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*e setting of protection parameters is vital to the large-scale application of reverse time overcurrent protection in the distribution
networks. A fixed value optimizationmethod of inverse time overcurrent protection for the distribution networks with distributed
generation based on the improved Grey Wolf algorithm is proposed, which takes the protection action equation and the
sensitivity, speed, and selectivity into consideration. Subsequently, four strategies, including good point set initialization,
convergence factor exponential decay strategy, mutation strategy, and heuristic parameter determination strategy, are introduced
to improve the Grey Wolf algorithm on the premise of retaining fewer adjustable parameters. Simulation results verify the
feasibility and superiority of the proposed model in case of the two-phase and three-phase faults and discuss the influence of time
differential on parameters setting and the research direction of algorithm optimization and engineering application.

1. Introduction

Distributed generation (DG), such as wind power, photo-
voltaic, fuel cell, and energy storage, is increasing access to
the distribution networks along with China’s nonignorable
energy and environmental problems and the intelligent level
of the power grid [1–4]. *e widespread utilization of DG
not only can ease the energy crisis and improve the utili-
zation rate of energy but also will change the original grid
structure and affect the sensitivity of protection. *erefore,
the risk of refusing action or misoperation of the protection
may be increased [5–7].

By far, research efforts mainly focused on two solutions:

(1) Collecting the electric parameters information of the
critical nodes and processing them comprehensively
to improve the protection of adjacent coordination
characteristics and promoting the sensitivity of
protection [8, 9]: according to the control strategy
and fault current output characteristics of the in-
verter distributed power supply, an adaptive current

velocity break protection scheme for the distribution
networks is proposed in [8], and the power reference
and control parameters can be obtained based on the
MMS service of IEC61850 communication protocol.
Literature [9] proposed a communication-based
inverse time-limit overcurrent protection scheme, in
which the upstream line protection receives the fault
current data of the branch of the distributed gen-
eration by the communication channel to ensure the
coordination between the upstream and the down-
stream protection. However, this method relies too
much on the communication system, and if the
communication system crashes, the protection will
fail.

(2) *e protection method suitable for large-scale DG
distribution networks is improved to realize the
adaptive protection setting. Inverse time overcurrent
protection is widely applied in the distribution
network protection scheme due to the characteristic
of the short protection action time and stable
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operation [10–13]. Some researchers introduced the
artificial intelligence algorithm to optimize the fixed
value setting of the inverse time overcurrent pro-
tection. In [11], a fixed value optimization model of
inverse time overcurrent protection based on an
improved particle swarm algorithm is established,
which considers the uncertainty of fault line, fault
type, and fault point location. Nevertheless, the
particle swarm optimization algorithm has too many
adjustable parameters, and the parameters have a
direct impact on the search quality and efficiency of
the algorithm. In [12], two settings of fixed values are
obtained by distinguishing two scenarios of two-
phase short circuit and three-phase short circuit, and
the numerical example verifies that the sensitivity of
a separate setting is more robust than that of a single
setting. However, the method is restricted by too
many parameters of particle swarm optimization
(PSO). Literature [13] introduces the Grey Wolf
algorithm to solve the fixed value setting of the in-
verse time overcurrent protection problem. *e
results show that the Grey Wolf algorithm has more
advantages than the particle swarm algorithm in a
high-dimensional nonlinear nonconvex optimiza-
tion problem with inequality constraints. However,
the GreyWolf algorithm is easy to rapid convergence
and needs to be improved.

Given the consideration above, a protection setting
optimization method of inverse time overcurrent for
distribution networks with DG based on the improved
Grey Wolf algorithm is proposed. *e good point set
initialization strategy, convergence factor attenuation
strategy, mutation strategy, and heuristic parameters
strategy are introduced to develop the Grey Wolf algo-
rithm, improving the algorithm accuracy without intro-
ducing a new parameter and retaining the advantages of
the less adjustable parameter of the Grey Wolf algorithm.
*e simulation verified that the proposed model could
effectively improve the selectivity and quick action of the
inverse time overcurrent protection for the distribution
networks with DG, guiding the corresponding scenario
engineering practice.

2. Setting Value Optimization of Inverse Time
Overcurrent Protection for
Distribution Networks

2.1. Action Characteristic Equation. *e inverse time over-
current protection is widely used in the distribution network
[14, 15]. *e characteristic equation of the inverse time
overcurrent protection operation is as follows:

tij �
0.14Tpi

Iij/Ipi􏼐 􏼑
0.02

− 1􏼔 􏼕
, (1)

where i is the number of the equipment, j is the number of
fault lines, tij is the action time of the protection equipment,
Tpi is the time setting coefficient of the protection

equipment, Iij represents the current flowing through the
equipment, and Ipi denotes the starting current of the
equipment i. Tpi and Ipi are the value to be set.

