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,is investigation focuses on the mixed initial boundary value problem with Caputo fractional derivatives. ,e studied pour an
incompressible fractionalized Oldroyd-B fluid prompted by fluctuating rectangular tube. ,e explicit expression of the velocity
field and shear stresses for the fractional model are obtained by utilizing the integral transforms, i.e., double finite Fourier sine
transform and Laplace transform. Furthermore, the confirmation of the analytical solutions is also analyzed by utilizing the Tzou’s
and Stehfest’s algorithms in the tabular form. In limited cases, ordinary Oldroyd-B fluid similar solutions and classical Maxwell
and fractional Maxwell fluid are derived. ,e flow field’s graphs with the influences of relevant parameters are also mentioned.

1. Introduction

,e liquids which change their viscosity under force to either
more liquid or solid are famous. ,ese liquids are known as
non-Newtonian fluids. ,e understanding can be improved
by studying such types of fluids. A French physicist and
engineer along with a mathematician named (Anglo-Irish,
Claude-Louis Navier, and George Gabriel Stokes) described
fluid flow through its environment. After it, these equations
are known by their names like the Navier–Stokes equations.
Navier–Stokes equations could describe the form and pre-
sentation of non-Newtonian fluids’ flow quite well. ,ese
were proved useful in various areas of science and engi-
neering. Petroleum engineers reveal how oil flows from well
or pipe using mathematical modeling exactly in the same

way as biomedical investigators for blood flow Non-New-
tonian fluids have gained prominence because of their many
uses in commerce and architecture, as well as medicine.

,e non-Newtonian behavior understanding is generally
more complicated than the Newtonian one. According to
Hartnett and Kostic [1], in non-Newtonian fluids, the
theoretical predictions yield low estimates of the heat
transfer under laminar flow conditions. ,e motion of non-
Newtonian fluid in containers is a very functional issue in
dynamics. First, Stokes [2] presented the precise result of
oscillatory motion in a classical linearly viscous fluid.
Rajagopal [3] answered the models of non-Newtonian fluids
in regards to their motion. Rajagopal and Bhatnagar [4]
studied the Oldroyd-B fluid solutions in Bessel function for
torsional and the longitudinal oscillations of an enormously
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lengthy dowel. Mahmood et al. [5] used Laplace and finite
Hankel transform and acquired the exact velocity’s solutions
and sinusoidal shear stress corresponding to second-grade
fluid’s flow. Hayat et al. [6] found out the five particular
results used for the problems of an Oldroyd-B fluid, i.e., (i)
Stokes problem, (ii) modified Stokes problem, (iii) the time-
periodic Poiseuille flow due to an oscillating pressure gra-
dient, (iv) the nonperiodic flows between two boundaries,
and (v) symmetric flow with an arbitrary initial velocity.

In the last decades, fractional calculus (FC) underwent
intensive research and development [7]. ,e working and
comprehension of artificial and characteristic frameworks
require the conventional derivative and integral which are
significant for innovation experts. ,e derivative operators
and calculus integral can be characterized by fractional cal-
culus which is the field of math wherein the fractional powers
are utilized instead of integer powers. ,erefore, noninteger
derivatives are portrayed by some memory impacts that are
imparted to various materials such as polymers and visco-
elastic materials and furthermore its uses in anomalous dif-
fusions. By [8], we obtained exact solutions using an
expansion theorem of Steklov for flows satisfying no-slip
boundary conditions.Waters and King [9] evaluated the exact
solution with the Laplace transform. ,ey investigated that
the velocity sketches intensely subject to the flexible pa-
rameters and fluctuates approximately on their central po-
sition.Wood [10] studied start-up helical flows for Oldroyd-B
in straight tubes of the annular and rounded cross-section.
,ey added that the fluid is originally at rest for completing
the process of the solution.

Electromagnetic, viscoelasticity, fluid mechanics, elec-
trochemistry, biological population models, optics, and
signal processing are just a few of the engineering and
science fields where fractional calculus is used. Ray et al. [11]
discussed fractional calculus as a modeling tool for engi-
neering and physical advancements that are defined vig-
orously by fractional differential equations. Systems that
require precise damping modeling used fractional derivative
models to accurately model it. Various analytical and nu-
merical techniques, as well as their presentations to new
complications, have been projected in these fields [12, 13].

Researches in fluid flow problems are present in terms of
fractional derivatives. ,ey had observed the influence of
fractional parameters on the flow profiles [14, 15]. ,ey
referred to the obtained governing equations as fractional
partial differential equations. Moreover, through discrete
Laplace transform and Fourier transform along with some
well-known special functions, they got precise results [16].
Few scholars considered Oldroyd-B fluid for various models
in terms of fractional derivatives. Fetecau et al. [17, 18]
solved Stokes’s first problem of the velocity profile and the
related tangential tension parallel to an Oldroyd-B fluid flow
above abruptly stimulated smooth bowl analytically. Fetecau
et al. [19] investigated the tangential pressures and velocity
field between two perpendicular walls in the trembling flow
of Oldroyd-B fluid by continuously accelerating a plate.,ey
obtained the exact solution with the utilization of the Fourier
transform method. Different geometries exist in different
types of solutions. In industry, ducts are normally used for

