics
for cryptographic purposes. ,eir scheme utilised QWs to
construct substitution boxes and provide the necessary
chaos inducement and random number generation; the
properties they claimed were combined in their reported
cryptosystem. Furthermore, the schemes in [20, 27] re-
port high encryption speeds relative to those in com-
peting studies.

Notwithstanding the performances of the highlighted
schemes, a common problem with the use of chaotic
systems in the reported schemes is the low stability due to
periodicity of the chaotic mapping. Meanwhile, Cheby-
shev polynomials satisfy the two important properties of
semigroup membership and chaos. For this, our proposed
cryptosystem infuses the symmetric and correlational
properties of Chebyshev maps [28] to permutate the
composite image. Additionally, as a prelude to realising
the cipher composite image, Chebyshev mapping is used
to substitute the composite image. To further elucidate,
the key contributions of this study include the following:

(1) Integrating quantum walks with existing chaotic
systems to design a multiple-image cryptosystem for
safeguarding the confidentiality and integrity of
images

(2) Using QW to substitute the composite image and
update encryption key parameters

,e performance of our systems is validated via extensive
simulation-based experiments to establish its effectiveness
and reliability in cryptographic applications involving
multiple images.

,e remainder of the paper is organised as follows:
background on both quantum walks, and Chebyshev maps
are briefly highlighted in Section 2. Intrigues regarding the
use of QWs and Chebyshev mapping to design our proposed
cryptosystem are presented in Section 3, while evaluation of
the performance of the proposed system is reported and
discussed in Section 4. Section 5 concludes this study.

2. Preliminary Background on QuantumWalks
and Chebyshev Map

,is section presents brief overview of the main building
blocks of our proposed cryptosystem (i.e., quantum walks
and Chebyshev map).
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2.1. Quantum Walks. Exploiting the essential properties of
quantum mechanics, notably superposition, unitarity of
state evolution, and wave function collapse [29], quantum
walks were proposed as equivalents of the classical random
walks.

,ere are two core elements of QWs: coin particle Hc �

cos μ | 0〉 + sin μ | 1〉 and walker space Hp, both of which
exist in a Hilbert space H � Hp ⊗Hc [22]. To transform the
full quantum state, the evolution operator 􏽢U, defined in the
following equation, is applied on the full quantum state:

􏽢U � 􏽢S(􏽢I⊗ 􏽢C), (1)

where 􏽢S implies the shift operator and it is depending on the
coin system of the walker. Further, the shift operators 􏽢S of
one-walker QW on a cycle of V nodes can be expressed as

􏽢S � |(x − 1)modV, 1〉〈x, 1| + |(x + 1)modV, 0〉〈x, 0|.

(2)

Additionally, a 2 × 2 coin operator, 􏽢C, can be expressed
as

􏽢C �
cosω sinω

sinω −cosω
􏼠 􏼡. (3)

Hence, the final state |ψ〉t after t steps can be stated as
follows:

|ψ〉t � ( 􏽢U)
t
|ψ〉0, (4)

where |ψ〉0 indicates the primary state of the quantum
system. Consequently, the probability of locating the particle
at location x after t steps can be computed by making use of

P(x, t) � 〈x, 0|( 􏽢U)
t
|ψ〉0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 〈x, 1|( 􏽢U)
t
|ψ〉0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
. (5)

2.2. Chebyshev Map. Chebyshev polynomials are two se-
quences of polynomials built on the sine and cosine func-
tions, notated as Tn(x) and Un(x). ,ese polynomials
exhibit two important properties of semigroup and chaos. Of
particular interest are mappings of Chebyshev polynomials
for a⟶ Tn(a) since any pair of such mappings commute
and Tn◇Tm � Tnm.

,e structure of the described collection of mappings,
known as Chebyshev map [28, 30], is among the widely used
one-dimensional chaos systems, which is expressed as

xi+1 � cos B × arccos xi( 􏼁( 􏼁, (6)

where xi ∈ [−1, 1] is the original value of the chaotic map
and B ∈ N is the control parameter and B≥ 2.

3. Proposed Cryptosystem

,is section outlines the use of the quantum walks and
Chebyshev map highlighted in the previous section to design
our proposed multiple-image cryptosystem. In summary,
the proposed scheme involves the use of QW to substitute
the plain composite image and the use of the substituted
composite image to update key parameters of the Chebyshev

map and subsequent permutation of the substituted com-
posite image using QW and Chebyshev map. Finally, this
permutated image is substituted using the Chebyshevmap to
realise the cipher composite image.