2.2. Objective Function. Like other protection, the purpose
of inverse time protection is to match the action time and
short circuit current and timely remove the fault line in case
of failure. In this study, the selectivity, reliability, and
sensitivity are considered, and the matching of the action
time and the short circuit current are guaranteed through
the motion equation and constraint conditions. Given this
premise, the least the total action time is, the better the
protection sensitivity will be. *erefore, the protection
setting can be formulated as a nonlinear optimization
problem.

In [11–13], the objective function is minimizing the sum
of all the action time of the relay. *e target function of the
setting value optimization of the inverse time overcurrent
protection can be described as follows:

O � min 􏽘
M

i�1
􏽘

B

a�1
􏽘

L

j�1
t
p
ij + t

b
aj􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦, (2)

where M is the total number of the primary protection, B is
the number of backup protection, and L represents the
number of fault lines. t

p

ij and tb
aj denote the action time of

primary protection i and backup protection a in case of line
failure, during which the relay must send a tripping signal.

2.3. Coordinate Constraint. Cooperation of primary pro-
tection and backup protection is crucial to the safe and stable
operation of the power system. *e time limit of protection
should be determined step by step to guarantee the selec-
tivity of protection operation at all levels. *e primary
protection and backup protection action time must have a
reasonable interval to ensure the coordination and selectivity
of relay protection.

*erefore, the protection coordination time interval
should be satisfied:

t
p

ij − t
b
aj ≥CTI, ∀i, j, k􏼈 􏼉, (3)

where CTI represents the coordinate interval for protection,
also known as the time differential. Shortening the time
differential can effectively increase the resection rate of the
fault and reduce equipment damage.

2.4. Constraints. Firstly, the protection action time must
meet the following constraints to ensure the sensitivity and
quick action of the relay:

tij,min ≤ tij ≤ tij,max, (4)

where tij,min and tij,max are the minimum and maximum
action time of the relay.

Secondly, the time setting coefficient and current setting
coefficient must be within the scope of allowed values:
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Tpmin ≤Tpi ≤Tpmax,

∀i,
(5)

Ipmin ≤ Ipi ≤ Ipmax,

∀i,
(6)

where Tpmin and Tpmax are the maximum and minimum
values of the time setting coefficient and Ipmin and Ipmax are
the maximum and minimum starting current of the pro-
tection equipment.

To sum up, equations (1) and (2) are the objective
function of the optimization model and equations (3)–(6)
are the constraints.

2.5. Influence of Large-Scale DG Access on Reverse Time
Overcurrent Protection in the Distribution Networks. As the
large-scale DG access to the distribution networks, the bi-
directional power appears. It needs to invest spare capacity
and take control measures to compensate the intermittent
power, which imposes a significant challenge on the pro-
tection setting and coordination operation of the distribu-
tion system. Moreover, the inverse time overcurrent
protection may be affected by many aspects, such as the type
of DG, access points, and distribution network mode.

2.5.1. 7e Impact of DG Type. Different kinds of DG, such as
wind, solar, synchronous generator, fuel cell, and energy
storage system, have different characteristics. Different types
of DG regulate the active and reactive power in different
ways. For example, wind power, usually asynchronous
generators, needs to absorb reactive power from the grid
without voltage regulation ability.

2.5.2. 7e Impact of DG Access Points. *e short circuit
current and the action time of the distribution network
inverse time overcurrent protection depend on the access
points and fault locations. DG access points have less impact
on the upstream of the failure but affect the current
downstream. If the downstream of the main protection
action is faster, the upstream backup protection action time
will be longer and may even refuse to move.

2.5.3. 7e Influence of DG Operation Mode. DG can parallel
operation or run island, and there are many island schemes
in DG island mode when switching. Different operation
modes correspond to different grid topology structures and
power flow, and the inverse time overcurrent protectionmay
also be influenced.

*e value setting is determined by solving optimization
problems based on the distribution network topology
structure containing DG access. It should be pointed out that
the different topologies have covered most of the influencing
factors. *at is to say, no matter what type of the DG, what

kind of DG operation mode from where the access points,
and what the access scale, the setting optimization problem
can be formulated by the similar mathematical optimization
model, and this makes the optimization algorithm in this
paper with general significance. In addition, when the ca-
pacity of DG access is over a specific value, the above op-
timization problem may not find the solution, which means
that the inverse time overcurrent protection is not suitable
for this scenario, and other suitable protection types should
be introduced.