managing different flows. ,erefore, as a prime process part
in industrial units, it gained high importance. ,e rotational
flow of fractional Oldroyd-B fluid in cylindrical domains was
studied in [20, 21]. Fetecau and Fetecau [22] used a rect-
angular cross-sectional channel and introduced precise re-
sults for two different kinds of trembling flows of an
Oldroyd-B fluid. Nazar et al. [23] determined sine oscilla-
tions of the rectangular tube through studying the man-
datory time-period to reach the steady-state. Riaz et al. [21]
used fractional derivatives and investigated the rotating flow
of an Oldroyd-B fluid caused by an infinite circular tube with
a continuous couple. Ghada and Ahmed [24] find out the
trembling flow of broad Oldroyd-B fluid by studying the
analytic solution and the flow of fluid was in the oscillating
rectangular tube.

Furthermore, Wang et al. [25] used an extended rect-
angular cross-sectional tube and investigated the vibratory
flow of Maxwell fluid. ,e exact solution’s singularities and
appropriate expressions of velocity and phase variation were
studied clearly. Sun et al. [26] used an isosceles right tri-
angular cross-sectional lengthy tube and modeled the vi-
bratory flow of the Maxwell fluid. ,ey obtained analytical
terms for the flow compelled by the periodic pressure
gradient. Farooq et al. [27] studied the generalized Maxwell
fluid flow with magnetic and porous factors via quadrilateral
duct. Sultan et al. [28] found out the trembling magneto-
hydrodynamic (MHD) flow of Oldroyd-B fluid through
analytic solution in a permeable rectangular cross-section.
Some studies related to time-fractional derivatives have
obtained interesting results of such flow problems [29–35].
,is paper aims to express the oscillatory motion of an
Oldroyd-B fluid through a rectangular duct. ,e unsteady
boundary layer equations of Oldroyd-B fluid are formulated.
,en, the exact solutions are derived for the comprehensive
Oldroyd-B fluid through integral transform. More precisely,
the researchers want to know the relation of the vibratory
motion of the fractionalized Oldroyd-B fluid by discovering
the shear stress and velocity motion, and the first “time”
derivative of the velocity is taken “zero” as its extra condition
to simplify the model at time t� 0. Furthermore, the effects
and features are graphically represented that are relevant to
velocity field’s parameters.

,e remainder of this article is designed in such a way
that, after the introduction, the statement of the problem is
discussed in Section 2. In Section 3, we presented the exact
solution of related velocity field and tangential stresses
specific to Oldroyd-B fluid inside a vibratory rectangular
tube with fractional derivatives. Section 4 discusses limited
cases of the fractional Oldroyd-B fluid. ,e graphical results
and the derived exact solutions compared with numerical
results are investigated in Section 5. ,e conclusion of the
paper is presented in Section 6. Also, see Table 1 for the
dimension of the physical parameters.

2. Statement of the Problem

,is paper considers the incompressible fractional Oldroyd-
B fluid (FOBF) in the quadrilateral tube in Figure 1. ,e
dimensions of the sides are X � 0, X � d, Y � 0, and
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Y � h. At time t � 0+, the tube starts to vibrate along
Z-axis. Due to these oscillations, an oscillatory motion in
fluid gets started inside along the duct’s boundary. ,e
considered velocity field and tangential stress are as follows:

V(X,Y,Z) � Ω(X,Y, t)k � (0, 0,Ω)S � S(X,Y, t),

(1)

where k is the unit vector aiming inZ-direction. Remember
the first B kinematic tensor can be given from Rivlin-
Ericksen as

B ≔ ∇V +(∇V)
†
, (2)

where † represents the operation transpose.,e stress tensor
T is

T ≔ − pI + S. (3)

,is equation indicates p, I, and S which are the hy-
drostatic pressure, identity tensor, and extra stress tensor,
respectively. ,e extra stress tensor [36] can be written as by
the following relation:

1 + λ1Dt( [S] � μ 1 + λ2Dt( [B]. (4)

In (4) μ> 0, λ1 and λ2 are the dynamic viscosity, re-
laxation time, and retardation time, respectively. ,e op-
erator denotes the Oldroyd derivative [36] Dt and is given
below

Dt[S] ≔ ztS +(V.∇)S +(∇V)S + S(∇V)
†
. (5)

Furthermore, the initial conditions for the considered
fluid flow are

S(X,Y, 0) � 0 � ztS(X,Y, 0). (6)

,e assumed governing equations for an incompressible
fluid system are

∇.V � 0,

ρ ztV +(V.∇)V  � ∇.S,
(7)

while ρ> o; for ease, body strength and pressure gradient are
overlooked.