3.1. Encryption Algorithm. Figure 1 presents a graphical
outline of the proposed encryption approach which is ex-
ecuted in the steps enumerated as follows:

(1) Merge all plain images (Ig01, Ig02, . . ., Ig0N) into
one composite image (Pim), and then convert Pim
into a vector ImVec.

ImVec � reshape (Pim, m × n × c, 1), (7)

where m, n, and c are the dimension of the com-
posite image.

(2) Select the primary key parameters (V, t, µ, and ω)
for operating QWs t times on a cycle of odd V nodes
to produce a probability distribution P of size V.
Here, the primary state of the coin walker is
Hc � cos μ | 0〉 + sin μ | 1〉, and ω is used to con-
struct the coin operator 􏽢C (equation (3)), where
μ,ω ∈ [0, (π/2)].

(3) Resize P to the dimension of the composite image
ImVec (m× n× c). ,is action accommodates
composite images of different dimensions. In this
study, the bicubic interpolation method [31] is used
for the resizing process.

ReP � resize P, m × n × c 1􏼂 􏼃( 􏼁. (8)

(4) Obtain the key sequence (Key1) via conversion of
ReP into integer values.

Key1 � floor ReP × 1012􏼐 􏼑mod256, (9)

where floor is the floor operation that rounds each
value of ReP × 1012 towards zero (e.g., floor
(4.736)� 4).

(5) Execute the Bitwise XOR operation process on the
composite image ImVec and key1 to obtain the
substituted composite image SimVec as

SimVec � ImVec⊕Key1. (10)

(6) Select the primary key parameters (x0, B) for the
Chebyshev map, and then update the initial key
parameter x0 as specified in the following equations:

δ �
􏽐

m×n×c
i SimVec(i)

m × n × c
mod1, (11)

xu �
x0 + δ
2

. (12)

(7) Apply Chebyshev mapping using xu and B for
m× n× c times to produce a sequence X.

(8) Add the elements of sequence X to the elements of
sequence ReP to obtain sequence R as follows:
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Rk � Xk + RePk, for k � 1, 2, . . . , m × n × c. (13)

(9) Arrange the elements of R in ascending order as RA
and retrieve the index of each element of RA in R as
PerVec.

(10) Permutate the substituted composite image SimVec
using the generated PerVec such that

PerIm(k) � SimVec(PerVec(k)), for k � 1, 2, . . . , m × n × c.

(14)

(11) Obtain the key sequence (Key2) by transforming
the sequence X into integer values.

Key2 � fix X × 1012􏼐 􏼑mod256. (15)

(12) Execute Bitwise XOR process on the permutated
composite image PerIm and key2 to obtain the
cipher composite image Cim as

CimVec � PerIm⊕Key2,

Cim � reshape(CimVec, m, n, c).
(16)

3.2. Decryption Algorithm. ,e decryption method (Fig-
ure 2) of the proposed cryptosystem is the reverse process of
the encryption process, and it is executed in the steps
enumerated as follows:

(1) Convert the cipher composite image Cim into a
vector CimVec.

(2) Use the primary key parameters (x0, B) for the
Chebyshev map to update the initial key parameter
x0 using δ.

xu �
x0 + δ
2

. (17)

(3) Apply Chebyshev mapping using xu and B for
m× n× c times to produce a sequence X.

(4) Obtain the key sequence (DKey1) by converting the
sequence X into integer values.

DKey1 � fix X × 1012􏼐 􏼑mod256. (18)

(5) Execute Bitwise XOR operation on CimVec and
DKey1 to obtain the permutated composite image
PerIm.

(6) Use the primary key parameters (V, t, µ, ω) for
operating QWs t times on a cycle of odd V nodes to
produce a probability distribution P of size V.

(7) Resize P to the dimension of the composite image
CimVec (m× n× c).

ReP � resize P, m × n × c 1􏼂 􏼃( 􏼁. (19)

(8) Add the elements of sequence X to the elements of
sequence ReP to obtain sequence R.

(9) Arrange the elements of R in ascending order (as
RA) and retrieve the index of each element of RA in
R as DPerVec.

Permutation

Cipher composite
image

V, t, µ, ω

XOR

Plain image 1 Plain image NPlain image 2 ...