3. Grey Wolf Algorithm

Grey Wolf Optimizer (GWO), which has the advantages of
stability and less regulating parameters, is a swarm intelli-
gence algorithm presented by Mirijili in 2014 [16–18]. GWO
can achieve an optimization search through the simulation
of the Grey Wolf population hierarchy and hunting be-
havior. As shown in Figure 1, wolves can be divided into four
types according to the status in the social structure of the
Grey Wolf, including types α, β, δ, and ω. Type α represents
the group leader. Types β and δ are in the middle level, and
they assist type α andmanage ω. Type ω is at the bottom, and
its function is to detect and prey. *e four types are cor-
responding to the optimal solution, suboptimum solution,
third optimal solution, and search populations of the in-
telligent algorithm, respectively.

Wolves find the optimal route of hunting by way of
surrounding the prey, and the behavior can be modeled as

D
→

� C
→

· X
→

p(m) − X
→

(m)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (7)

X
→

(m + 1) � X
→

p(m) − A
→

· D
→

, (8)

where X
→

p represents the current position of the prey,
X
→

denotes the location of the Grey Wolf, and m is the
number of iterations. A

→
and C

→
are the collaborative vector,

and D
→

is the distance between wolves and prey. *e updated
position of the Grey Wolf in the hunting process is for-
mulated in equation (8).

Collaborative vectors A
→

and C
→

should be satisfied as
follows:

A
→

� 2 a
→

· r
→

1 − a
→

,

C
→

� 2 · r
→

2,
(9)

where the modulus values of r
→

1 and r
→

2 are a random
number between [0, 1], a

→ is a convergence factor, and its
value decreases linearly from two to zero with the increasing
number of iterations.

*e wolf hunting behavior is dominated by type α,
followed by type ω. Type ω gradually moves to the high-
grade wolf with ongoing hunting. Given these hunting
behavior characteristics, the iterative optimization process
of the Grey Wolf algorithm can be further described as
follows:
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X
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→

1 + X
→

2 + X
→

3

3
, (11)

where X
→

α, X
→

β, and X
→

δ represent wolf’s position of types α,
β, and δ in the current iteration, respectively. X

→
denotes the

location of type ω. D
→

α, D
→

β, and D
→

δ represent the distance
between types α, β, and δ with ω in the current iteration,
respectively. A

→
1, A

→
2, A

→
3, C

→
1, C

→
2, and C

→
3 are the coor-

dination coefficient and X
→

(m + 1) denotes wolf’s location of
type ω in the next iteration.

4. Improved Grey Wolf Algorithm

Like other intelligent algorithms, the Grey Wolf algorithm
also faces prematurity and falling into local optimum
[19, 20], limiting the accuracy of the algorithm, and has a
large room for improvement. *erefore, the good point set
initialization strategy, the convergence factor exponential
decay strategy, the mutation strategy, and the heuristic
parameter determination strategy are introduced to improve
the Grey Wolf algorithm. While improving the accuracy of
the algorithm, the improvement preserves the advantage of
less adjustable parameters of the Grey Wolf algorithm.

4.1. Good Point Set Initialization Strategy. For the swarm
intelligence optimization algorithm, the quality of the initial
population greatly influences the global optimization effect
and convergence speed. Generally, the initial population is
generated based on random initialization, making it difficult
to guarantee good population diversity. *erefore, the good
point set strategy [21] is adopted to initialize the population

distribution. Under the premise of taking the same number
of points, the sequence initialized by the good point set is
more uniform, and the generated initial population is more
ergodic than others. It should be pointed out that it is
conducive to the global optimization of the algorithm
without increasing new algorithm parameters. *e good
point set was put forward by Hua Luogeng et al. It can be
defined as follows.

Assume thatGs is a unit cube of s-dimensional Euclidean
space; the mathematical formulation can be described as
follows:

Pn(k) � r
(n)
1 ∗ k􏽮 􏽯, r

(n)
1 ∗ k􏽮􏽮 􏽯, . . . , r

(n)
s ∗ k􏽮 􏽯􏼐 􏼑, 1≤ k≤ n􏽮 􏽯r

∈ Gsφ(n) � C(r, ε)n− 1+ε
,

(12)

where φ(n) is the deviation of Pn(k) and C(r, ε) is a constant
that only depends on c and ε. Pn(k) is called the good point
set and r is the good point.