2.1. Flow Problem. Firstly, the researchers carefully weighed
the flow of Oldroyd-B fluid and the possible constitutive
equations for it. ,en, after the exact modification, the
researchers found out the desired results for the fluids’ flow.
(1) satisfies the equation of continuity, i.e., (6). While (1), (2)
and (4), (3), together with the initial conditions, i.e., (5), we
can get for all t> 0,

Sxx � Syy � 0, (8)

1 + λ1zt( Sxz � μ 1 + λ2zt( zXΩ, (9)

1 + λ1zt( Syz � μ 1 + λ2zt( zYΩ. (10)

Using the same procedure [28] and with the help of (1)
and (8)–(10), we can reduce (7) to

ρ 1 + λ1zt( ztΩ � μ 1 + λ2zt(  z
2
XΩ + z

2
YΩ . (11)

,e appropriate conditions are

Ω(X,Y, 0) � ztΩ(X,Y, 0) � 0,

Ω(0,Y, t) � Ω(d,Y, t) � Ω(X, 0, t) � Ω(X, h, t)

� U0H(t)cos(wt), t> 0,

Ω(X,Y, 0) � ztΩ(X,Y, 0) � 0,

Ω(0,Y, t) � Ω(d,Y, t) � Ω(X, 0, t) � Ω(X, h, t)

� U0 sin(wt), t> 0,

(12)

where U0 is the amplitude,H(t) is a unit step function, and ω
is the velocity frequency of edge. While forgetting the
fractional Oldroyd-B fluid flow equations, the researchers
need to change the inner time derivatives (11) with left-sided
Caputo fractional time derivatives zαt and z

β
t for 0< α≤ β< 1,

and it can be diverted into the model with the same original
boundary conditions accurately,

ρ 1 + λα1z
α
t( ztΩ � μ 1 + λβ2z

β
t  z

2
XΩ + z

2
YΩ , (13)

where the Caputo’s fractional derivative [13] is

D
℘
t f(t) �

1
Γ(1 − ℘)


t

0

f′(τ)

(t − τ)
℘ dτ, 0≤℘< 1, (14)

and Γ(.) is the gamma function.

xy

z

d

h
w

Figure 1: Flow through rectangular duct.

Table 1: Nomenclature.

Symbols Quantity
Ω Z-direction velocity (ms− 1)

λ1 Relaxation time (s)
λ2 Retardation time (s)
μ Dynamic viscosity (kgm− 1s− 1)

U0 Amplitude (m)
ω Angular frequency (rads− 1)

d Length of duct (m)
h Height of duct (m)
ρ Density of fluid (kgm− 3)

α, β Fractional parameters
LT Laplace transform
V Velocity of fluid (ms− 1)

S Tangential stress (Nm− 2 or Pa)
p Pressure (kgm− 1s− 2)
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To balance the dimension of (13), we bring into the
power α and β on λ1 and λ2, respectively. Moreover, we will
use the following dimensionless quantities to normalize the
(13).

X �
X

d
,

Y �
Y

h
,

Ω �
Ω
u0

,

t �
μt

ρ dh
,

λ1 �
μλ1
ρ dh

,

λ2 �
μλ2
ρ dh

,

ω �
ρ dh ω

μ
,

c �
d

h
.

(15)

With the help of the above dimensionless quantities and
dropping the hats sign, the (13) will become

1 + λα1z
α
t( ztΩ �

1
c

1 + λβ2z
β
t  z

2
XΩ + c

2
z
2
YΩ , (16)

Ω(X,Y, 0) � ztΩ(X,Y, 0) � 0,

Ω(0,Y, t) � Ω(1,Y, t) � Ω(X, 0, t),

Ω(X, 1, t) � H(t)cos(wt), t> 0,

(17)

or

Ω(X,Y, 0) � ztΩ(X,Y, 0) � 0,

Ω(0,Y, t) � Ω(1,Y, t) � Ω(X, 0, t),

Ω(X, 1, t) � sin(wt), t> 0.

(18)

3. Solution of Velocity Profile

3.1. Ω(0,Y, t) � Ω(1,Y, t) � Ω(X, 0, t) � Ω(X, 1, t)

� sin(ωt). Operating sin(αlX)sin(βnY) on (16), then in-
tegrating concerned X and Y over [0, 1] × [0, 1], and uti-
lizing the transmuted original and boundary conditions (18),
we will get

1 + λα1D
α
t( ztΩlp(t) +

λ2lp
c

1 + λβ2D
β
t Ωlp(t)

�
alpλ

2
lp

c
1 + λβ2D

β
t sin(wt),

(19)

where αl � lπ, βp � pπ, alp � [1 − (− 1)]l[1 − (− 1)p]/αlβp,
and λ2lp � α2l + c2β2p, and

Ωlp(t) � 
1

0

1

0
Ω(X,Y, t)sin αlX( sin βpY dXdY,

l, p � 1, 2, 3 . . . ,

(20)
is the binary Fourier alteration of Ω(X,Y, t).

By applying Laplace transformation and appropriate
transform conditions on equation (15) we will get Ωlp(q)

as

Ωlp(q) �
alpλ

2
lp

c

ω
q
2

+ ω2
1 + λβ2q

β

q + λα1q
α+1

+ λ2lp/c  1 + λβ2q
β

 
,

(21)

or

Ωlp(q) �
alpλ

2
lp

c

ω
q
2

+ ω2 Flp(q), (22)

where

Flp(q) �
1 + λβ2q

β

q + λα1q
α+1

+ λ2lp/c  1 + λβ2q
β

 
, (23)

which can be written as

Flp(q) �
c

λ2lp
−

1 + λα1q
α

1 + λα1q
α

+ λ2lp/c  1 + λβ2q
β

 q
− 1

c

λ2lp
, (24)

and the Laplace transform of Ωlp(t) is Ωlp(q) �


∞
0 Ωlp(t)e− qtdt (22) which becomes

Ωlp(q) � alp

ω
q
2

+ ω2 − alpω
q

q
2

+ ω2

×
q

− 1
+ λα1q

α− 1

1 + λα1q
α

+ λ2lp/c  1 + λβ2q
β

 q
− 1.