XOR
Quantum

walks

Substituted
composite imagex0, B

Chebyshev
map

Update x0

fix (X × 1012) mod 256

fix (ReP × 1012) mod 256

Plain composite
image

Figure 1: Outline of encryption procedure for the proposed multiple-image cryptosystem.
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(10) Rearrange (or depermutate) the permutated com-
posite image PerIm using the generated DPerVec
such that

DPerIm(DPerVec(k)) � PerIm(k), for k � 1, 2, . . . , m × n × c.

(20)

(11) Obtain the key sequence (DKey2) via conversion of
ReP into integer values.

DKey2 � fix ReP × 1012􏼐 􏼑mod256. (21)

(12) Execute the Bitwise XOR operation process on the
depermutated composite image DPerIm andDKey2
to obtain the DimVec and decrypted composite
image DecIm as

DimVec � DPerIm⊕DKey2,

DecIm � reshape(DimVec, m, n, c).
(22)

(13) Decomposite the decrypted composite image
DecIm to get the decrypted images (DIg01, DIg02,
. . ., DIg0N).

4. Experimental Validation

To appraise the performance of the proposed multi-image
cryptosystem, experiments executed using a laptop with
Intel Core™ i5-2450M, 6GB RAM and implemented using

MATLAB R2016b are reported in this section. ,e dataset
used are sourced from the Signal and Image Processing
Institute (SIPI) database in [32]. Four images each of size
512× 512 and labelled as Ig01 through Ig04 (see Figure 3)
were selected and used for the experiments.

Whereas the initial values for key parameters (i.e., V, t, µ,
ω, x0, and B) can be selected according to their ranges, in this
study, the used initial parameter settings for running the
QWs are set as V � 301, t� 325, µ� 0, and ω� π/6. Similarly,
initial parameter settings for iterating the Chebyshev map
are set as x0 � 0.6743 and B� 55. Figure 4 presents the plain
composite image consisting of input images Ig01 (Baboon),
Ig02 (Airplane), Ig03 (Boat), and Ig04 (Peppers) as well as
the resulting cipher composite image obtained using our
multi-image cryptosystem and the decrypted composite
image obtained using our multi-image cryptosystem for the
provided initial key parameters. To guarantee the effec-
tiveness of our cryptosystem, in addition to the composite
images, we analysed the properties of the input images (Ig01,
Ig02, Ig03, and Ig04) and their respective decomposed ci-
pher composite image versions (Cipher-Ig01, Cipher-Ig02,
Cipher-Ig03, and Cipher-Ig04) as presented in Figure 5.

,e remainder of this section presents an extensive
analysis of our proposed scheme using the dataset in-
troduced earlier (in Figure 3). However, throughout the
ensuing discussion and performance evaluation, we shall
refer to the pristine or unadulterated input images (i.e.,
Ig01, Ig02, Ig03, and Ig04 and their composite image) as

Permutation

Cipher composite
image

V, t, µ, ω
XOR

Decrypted
image 1

Decrypted
image N

Decrypted
image 2 ...

XOR

Quantum
walks

x0, B

Chebyshev
map

Update x0

Decrypted
composite image

δ

fix (X × 1012) mod 256

fix (ReP × 1012) mod 256

Figure 2: Structure of the decryption procedure for the proposed multiple-image cryptosystem.
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the pristine group whilst their corresponding ciphered
versions are collectively referred to as the cipher group.

4.1.CorrelationAnalysis. To assess the concordance between
neighbouring pixels X and Y in an image, we use correlation
coefficient, Corr, where it is established that pristine (i.e.,
unadulterated) images exhibit correlation values near 1 in
each direction and that of a cipher image from a well-
designed cryptosystem should be close to 0 [27]. To calculate
the correlation coefficients for our multiple-image crypto-
system, we picked 104 pairs of neighbouring pixels per di-
rection at random and Corr is computed using

Corr �
􏽐

N
k�1 ak − a( 􏼁 bk − b􏼐 􏼑

������������������������

􏽐
N
k�1 ak − a( 􏼁

2
􏽐

N
k�1 bk − b􏼐 􏼑

2
􏽱 , (23)

where ak, and bk are the values of the two adjacent pixel
values, and N denotes the total number of adjacent pixel
pairs per direction.

Table 1 presents the outcomes of the correlation coef-
ficient test, where we see that the correlation coefficient
values of the cipher images are close to 0. Similarly, the
correlation distributions for the red, blue, and green
channels of the composite image are presented in
Figures 6–8, respectively. It is apparent from these outcomes
that no intelligible information about the composite image
can be obtained from the figures.