4.2. Convergence Factor Exponential Decay Strategy.
Convergence factor a

→ affects the global search ability of the
algorithm, and the exponential function is introduced to
calculate a

→. *e convergence factor exponential decay
strategy can replace the linear attenuation strategy of the
basic GWO algorithm [22]:

a
→

� 2 1 −
m

2

M
2􏼠 􏼡, (13)

where m is the current iteration number and M is the
maximum iteration number. It can be seen from equation
(13) that the convergence factor decreases nonlinearly with
the increase of iterations, which helps to balance the global
search ability and local optimization ability of the GWO
algorithm.

4.3. Mutation Strategy. In order to solve the problems of
prematurity and low convergence accuracy of GWO algo-
rithm without introducing new parameters and increasing
the complexity of parameter initialization, the Gaussian
mutation strategy is adopted, and corresponding Gaussian
mutation operator is given to the position iteration of Grey
Wolf in equation (11), as shown in the following equation:

X
→

(m + 1) � X
→

(m + 1) · 1 +
| a
→

|

2
· N(0, 1)􏼢 􏼣, (14)

where N (0, 1) is the standard Gaussian distribution. *is
setting enables GWO to obtain enough perturbation at the
initial stage of the algorithm to increase the global search
ability of the algorithm and reduce the perturbation at the
end of the algorithm to avoid the turbulence of the optimal
solution and accelerate the convergence process.

4.4. Heuristic Parameter Determination Strategy. *e pa-
rameters of the GWO algorithm (population size, maximum
number of iterations) often have a direct impact on the

Optimal solution

Suboptimum solution

Third optimal solution

Search population

Leader

Manager

Assistant

Predator

Priority
α

β

δ

ω

Figure 1: Hierarchy of GWO.
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search quality and efficiency of the algorithm. However,
there is no simple, intuitive, and universal parameter de-
termination method for the whole heuristic search strategy
algorithm. In [23], the prior empirical setting method is
utilized to directly give the parameters of the Grey Wolf
algorithm and the comparison algorithm. Although the
superiority of the target algorithm can be verified, the prior
empirical setting method may be arbitrary when the
target algorithm is applied to solve specific problems, and
the comparison under different parameter settings is lacking.
A heuristic parameter determination strategy is adopted to
determine the parameters in two stages:

(1) According to the parameter range suggested in other
literature, the population size is set to 10–50, and the
maximum number of iterations is set as 100–1000.
Randomly select a set of parameters and perform
optimization calculation.

(2) According to the influence of parameters on the
GWO, the heuristic parameter determination
strategy is adopted to adjust the initial parameters.
*e comparative analysis under different parameters
is conducted, among which the parameters corre-
sponding to the optimal result are the optimal pa-
rameters. *e larger the population size and the
more the maximum number of iterations, the greater
the possibility of finding the optimal global solution
will be, but the optimization time is longer.

One of the advantages of the improved GWO proposed
in this paper is that no new parameters are introduced in the
improvement process. *e advantage of the Grey Wolf al-
gorithm with fewer adjustable parameters is retained.
Compared with the PSO algorithm and harmony search
algorithm (HSA) with more parameters, the workload in the
process of heuristic parameter determination is greatly
reduced.

5. Modeling

In this study, equations (1) and (2) are taken as the objective
function, and equations (3)–(6) are taken as the constraint
conditions. Based on a specific distribution network to-
pology structure, a setting value optimization model of
inverse time-limit overcurrent protection for the distribu-
tion networks with DG based on the improved GWO is
established. *e structure of the improved GWO model is
depicted in Figure 2, and the modeling process is as follows:

(1) Heuristic initialization of the population size and
maximum iteration times.

(2) Initialize the population distribution by the good
point set strategy.

(3) Calculate the fitness of individual Grey Wolf and
save the information of wolf types α, β, and δwith the
best fitness.

(4) Update the location of Grey Wolf according to the
convergence factor exponential attenuation strategy
and mutation strategy.

(5) If the maximum number of iterations is not reached,
skip to Step 3 to continue optimization. Otherwise,
the optimization ends, and the optimized setting is
obtained.

(6) Heuristically adjust the population size of Grey Wolf
and the maximum number of iterations and find the
optimal setting value after several attempts and
comparisons

6. Case Study

6.1. Example Description. In order to verify the effectiveness
of the method presented in this paper, an example proposed
in [12] is selected, and the improved GWO method is
compared with the proposed setting method and other
methods. *e following IEEE 15-node distribution network
with DG is employed to conduct the comparison analysis, as
shown in Figure 3.