(25)

So it is denoted by

F(q) �
q q

− 1
+ λα1q

α− 1
 

q
2

+ ω2 , (26)

and the inverse LT of the F(q) is

f(t) � L
− 1

F(q)  �
λα1
Γ(1 − α)


t

0

cos(ωt)

(t − ψ)
α dψ

+
sin(ωt)

ω
, 0< α< 1.

(27)

Now, we consider the function

Alp(q) �
1

1 + λα1q
α

+ λ2lp/c  1 + λβ2q
β

 q
− 1. (28)

With the help of 1/(x + a) � 
∞
k�0 (− 1)k(xk/ak+1),

(a + b)k � 
k
m�0(k!/(k − m)!m!)amb(k− m), the expression

for Alp(q) can be written as
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Alp(q) � 
∞

k�0


k

n�0

− λ2lp
c

⎛⎝ ⎞⎠

k

k!λβn
2

n!(k − n)!λα(k+1)
1

×
q
βn− k

q
α

+ λ− α
1( 

k+1.

(29)

,e inverse LT of the expression (29) is

alp(t) � 
∞

k�0


k

n�0

− λ2lp
c

⎛⎝ ⎞⎠

k

k!λβn
2

n!(k − n)!λα(k+1)
1

× Gα,βn− k,k+1 − λ− α
1 , t( ,

(30)

where Ge,f,g(h, t) is the generalized G-function as defined in
[37].

Ge,f,g(h, t) � 
∞

i�0

d
iΓ(r + i)

Γ(r)Γ(1 + i)

t
(r+i)a− b− 1

Γ[(r + i)a − b]
. (31)

,e transformed velocity can be rewritten as

Ωlp(q) � alp

ω
q
2

+ ω2 − alpωF(q)Alp(q). (32)

,e inverse LT of the (32) is

Ωlp(t) � alp sin(ωt) − alpω f(t)∗ alp(t) , (33)

where f(t)∗ alp(t) � 
t

o
f(t − q)alp(t)dq denotes the con-

volution product. Taking the inverse Fourier transform to
(33) and using the formula [38], the velocity field for sin
oscillation is

Ωs(X,Y, t) � sin(ωt) − 4 
∞

l,p�1
alpω sin αlX( sin βpY 

× f(t)∗ alp(t) .

(34)

It can be rewritten as

Ωs(X,Y, t) � sin(ωt) − 16ω 
∞

l,p�0

sin((2l + 1)πX)

(2l + 1)π

×
sin((2p + 1)πX)

(2p + 1)π

f(t)∗ a(2l+1)(2p+1)(t) .

(35)

,e dimensionless tangential stresses T1 and T2 asso-
ciated with the fractional Oldroyd-B fluid in such motions
are given by

1 + λα1D
α
t( T1s(X,Y, t) � 1 + λβ2D

β
t zXΩ(X,Y, t),

(36)

1 + λα1D
α
t( T2s(X,Y, t) � 1 + λβ2D

β
t zYΩ(X,Y, t),

(37)

where T1s � dSxz/μu0 and T2s � hSyz/μu0.
Taking the Laplace transform of (36), we can get

T1s(X,Y, q) �
1 + λβ2q

β

1 + λα1q
αzXΩs(X,Y, q). (38)

Rewrite (38) as

T1s(X,Y, q) � 1 +
λβ2
λα1

q
β

q
α

+ λ− α
1

−
q
α

q
α

+ λ− α
1

⎡⎣ ⎤⎦ × zXΩ(X,Y, q),

(39)

where

Ω(X,Y, q) �
ω

q
2

+ ω2 − 16ω 
∞

l,p�0

sin((2l + 1)πX)

(2l + l)π

×
sin((2p + 1)πY)

(2p + 1)π

F(q)A(2l+1)(2p+1)(q) .

(40)

Invoking zXΩ(X,Y, t) in (40), we will get

T1s(X,Y, q) � 1 +
λβ2
λα1

q
β

q
α

+ λ− α
1

−
q
α

q
α

+ λ− α
1

⎡⎣ ⎤⎦

× − 16ω 
∞

l,p�0
cos((2l + 1)πX)

sin((2p + 1)πY)

(2p + 1)π

× F(q)A(2l+1)(2p+1)(q) .

(41)

,e inverse LT of the above relation is

T1s(X,Y, t) � − 16 
∞

l,p�0
ω cos((2l + 1)πX)

sin((2p + 1)πY)

(2p + 1)π

× f(t)∗ a(2l+1)(2p+1)(t) −
16λβr
λα



∞

l,p�0
ω cos

· ((2l + 1)πX) ×
sin((2p + 1)πY)

(2p + 1)π

· f(t)∗g(t)∗ a(2l+1)(2p+1)(t)

+ 16 
∞

l,p�0
ω cos((2l + 1)πX)

sin((2p + 1)πY)

(2p + 1)π

× f(t)∗g(t)∗ a(2l+1)(2p+1)(t).