4.2. HistogramAnalysis. Histogram analysis is a widely used
image evaluation that reflects the frequency distribution of
pixels in an image [27]. A well-designed cryptosystem
should produce ciphers with uniformly distributed histo-
gram. Figure 9 presents the histograms of the plain com-
posite image and its corresponding cipher composite image.
From these plots, we can deduce that the distributions of the
plain composite image are markedly different for each
channel whilst those for the ciphered composite image have
flat histograms, which indicates the absence of useful in-
formation. Furthermore, we employ the chi-square measure
(χ2) to quantify the pixel distribution in the histograms as
defined in

χ2 � 􏽘
255

k�0

fk − N( 􏼁
2

N
, (24)

where fk is the pixel value with frequency k, and N is the
dimension of the image.

It is instructive that by assuming a significant level α � 0.05,
then for the maximum greyscale value χ2(255) � 293.3.
,erefore, an image with χ2 less than χ2(255) has a uniform
pixel distribution. Otherwise, the histogram is considered
nonuniformly distributed. Based on this, Table 2 presents results
of the χ2 test for our pristine and cipher groups, respectively.
,e outcomes show that all images in the cipher group have χ2
values less than the threshold value of 293.3, which conforms
with the flat-out plots of their histograms presented earlier in

(a) (b) (c) (d)

Figure 3: Sub-dataset used as input images (sourced from [32]) to validate the proposed cryptosystem. (a) Ig01. (b) Ig02. (c) Ig03. (d) Ig04.

(a) (b) (c)

Figure 4: (a) Plain composite image (which consists of input images Ig01, Ig02, Ig03, and Ig04), (b) the cipher composite image obtained
using our proposed multiple-image cryptosystem, and (c) the decrypted composite image.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 5: Pristine (or input) images (a) Ig01, (b) Ig02, (c) Ig03, and (d) Ig04 and their respective ciphered versions (e) Cipher-Ig01, (f )
Cipher-Ig02, (g) Cipher-Ig03, and (h) Cipher-Ig04.

Table 1: Correlation coefficient test for the pristine and cipher groups for input and composite images.

Group Image Colour component
Direction

Horizontal Vertical Diagonal

Pristine Plain composite
R 0.9280 0.9527 0.9189
G 0.9501 0.9617 0.9312
B 0.9614 0.9695 0.9476

Cipher Cipher composite
R −0.0005 0.0002 −0.0009
G −0.0001 −0.0003 0.0009
B −0.0002 −0.0005 −0.0001

Pristine Ig01
R 0.8678 0.9196 0.8574
G 0.7709 0.8649 0.7464
B 0.8843 0.9081 0.8389

Cipher Cipher-Ig01
R 0.0006 0.0002 0.0006
G −0.0006 −0.0007 0.0002
B −0.0005 −0.0001 0.0005

Pristine Ig02
R 0.9651 0.9726 0.9412
G 0.9679 0.9630 0.9382
B 0.9534 0.9613 0.9336

Cipher Cipher-Ig02
R 0.0001 0.0008 −0.0009
G −0.0009 −0.0007 0.0009
B −0.0003 0.0005 0.0003

Pristine Ig03
R 0.9542 0.9542 0.9427
G 0.9657 0.9725 0.9533
B 0.9729 0.9713 0.9562

Cipher Cipher-Ig03
R 0.0008 −0.0008 −0.0001
G 0.0007 0.0009 0.0007
B −0.0007 −0.0007 −0.0004

Pristine Ig04
R 0.9657 0.9647 0.9590
G 0.9856 0.9837 0.9750
B 0.9696 0.9660 0.9505

Cipher Cipher-Ig04
R −0.0009 0.0006 −0.0006
G 0.0009 −0.0005 −0.0007
B −0.0002 −0.0001 −0.0001

Average values for cipher group −0.00012 −0.00008 0.00002
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Figure 9. Hence, it can be concluded that our multiple-image
cryptosystem can withstand histogram-based attacks.