*e parameter settings are listed in Table 1, the maxi-
mum power of DG is 480 kVA, and the DG is at the

Start

Update the location of Grey Wolf

m ≥ M

End

Yes

No

Obtain the optimal setting

Heuristic initialization of the population size and
maximum iteration times

Initialize the population distribution by the good
point set strategy

Calculate the fitness of individual Grey Wolf and
save the information of wolf types α, β, δ with the

best fitness

Heuristically adjust the population size of Grey Wolf
and the maximum number of iterations and find the

optimal setting value

Figure 2: Improved GWO algorithm flowchart.
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maximum output state. When CB1 is the primary protec-
tion, there is no backup protection. In other cases, there is
one backup protection for each primary protection.*e load
parameters are shown in Table 2.

*e improved PSO in [11], the improved HSA in [12],
and the basic GWO and Cuckoo linear programming op-
timization algorithm (COA-LP) in [13] are selected to
provide a comparative analysis. Two-phase short circuit and
three-phase short circuit scenarios are distinguished in the
optimization, and the protection value is set according to the
terminal short circuit current. *e system topology, pro-
tection method, objective function, and constraint condi-
tions are all the same, and the quality of the optimization
result mainly depends on the quality of the optimization
algorithm. If the optimization results of the proposed
method are superior to those of the control group, the ef-
fectiveness and superiority of the improved GWO algorithm
in solving the problem of inverse time overcurrent pro-
tection setting can be verified.

6.2. ComparisonAnalysis. *e results of the two-phase short
circuit scenario are shown in Table 3. It can be seen from
Table 3 that the total action time of the optimal solution
obtained by the improved GWO algorithm is 23.162 seconds
when a two-phase short circuit occurs, which is less than the
other four algorithms.

In the case of the two-phase short circuit scenario, the
setting values of each protection obtained by the improved
GWO algorithm are listed in Table 4, and the action time
results of each protection are shown in Table 5. As can be

seen from Tables 3 and 5, the action time of protection
obtained by the GWO algorithm satisfies the constraint of
the time difference, which ensures selectivity and reliability
of the protection and reduces the fault duration compared
with other algorithms.

Similarly, the results of the three-phase short circuit
scenario are shown in Table 6. It can be found from Table 6
that the total action time of all protection obtained by the
improved GWO algorithm in this paper is still the minimum
in the case of a three-phase short circuit, which is better than
the other four algorithms. *e following conclusions can be
drawn from the analysis:

(1) *e good point set initialization strategy, conver-
gence factor exponential decay strategy, mutation

Table 1: Parameter settings.

Parameter Value Parameter Value
DG maximum power 480 kVA Tpmin 0.1
CTI 0.5 s Tpmax 0.4
tij, min 0.1 s Ipmin 100A
tij, max 4 s Ipmax 500A

Table 2: Load parameters.

Load Active power (MW) Reactive power (MVar)
1 0.4 0.15
2 0.1 0.2
3 0.25 0.1
4 0.3 0.2
5 0.1 0.05
6 0.3 0.07
7 0.1 0.05
8 0.05 0.02
9 0.2 0.08
10 0.1 0.1
11 0.25 0.09
12 0.1 0.05
13 0.3 0.2

Table 3: Results of five algorithms when a two-phase short circuit
occurs.

Algorithms Total action time (s)
PSO 30.812
HSA 24.573
Basic GWO 26.298
COA-LP 28.720
Improved GWO 23.162

L6 L5 DG
B8

CB8CB9

CB1
CB7

CB2

CB5

CB6
B10

B7

B6

B2

L1
B9
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L7 L9

L10
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L12

L4

L3

L13

B3 B4 B5

L8

B11
CB11

CB10 CB13

CB14
CB4

B15

CB3

CB12

B12

B14

B13

B1

S

Figure 3: IEEE 15-bus distribution network with DG.

Table 4: Protection setting value when a two-phase short circuit
occurs.