(42)

where g(t) � L− 1(qβ/qα + λ− α
1 ) � Rα,β(− λ− α

1 , t), h(t) � L− 1

(qα/qα + λ− α
1 ) � H(t) − (1/λα1)Rα,0(− λ− α

1 , t), and Ra,b(e, f, t)

� 
∞
p�0 ep(t − f)(p+1)a− b− 1/Γ[(p + 1)a − b].
Similarly, we can calculate T2s from (37).

3.2. Ω(0,Y, t) � Ω(1,Y, t) � Ω(X, 0, t) � Ω(X, 1, t) �

H(t)cos(ωt). Operating sin(αlX)sin(βpY) on (16), then
integrating with respect toX andY over [0, 1] × [0, 1], and

Complexity 5



together with the transformed boundary conditions (17), we
obtain

1 + λα1D
α
t( ztΩlp(t) +

λ2lp
c

1 + λβ2D
β
t Ωlp(t)

�
alpλ

2
lp

c
1 + λβ2D

β
t H(t)cos(wt).

(43)

Now, taking the LT of (43) with an appropriate trans-
form condition, we will obtain the expression for Ωlp(q) as

Ωlp(q) �
alpλ

2
lp

c

q

q
2

+ ω2
1 + λβ2q

β

q + λα1q
α+1

+ λ2lp/c  1 + λβ2q
β

 
, (44)

or

Ωlp(q) �
alpλ

2
lp

c

q

q
2

+ ω2 Flp(q). (45)

Putting Flp(q) in (45),

Ωlp(q) � alp

q

q
2

+ ω2 − alp

q

q
2

+ ω2

×
1 + λα1q

α

1 + λα1q
α+1

+ λ2lp/c  1 + λβ2q
β

 q
− 1,

(46)

where K(q) � q(1 + λα1qα)/q2 + ω2, the inverse LT of the
K(q) is

k(t) � L
− 1

K(q)  �
λα1
Γ(− α)


t

0

cos(ωt)

(t − τ)
α+1 dτ

+ cos(ωt), 0< α< 1.

(47)

Rewrite Ωlp(q),

Ωlp(q) � alp

q

q
2

+ ω2 − alpK(q)Alp(q). (48)

,e inverse LT (48) is

Ωlp(t) � alp cos(ωt) − alp k(t)∗ alp(t) , (49)

where k(t)∗ alp(t) � 
t

o
f(t − s)alp(t)ds denotes the con-

volution product of k(t) and alp(t). Taking the inverse
Fourier alteration of (49) and utilizing the formula [38], the
velocity profile is

Ωc(X,Y, t) � cos(ωt) − 4 
∞

l,p�1
alp sin αlX( sin βpY 

× k(t)∗ alp(t) .

(50)

Rewrite (50),

Ωc(X,Y, t) � cos(ωt) − 16 
∞

l,p�0

sin((2l + 1)πX)

(2l + 1)π

×
sin((2p + 1)πY)

(2p + 1)π
k(t)∗ a(2l+1)(2p+1)(t) .

(51)

Using the same technique as of the above section, we can
find the tangential stresses under the forms:

T1c(X,Y, t) � − 16 
∞

l,p�0
cos((2l + 1)πX)

sin((2p + 1)πY)

(2p + 1)π

× f(t)∗ a(2l+1)(2p+1)(t)

−
16λβ2
λα1



∞

l,p�0
cos((2l + 1)πX)

×
sin((2p + 1)πY)

(2p + 1)π
f(t)∗g(t)∗ a(2l+1)(2p+1)(t)

+ 16 

∞

l,p�0
cos((2l + 1)πX)

sin((2p + 1)πY)

(2p + 1)π

× f(t)∗ h(t)∗ a(2l+1)(2p+1)(t).

(52)

Similarly, we can calculate T2c.

4. Limiting Cases

4.1.ClassicalOldroyd-BFluid. Creating α⟶ 1 and β⟶ 1
into (35), (42), (51), and (52), we can acquire a similar
solution of the velocity distribution of both cases for
trembling flows of an ordinary Oldroyd-B fluid. ,us, the
velocity field and shear stresses decrease to

Ωs(X,Y, t) � sin(ωt) − 16ω 
∞

l,p�0

sin((2l + 1)πX)

(2l + 1)π

×
sin((2p + 1)πY)

(2p + 1)π
f(t)∗ a(2l+1)(2p+1)(t) ,

Ωc(X,Y, t) � cos(ωt) − 16 
∞

l,p�0

sin((2l + 1)πX)

(2l + 1)π
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×
sin (2p + 1)πY( 

(2p + 1)π
k(t)∗ a(2l+1)(2p+1)(t) ,

T1s(X,Y, t) � − 16 
∞

l,p�0
ω cos((2l + 1)πX) ×

sin((2p + 1)πY)

(2p + 1)π
f(t)∗ a(2l+1)(2p+1)(t)

−
16λr

λ


∞

l,p�0
ω cos((2l + 1)πX) ×

sin((2p + 1)πY)

(2p + 1)π
f(t)∗ h(t)∗ a(2l+1)(2p+1)(t)