4.3. Entropy Analysis. Information entropy E(X) is a test
used to compute the concentration of pixel values per bit-
level in an image E(X). It is considered a measure of effi-
ciency of a cryptosystem [27], and it can be computed using

E(X) � 􏽘
255

k�0
p xk( 􏼁log2

1
p xk( 􏼁

, (25)

where p(xk) indicates the probability of xk.
,eoretically, grey scale images with 28 values should

have an optimal entropy of 8 bits. In other words, when
efficiently ciphered, such an image should have an entropy
value close to 8. However, this global entropy does not
consider the apparent randomness in such ciphered images,
which motivates the use of a modified or local entropy
measure is used to atone for the randomness. ,e local
entropy is the average values of global entropy in non-
overlapping blocks (i.e., 1936 pixels within the block).

Like in the global entropy, values of local entropy closer
to 8 are indications of an efficient cryptosystem. Table 3
presents a summary of local and global entropies for the
pristine and cipher groups of our performance analysis. As
deduced from the table, all global entropies for the cipher
group are within a difference of 0.0002 from the expected
value of 8, which validates the efficiency of our proposed
scheme in terms of its ability to withstand different entropy-
based attacks.

4.4.Differential Test. In addition to performing creditably in
the statistical tests, a well-designed cryptosystem should
exhibit sensitivity to tiny modifications in the composition
of its pristine version. In this study, we utilise two measures:
the number of pixels change rate (NPCR) and unified av-
erage changing intensity (UACI) defined in equations (26)
and (27) for the differential test [33] to assess these
modifications.

NPCR(C1, C2) �
􏽐i;jDf(i, j)

T
× 100%,

Df(i, j) �

0, if C1(i, j) � C2(i, j),

1, if C1(i, j)≠C2(i, j),

⎧⎪⎨

⎪⎩

(26)

UACI(C1, C2) �
1
T

􏽘
i,j

|C1(i, j) − C2(i, j)|

255
⎛⎝ ⎞⎠ × 100%,

(27)

where T is the total pixels within the image, while C1 and C2
are cipher composite images for a pristine (i.e., original or
plane) composite image with just one bit modified.

Computations of the NPCR and UACI (in %) when
making tiny modifications in pixel value at position (1, 1)
from 164 to 165 of the red channel of the pristine composite
image are presented in Table 4.,eoretically, for an image to

be considered uniformly distributed, its respective NPCR
and UACI values should be as close to 99.6% and 33.33% as
possible.

Results reported in Table 4 show that, on average, our
proposed scheme is within 0.01% and 0.1% of the expected
ranges of the NPCR and UACI, respectively, which validates
its capability to in withstand differential attacks.

4.5. Contrast Test. Contrast analysis (T) is a statistical
measure used to assess the local intensity variation in an
image. T can be defined as presented in the following
equation [34]:

T � 􏽘
i,j

|i − j|
2
p(i, j), (28)

where p(i, j) indicates the number of grey level co-occur-
rence matrices.

Given an image, high contrast values signify presence of
significantly distinct grey levels while lower values indicate
constant grey levels. ,e outcomes of the contrast test
presented in Table 5 show that the cipher images obtained
from our scheme exhibit higher contrast values relative to
their corresponding pristine versions.

4.6. Key Sensitivity Test. A robustly efficient cryptosystem
should show sensitivity to changes in the composition of its
secret key. In other words, to withstand attacks, such as
brute-force attacks, an efficient cryptosystem must be sen-
sitive to alterations to its secret key parameters.

To analyse the key sensitivity of our proposed scheme,
we considered recovery (i.e., decryption) of the ciphered
composite image (in Figure 4(b)) for different modifications
in the secret key parameters. ,e outcomes of this key
sensitivity analysis are presented in Figure 10 for changes in
V, T, μ, ω, x0, and B, respectively. As manifested in these
outcomes, for each modification, the pristine composite
image is unrecovered.

Furthermore, by pairing the decrypted cipher image (i.e.,
in Figure 4(c)) with the decrypted images for slight modi-
fications in secret key parameters (i.e., in Figure 10) and
computing their respective pixel difference rate, namely,
pairing of the targeted decrypted composite image with
those for different alternations in key parameters, we es-
tablish the quantitative performance of the key sensitivity of
our scheme. Results of our pixel difference rate (in %) are
presented in Table 6 and outcomes therein suggest that,
despite the slight changes in key parameters, a high pixel
difference rate is high (approximately 99.61%) is maintained
throughout. Furthermore, the recovered images are com-
posed of unintelligible noise and the recovered images re-
main incongruous. ,is is a testimony of our proposed
scheme’s sensitivity to alterations to the composition of its
secret key parameters.