Relay Tp Ip (A)
CB1 0.379 276.1
CB2 0.301 193.2
CB3 0.172 203.5
CB4 0.099 104.7
CB5 0.202 182.0
CB6 0.108 106.9
CB7 0.143 246.6
CB8 0.101 113.7
CB9 0.109 114.1
CB10 0.203 232.5
CB11 0.192 126.2
CB12 0.105 103.9
CB13 0.112 102.3
CB14 0.097 101.9
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strategy, and heuristic parameter determination
strategy proposed in this paper can effectively im-
prove the accuracy of the Grey Wolf algorithm

(2) No matter the two-phase short circuit or three-phase
short circuit occurring, the improved GWO algo-
rithm has a better optimization effect than the other
four comparison algorithms

6.3. Heuristic Parameter Adjustment Analysis. *e param-
eter settings of the optimization algorithm directly affect the
search quality and efficiency of the algorithm. It should be
pointed out that the Grey Wolf algorithm has only two
adjustable parameters, which can save much work compared
with PSO, HSA, and other methods in the parameter
adjustment.

*e population and the maximum number of iterations
are adjusted based on the heuristic parameters optimization
strategy.*e number of wolves is set to 10, 20, 30, 40, and 50,
respectively, and the maximum number of iterations of each
group is set to 1000. *e optimizations are carried out to
ensure the searching ability of the algorithm at the expense
of time efficiency, and the optimal number of wolves can be
determined. At the same time, the decreasing rate of the
target value under the optimal number of wolves is observed
to obtain the optimal iteration number.

*e optimization results for the two-phase short circuit
are shown in Table 7. When the population size is 30, the
minimum value, average value, and standard deviation of
the total operation time of protection are all the minimum,
indicating that the population size of 30 is the most ap-
propriate and has the best robustness.

*e decline rate of the optimization target value is ob-
served when the population size is 30. It could be found that
the algorithm converged when the average number of it-
erations reached 112 times, and therefore the maximum
number of iterations is set as 150.

Similarly, the population is set as 30 in the case of the three-
phase short circuit.*e average number of iterations is 73 as the
population converges, and the maximum number of iterations
is set to 100. After the heuristic parameter adjustment, the
algorithm parameters have better effectiveness and robustness,
which can further improve the optimization quality.

6.4.Analysis ofTimeDifferential. *eCTI is simplified in this
study, which is uniformly set as 0.5 s. It should be noted that
although 0.5 s is a typical time differential setting for pro-
tection, it is not optimal. Relay protection should speed up the
operation time and shorten the time differential as far as
possible under the condition of satisfying selectivity. Different
time differentials can be selected for different protection
coordination relationships. In engineering practice, it is
necessary to set different time differential according to the
actual system structure and protection type, combined with
the experience of protection manufacturers and engineers.

*e protection action results of the two-phase short
circuit under different time differential are described in
Table 8. It can be seen from Table 8 that reducing the time
differential can shorten the total operation time of the
protection. Besides, the delay error depends on the type of
protection device and the characteristics of the time relay.
*e settings should refer to engineering experience.

Table 5: Protection action time when a two-phase short circuit occurs.

Fault location Action time of primary protection (s) Action time of backup protection (s)
B1–B2 1.119 —
B2–B3 1.027 1.539
B3–B4 0.623 1.238
B4–B5 0.326 0.879
B2–B9 0.602 1.411
B9–B10 0.310 0.851
B2–B6 0.656 1.932
B6–B7 0.344 0.909
B6–B8 0.357 0.868
B3–B11 0.832 1.376
B11–B12 0.773 1.271
B12–B13 0.446 0.958
B4–B14 0.359 0.913
B4–B15 0.307 0.826

Table 6: Results of five algorithms when a three-phase short circuit
occurs.

Algorithms Total action time (s)
PSO 31.272
HSA 23.579
Basic GWO 25.195
COA-LP 28.209
Improved GWO 21.923
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7. Conclusions

An optimization method based on the improved GWO is
proposed to optimize the parameters setting of inverse
time-limit overcurrent protection in the distribution net-
works with DG. According to the protection action
characteristic equation and the sensitivity, speed, and se-
lectivity of protection, the fixed value optimization model
of inverse time-limit overcurrent protection for the dis-
tribution networks is established. *e good point set ini-
tialization strategy, convergence factor attenuation
strategy, mutation strategy, and heuristic parameters de-
termination strategy are introduced to overcome the low
convergence precision of the traditional GWO algorithm.
Due to the few adjustable parameters, the workload in
heuristic parameter determination is significantly reduced
compared to the PSO algorithm and the HSA algorithm.
Simulation results show that the proposed method has
better effectiveness and robustness for both two-phase
short circuits and three-phase short circuits and has good
application value.

In the future, further research can be carried out from
three directions: improving the action equation of inverse
time limit protection, taking the time level difference as a
part of the constraint conditions and optimization param-
eters, and exploring the better objective function.
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