+ 16 
∞

l,p�0
ω cos((2l + 1)πX)

sin((2p + 1)πY)

(2p + 1)π
× f(t)∗ h(t)∗ a(2l+1)(2p+1)(t),

T1c(X,Y, t) � − 16 

∞

l,p�0
cos((2l + 1)πX) ×

sin((2p + 1)πY)

(2p + 1)π
f(t)∗ a(2l+1)(2p+1)(t)

−
16λr

λ


∞

l,p�0
cos((2l + 1)πX) ×

sin((2p + 1)πY)

(2p + 1)π
f(t)∗ h(t)∗ a(2l+1)(2p+1)(t)

+ 16 
∞

l,p�0
cos((2l + 1)πX)

sin((2p + 1)πY)

(2p + 1)π
× f(t)∗ h(t)∗ a(2l+1)(2p+1)(t), (53)

where alp(t) � 
∞
k�0 

k
n�0 (− λ2lp/c)k (k!(λn

2)/n!(k − n)!

λ(k+1)
1 )G1,l− 1,k+1(− λ− 1

1 , t), f(t) � λ1 cos(ωt) + (sin(ωt)/ω),
k(t) � λ1 cos(ωt) + λ1(H(t) − ω sin(ωt)), α � 1, and
h(t) � L− 1(q/q + λ− 1

1 ) � H(t) − (1/λ1)R1,0(− λ− 1
1 , t).

4.2. Fractional Maxwell Fluid. Making λ2⟶ 0 into (35),
(42), (51), and (52), then we can acquire both cases of
identical solution of velocity dispersion and shear stress for
generalized Maxwell fluid’s flows [38]. ,us, the velocity
field and shear stresses decrease to

Ωs(X,Y, t) � sin(ωt) − 16ω 

∞

l,p�0

sin((2l + 1)πX)

(2l + 1)π
×
sin((2p + 1)πY)

(2p + 1)π
f(t)∗ a(2l+1)(2p+1)(t) ,

Ωc(X,Y, t) � cos(ωt) − 16 
∞

l,p�0

sin((2l + 1)πX)

(2l + 1)π
×
sin((2p + 1)πY)

(2p + 1)π
k(t)∗ a(2l+1)(2p+1)(t) ,

T1s(X,X, t) � − 16 
∞

l,p�0
ω cos((2m + 1)πX) ×

sin((2p + 1)πY)

(2p + 1)π
f(t)∗ a(2l+1)(2p+1)(t)

+ 16 
∞

l,p�0
ω cos((2l + 1)πX)

sin((2p + 1)πY)

(2p + 1)π
f(t)∗ h(t)∗ a(2l+1)(2p+1)(t),

T1c(X,Y, t) � − 16 

∞

l,p�0
cos((2l + 1)πX) ×

sin((2p + 1)πY)

(2p + 1)π
f(t)∗ a(2l+1)(2p+1)(t)

+ 16 
∞

l,p�0
cos((2l + 1)πX)

sin((2p + 1)πY)

(2p + 1)π
f(t)∗ h(t)∗ a(2l+1)(2p+1)(t),

(54)

where

alp(t) � 
∞

k�0

− λ2lp
c

⎛⎝ ⎞⎠

k

1
λα(k+1)
1

Gα,− 1,k+1 − λ− α
1 , t( . (55)

4.3. Classical Maxwell Fluid. Making λ2⟶ 0 and α⟶ 1
into (35), (42), (51), and (52), we can acquire a similar
solution of velocity distribution and shear stresses of both
the cases for trembling flows of classical Maxwell fluid [23].
,us, the velocity field and shear stresses decrease to
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Ωs(X,Y, t) � sin(ωt) − 16ω 

∞

l,p�0

sin((2l + 1)πX)

(2l + 1)π
×
sin((2p + 1)πY)

(2p + 1)π
f(t)∗ a(2l+1)(2p+1)(t) ,

Ωc(X,Y, t) � cos(ωt) − 16 
∞

l,p�0

sin((2l + 1)πX)

(2l + 1)π
×
sin((2p + 1)πY)

(2p + 1)π
k(t)∗ a(2l+1)(2p+1)(t) ,

T1s(X,Y, t) � − 16 
∞

l,p�0
ω cos((2l + 1)πX) ×

sin((2p + 1)πY)

(2p + 1)π
f(t)∗ a(2l+1)(2p+1)(t)
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Figure 2: ,e variation of α for both the oscillations with ω � π/4, λ � 0.8, λr � 0.5, β � 0.8, c � 2, X � 0.45, and Y � 0.1.
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Figure 3: ,e variation of β for both the oscillations with ω � π/4, λ1 � 0.8, λ2 � 0.5, α � 0.8, c � 2, X � 0.45, and Y � 0.1.
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+ 16 
∞

l,p�0
ω cos((2l + 1)πX)

sin((2p + 1)πY)

(2p + 1)π
× f(t)∗ h(t)∗ a(2l+1)(2p+1)(t),

T1c(X,Y, t) � − 16 
∞

l,p�0
cos((2l + 1)πX) ×

sin((2p + 1)πY)

(2p + 1)π
f(t)∗ a(2l+1)(2p+1)(t)