4.7. Noise and Occlusion Attacks. In the course of its
transmission over different communication networks, data
can be tampered, lost, or violated. Consequently, an efficient
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Figure 6: Correlation distribution for red component of plain composite image in Figure 4(a) (a) and those from the cipher composite
image in Figure 4(b) (b).
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Figure 7: Correlation distribution for green component of plain composite image in Figure 4(a) (a) and those from the cipher composite
image in Figure 4(b) (b).
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Figure 8: Correlation distribution for blue component of plain composite image in Figure 4(a) (a) and those from the cipher composite
image in Figure 4(b) (b).
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Figure 9: Histogram distribution for plain composite image in Figure 4(a) (a) and the cipher composite image in Figure 4(b) (b).

10 Complexity



cryptosystem should be designed to curtail such attacks. To
assess the ability of our proposed scheme to withstanding the
enumerated violations, we report outcomes of noise and
occlusion attacks.

For the noise attacks, we considered the impact of using
Salt and Pepper (S&N) noise to tamper with the ciphered
composite image in Figure 4(b). For effective analysis, the
density of S&N noise was varied as 0.1, 0.15, and 0.25;
outcomes for which are presented in Figures 11(a)–11(c),
respectively. Figures 11(d)–11(f) present the recovered
versions of the respective images.

Similarly, the occlusion attacks were assessed for dif-
ferent cut-outs occluding the parts of the same ciphered
composite in Figure 4(b). ,e cut-out size was varied to
cover 10%, 25%, and 35% of the ciphered image as presented
in Figures 12(a)–12(c), while the recovered versions of these
images are presented in Figures 12(d)–12(f).

In both analyses, we note the ability to recover clear
versions of the input composite image despite the noise and
occlusion attacks. ,is validates the ability of our proposed
scheme to overcome such prevalent attacks.

4.8.RandomnessAnalysis. To validate the randomness of the
constructed cipher composite image, the NIST SP 800-22
tests [35] were executed. ,e main goal of these tests is to
detect any nonrandomness property in the constructed ci-
pher composite image. ,ese tests are executed on a se-
quence of 106 bits from the cipher composite image whose
outcomes are presented in Table 7. It is apparent from these
outcomes that the constructed cipher composite image
obtained using the proposed cryptosystem is completely
random.

4.9. Comparative Analysis. To establish the effectiveness of
our proposed multi-image cryptosystem, we compare our
results alongside those from other chaotic cryptosystems.
Results reported in Table 8 show the average values of
correlation coefficients UACI, NPCR, and global entropy for
our cryptosystem and those indicated in the table. From
these outcomes, it is apparent from these outcomes that the
proposed scheme is effective and reliable for various cryp-
tographic applications.

Table 2: Chi-square values for images in the pristine and cipher groups.

Image
Pristine group Cipher group

R G B R G B
Composite image 561115.509 466430.302 648823.932 228.317 224.622 208.914
Ig01 82839.728 142808.039 79942.617 245.619 236.990 219.396
Ig02 678424.492 682495.382 1107858.005 238.957 265.861 272.330
Ig03 196697.306 130154.716 344571.537 264.919 259.925 218.814
Ig04 213187.216 318382.929 491428.177 225.269 252.263 209.951
Average values 346452.850 348054.274 534524.854 240.616 247.932 225.881

Table 3: Local and global information entropies of the studied dataset.

Image
Local entropy Global entropy

Pristine group Cipher group Pristine group Cipher group
Composite image 6.07368 7.90167 7.72801 7.99995
Ig01 6.64443 7.90172 7.76243 7.99978
Ig02 5.52864 7.90234 6.66391 7.99975
Ig03 6.07741 7.90257 7.76216 7.99979
Ig04 6.04964 7.90193 7.66982 7.99978
Average values 6.07476 7.90205 7.51727 7.99981

Table 4: Outcomes of NPCR and UACI for slight changes in the pristine composite image.

Group Image NPCR (%) UACI (%)

Pristine

Composite image 99.60543 33.45229
Ig01 99.60645 33.42891
Ig02 99.60058 33.46614
Ig03 99.60467 33.45160
Ig04 99.61102 33.46251

Average values 99.60563 33.45229
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Table 5: Contrast values of the investigated dataset.