+ 16 
∞

l,p�0
cos((2l + 1)πX)

sin((2p + 1)πY)

(2p + 1)π
× f(t)∗ h(t)∗ a(2l+1)(2p+1)(t), (56)
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Figure 4: ,e variation of λ1 for both the oscillations with ω � π/4, α � 0.5, λ2 � 0.07, β � 0.9, c � 2, X � 0.25, and Y � 0.1.
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Figure 5: ,e variation of λ2 for both the oscillations with ω � π/4, λ1 � 5, α � 0.5, β � 0.9, c � 2, X � 0.25, and Y � 0.1.
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where

alp(t) � 
∞

k�0

− λ2lp
c

⎛⎝ ⎞⎠

k

1
λ(k+1)
1

G1,− 1,k+1 − λ− 1
1 , t . (57)

5. Numerical Results

In this section, we will give graphically results for the velocity
and shear stresses profiles for the various parameters. Also,
we will show a comparison between the analytical and
numerical results in a tabular form. ,e numerical results
were obtained by Stehfest’s and Tzou’s numerical inverse
Laplace algorithms. ,e access of the various physical pa-
rameters for time is graphically presented in Figures 2 to 13.

In Figure 2, the researchers strategized the absolute
values of the velocity field versus time. ,e given diagrams
are strategized for four values of the fractional coefficient α.
,e velocity of the fluid decreases (absolute values) is ob-
served as α⟶ 1 for the back and forthmoment of both sine
and cosine vibrations. In Figure 3, the researchers drew the
consequences of the second fractional parameter β on the
velocity field versus time. It was expected an opposite be-
havior concerning the first fractional parameter α and seen it
comes true in the plot of Figure 3. In Figures 4 and 5, the
effect of the relaxation parameter and the delay time on fluid
motion is seen. From this figure, it is observed that its
behavior is identical to that of a fractional parameter α, and
when the fractional derivative parameter extends to 1 for the
back and forth moment of both sine and cosine, the velocity
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Figure 6: ,e variation of ω for both the oscillations with c � 2, α � 0.5, λ1 � 0.8, β � 0.9, λ2 � 0.5, X � 0.25, and Y � 0.1.
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Figure 7: Velocity profiles of fractional Oldroyd-B fluid, classical Oldroyd-B fluid, fractional Maxwell fluid, and classical Maxwell fluid for
both cos and sin.
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of the fluid reduces (nonabsolute values). Figure 6 exhibits
the fluid factor w on the fluids flow. It shows the same
behavior like Figures 2, 4, and 5, i.e., it describes that the fluid
flow decreases with the enlargement of such parameter. ,e
comparison of dimensionless velocities for fractional Old-
royd-B, ordinary Oldroyd-B, fractional Maxwell fluid, and
ordinary Maxwell fluid is presented in Figure 7. It is clear
that fractional Oldroyd-B fluid is the hastiest and fractional
Maxwell fluid is the slowest in absolute values.

In Figure 8, the dimensionless shear stress versus t drew
for various values of fractional coefficient α. ,e given di-
agrams are strategized for three values of the α. ,e stress on
the fluid decreases for half interval of time, and the next half,
it increases for sine oscillation because the standards of

fractional parameter α increase. Figure 9 is sketched to show
the dimensionless shear stress versus t directed for various
values of fractional coefficient β. It can be observed that the
effect of parameter β on the fluid motion has an opposite
behavior compared to parameter α. Figures 10 and 11 are
showing the effects of relaxation and retardation time on
fluid motion. ,ey have the opposite effect on stress as
expected due to the relation between the return of a per-
turbed system into equilibrium and delayed response to an
applied force or stress. Figure 12 gives the impact of fre-
quency factor w on the shear stress. From Figure 12, it is
clearly sighted that shear stress of the fluid goes to decay due
to the increase of w. ,e comparison of dimensionless shear
stresses for fractional Oldroyd-B, ordinary Oldroyd-B,
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Figure 8: ,e variation of α for both the oscillations with ω � π/4, λ1 � 0.8, λ2 � 0.5, β � 0.8, c � 2, X � 0.55, and Y � 0.15.
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Figure 9: ,e variation of β for both the oscillations with ω � π/4, λ1 � 0.08, λ2 � 0.05, α � 0.8, c � 2, X � 0.55, and Y � 0.15.
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fractional Maxwell fluid, and ordinary Maxwell fluid is
presented in Figure 13. From Figure 13, we noticed that the
fractional parameter shows the increasing behavior for both
the Oldroyd-B and Maxwell fluid as compared to the
classical Oldroyd-B and Maxwell fluid.

It is clear from Tables 2 to 5 that the analytical solutions
are nearly equal to the numerical results. ,e Stehfest’s
algorithm shows quite good agreement with our analytical
solutions as compared to the numerical results obtained by
Tzou’s algorithm.
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Figure 10: ,e variation of λ1 for both the oscillations with ω � π/4, β � 0.7, λ2 � 0.1, α � 0.2, c � 2, X � 0.55, and Y � 0.15.
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Figure 11: ,e variation of λ2 for both the oscillations with ω � π/4, β � 0.7, λ1 � 2, α � 0.5, c � 2, X � 0.55, and Y � 0.15.
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Figure 12: ,e variation of ω for both the oscillations with λ2 � 0.1, β � 0.7, λ1 � 0.3, α � 0.5, c � 2, X � 0.55, and Y � 0.15.
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Figure 13: Tangential stresses of fractional Oldroyd-B fluid, classical Oldroyd-B fluid, fractional Maxwell fluid, and classical Maxwell fluid
for both cos and sin.