Image
Pristine group Cipher group

R G B R G B
Composite image 0.349001 0.470013 0.427496 10.540164 10.486821 10.507776
Ig01 0.615911 0.762479 0.849334 10.501574 10.491029 10.519275
Ig02 0.184736 0.285026 0.133359 10.541669 10.487719 10.497809
Ig03 0.294325 0.486102 0.461583 10.536192 10.451294 10.496693
Ig04 0.275149 0.302998 0.221375 10.583426 10.517864 10.519198
Average values 0.343824 0.461324 0.418629 10.540605 10.486945 10.508150

(a) (b) (c)

(d) (e) (f )

Figure 10: Decryption process for the cipher composite image (Figure 4(b)) for different alterations to secret key parameters. (a) Actual key
with alteration at V � 303. (b) Actual key with alteration at t� 324. (c) Actual key with alteration at µ� π/2. (d) Actual key with alteration at
ω� π/3. (e) Actual key with alteration at x0 � 0.674300000000001. (f ) Actual key with alteration at B� 56.

Table 6: Pixel difference rate for pairings of decrypted composite image (i.e., using the actual key parameters (in Figure 4(c)) and those
decrypted using different alterations in secret key parameters (Figures 10(a)–10(f)).

Image pairing Difference rate (%)
Figures 10(a) and 4(c) 99.61503
Figures 10(b) and 4(c) 99.60962
Figures 10(c) and 4(c) 99.60887
Figures 10(d) and 4(c) 99.60924
Figures 10(e) and 4(c) 99.61376
Figures 10(f ) and 4(c) 99.61058
Average values 99.61118
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(a) (b) (c)

(d) (e) (f )

Figure 11: Noise attack. (a–c) Ciphered version of composite image (Figure 4(b)) with S&N noise of varying densities (i.e., 0.1, 0.15, and
0.25) added. (d–f) Recovered versions of the corrupted images.

(a) (b) (c)

Figure 12: Continued.
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5. Concluding Remarks

Exploiting the stochastic transitions between states, and
randomness attributed to quantum walks on the one side
and the semigroup membership and chaos of Chebyshev
map on the other, our study proposes an efficient multi-
image cryptosystem that exhibits nonlinear chaotic dynamic
behaviours. Simulation results prove that the proposed

cryptosystem is effective and reliable across wide-range
cryptographic applications.

Besides the merits ascribed to traditional chaos systems,
our cryptosystem is an excellent tool to generate efficient
encryption keys, espouse high sensitivity to initial and
system parameters, manifest good unpredictability, pseu-
dorandomness, stability, periodicity, and infinite key space
needed to efficiently resist brute-force attacks.

(d) (e) (f )

Figure 12: Occlusion attacks. (a–c) Ciphered version of composite image (Figure 4(b)) with cut-out occlusions covering 10%, 25%, and 25%
of its content. (d–f) Recovered versions of the occluded images.

Table 7: Outcomes of randomness test for the cipher composite image (Figure 4(b)).

Test P value Outcome
Overlapping templates 0.860314 Passed
Approximate entropy 0.094379 Passed
DFT 0.349265 Passed
Nonoverlapping templates 0.399560 Passed
Block frequency 0.673566 Passed
Universal 0.672334 Passed
Runs 0.110948 Passed
Random excursions 0.357085 Passed
Long runs of ones 0.890293 Passed
Frequency 0.819646 Passed
Random excursions variant 0.137987 Passed
Rank 0.933441 Passed
Linear complexity 0.292944 Passed

Serial Test 1 0.325773 Passed
Test 2 0.685080 Passed

Cumulative sums Forward 0.914406 Passed
Reverse 0.718627 Passed

Table 8: Comparison of proposed cryptosystem alongside other chaos-based multi-image cryptosystems.

Cryptosystem NPCR (%) UACI (%)
Correlation

Global entropy
H V D

Proposed 99.6056 33.4523 −0.00012 −0.00008 0.00002 7.9998
[14] 99.6131 33.4660 −0.00364 0.00262 0.00124 7.9995
[16] 30.5379 99.5977 0.00530 −0.00600 −0.02300 7.9961
[17] 99.6743 33.5358 0.00281 0.00046 0.00049 7.9995
[18] 99.6200 33.5000 −0.00115 0.00173 0.00413 7.9993
[19] 99.6225 33.4375 −0.00223 −0.00248 0.00158 7.9993
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In addition to designing reliable multi-image crypto-
systems, a major objective of this study is advancing studies
to integrate quantum computing models with digital
computing models for designing reliable cryptosystems.
Currently and in the future, we intend to extend this work
towards designing new secret-sharing cryptosystems.
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