Table 2: Comparison of analytical and numerical solution for velocity profile of sin oscillation.

t λ1 λ2 α β Velocity (analytical) Velocity (Stehfest’s) Velocity (Tzou’s)

0.3 0.19679 0.19679 0.19698
0.6 0.49046 0.49044 0.49108
0.9 0.79985 0.79982 0.8005

0.1 0.92838 0.92846 0.92026
1 0.90133 0.90131 0.90187
5 0.72345 0.72345 0.72371

0.1 2.15514 2.15642 2.15508
0.3 1.19366 1.19364 1.19391
0.5 0.91705 0.91709 0.91542

0.1 0.82248 0.82249 0.81367
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Table 2: Continued.

t λ1 λ2 α β Velocity (analytical) Velocity (Stehfest’s) Velocity (Tzou’s)

0.5 0.83191 0.83194 0.82416
0.9 0.84186 0.84194 0.83695

0.2 0.7179 0.71795 0.71603
0.5 0.72393 0.72382 0.72608
0.7 0.72725 0.72696 0.73064

Table 3: Comparison of analytical and numerical solution for velocity profile of cos oscillation.

t λ1 λ2 α β Velocity (analytical) Velocity (Stehfest’s) Velocity (Tzou’s)

0.3 1.10340 1.09977 1.05517
0.6 1.16489 1.16141 1.11978
0.9 1.11031 1.10694 1.06528

0.1 1.11259 1.10913 1.07161
1 1.1023 1.09865 1.05327
5 1.09359 1.08982 1.03876

0.1 1.77775 1.77494 1.68597
0.3 1.26878 1.26496 1.19361
0.5 1.09359 1.08982 1.03876

0.1 1.1023 1.09865 1.05327
0.5 1.1172 1.11542 0.92388
0.9 1.2042 1.20333 1.23378

0.2 1.03804 1.04065 0.98972
0.5 1.08693 1.0851 0.88743
0.7 1.10415 1.09827 0.95289

Table 4: Comparison of analytical and numerical solution for shear stresses of sin oscillation.

t λ1 λ2 α β Shear stress (analytical) Shear stress (Stehfest’s) Shear stress (Tzou’s)

0.3 0.23055 0.23055 0.22853
0.6 0.49964 0.49965 0.49531
0.9 0.76883 0.76883 0.76204

0.1 0.3223 0.3223 0.31942
1 0.31801 0.31802 0.31525
5 0.31444 0.31445 0.31178

0.1 0.45165 0.45166 0.45033
0.3 0.35301 0.35301 0.35062
0.5 0.3194 0.3194 0.3166

0.1 0.29581 0.29582 0.2927
0.5 0.29495 0.294971 0.29309
0.9 0.29711 0.29709 0.29765

0.2 0.28779 0.28777 0.28832
0.5 0.29213 0.29214 0.29181
0.7 0.29412 0.29414 0.2924

Table 5: Comparison of analytical and numerical solution for shear stresses of cos oscillation.

t λ1 λ2 α β Shear stress (analytical) Shear stress (Stehfest’s) Shear stress (Tzou’s)

0.3 0.99845 0.9926 0.76837
0.6 0.96564 0.95701 0.73931
0.9 0.85766 0.84791 0.6461

0.1 0.99529 0.98762 0.77642
1 0.97397 0.97164 0.7738
5 0.9397 0.94018 0.81115

0.1 1.45506 1.45601 1.40114
0.3 1.17962 1.17937 1.03098
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6. Conclusion

,is communication aims to provide exact solutions for the
fractionalizedOldroyd-B fluid in a fluctuating quadrilateral duct
by applying the discrete Laplace and double finite Fourier
transforms. Also, a comparison is shown in tables for the
analytical and numerical results.,e corresponding results were
not studied before and have important remarks concerning the
prevailing equations for the nontrivial shear stress.,ese results
fulfill all the executed initial and boundary conditions and were
easily converted into parallel solutions.,e parallel solutions for
fractionalMaxwell fluid, classical Oldroyd-B, andMaxwell fluid
were regained as regulating case of the conventional solution.
,e following conclusions were drawn:

(i) Both sine and cosine oscillations of the velocity field
decrease with the increase of fractional parameter α
and vice versa for β

(ii) An increase in the values of λ1 and λ2 decreases the
velocity profile of both sine and cosine oscillations

(iii) Dimensionless velocities comparison figured out
fractional Oldroyd-B fluid is swiftest than fractional
Maxwell fluid

(iv) Dimensionless shear stress changes behavior after
half interval, and the opposite effect was seen be-
tween α and β fractional parameters

(v) Also, the analytical solutions show good agreement
with the numerical results

In future, we will study, what will be the effects on
fractional Oldroyd-B fluid via a fluctuating duct by adding
the magnetic and porous factors.
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