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)iswork presents a discussion about the application of theKolmogorov; López-Ruiz,Mancini, andCalbet (LMC); and Shiner, Davison,
and Landsberg (SDL) complexity measures to a common situation in physics described by the Maxwell–Boltzmann distribution. )e
first idea about complexity measure started in computer science and was proposed by Kolmogorov, calculated similarly to the in-
formational entropy. Kolmogorov measure when applied to natural phenomena, presents higher values associated with disorder and
lower to order. However, it is considered that high complexity must be associated to intermediate states between order and disorder.
Consequently, LMC and SDL measures were defined and used in attempts to model natural phenomena but with the inconvenience of
being defined for discrete probability distributions defined over finite intervals. Here, adapting the definitions to a continuous variable,
the three measures are applied to the known Maxwell–Boltzmann distribution describing thermal neutron velocity in a power reactor,
allowing extension of complexity measures to a continuous physical situation and giving possible discussions about the phenomenon.

1. Introduction

)e ordinary sense of complexity means complication, i.e.,
difficulty to understand or to deal with a system or device.
)inking in this way, Kolmogorov presented the concept of
computational complexity [1], related to memory capacities
and processing algorithms. However, new ideas started to be
associated with complexity, statistical distributions, and
information, mainly in life sciences [2–4].

Considering that natural systems are generally open and
present emergence of global behaviors not decomposable
into simpler parts [5–7], it seems that complexity is maxi-
mized for systems in the halfway of the equilibrium (dis-
order) and disequilibrium (order) [8]. Based on this, a
seminal paper [9] proposed the LMC (López-Ruiz, Mancini,
and Calbet) complexity measure for statistic distributions
[10], with informational entropy [11] evaluating equilib-
rium, and deviation from the uniform distribution mea-
suring disequilibrium.

Developing applications of thermodynamic entropy to
measure disorder and complexity, Landsberg and Shiner
studied how to contextualize this idea for the case of a

nonequilibrium Fermi gas [12]. )en, Shiner et al. pro-
posed a simplified version related to the LMC measure,
replacing the disequilibrium term by the complement of
the equilibrium term. )is measure is called SDL (Shiner
et al.) [13] and presents conclusions similar to that obtained
by using LMC, for the majority of usual statistical distri-
butions [14].

It was pointed out by Crutchfield et al. that an equi-
librium system can be structurally complex [15], and this fact
is not considered in LMC and SDLmeasures.)e suggestion
to solve this problem was presented in [16], considering that
it is possible to introduce weights for order and disorder,
according to the specific problem to be analyzed.

However, the main criticism comes from the experi-
mentalists that question the usefulness of the approach in
providing new insights for studying and model real systems
or phenomena. Concerning Kolmogorov measure, the an-
swer is that it gives an idea on the computing power and
storage capacity needed to process the models related to the
original natural problem. Besides, as Kolmogorov measures
are based on system disorder, biological versatility can be
estimated.
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Another important point is that these three measures are
defined considering discrete probability distributions with a
finite domain, limiting their application. Some efforts to use
them in biology and economy contexts [17, 18], providing
ways to discretized data and obtaining complexity measures,
are recently presented. Here, the idea is to apply the three
measures to a well-known statistical physics problem and the
continuous velocity distribution related to nuclear reactions
to see if the discretizing process and complexity calculations
produce useful interpretation about the phenomenon.

In the next section, the theoretical foundations are
presented: Maxwell–Boltzmann velocity distribution of the
thermal neutrons in a nuclear reactor and the three men-
tioned complexity measures. )en, a section of results with
calculation of the measures for the known

Maxwel–Boltzmann distribution, in function of the tem-
perature, is presented. )e analysis of these results is per-
formed in the conclusion section.

2. Theoretical Foundations

2.1. Maxwell–Boltzmann Distribution. In a nuclear reactor,
the fuel is composed of unstable atoms. )ey are used to
generate a controlled nuclear reaction, in which the useful
products are created. In a power reactor, part of the thermal
energy generated in the nuclear reaction is converted into
electrical energy, while high-energy neutrons are generated.
)ese neutrons pass through a moderator, which reduces
their kinetic energy [19].
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Figure 1: Maxwell–Boltzmann distribution for T � 273K.
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Figure 2: Maxwell–Boltzmann distributions for T ∈ [20.41K, 1000K].
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)e reason for that is to enlarge the cross section for the
fission reaction. When neutrons loose enough energy to
achieve thermodynamic equilibrium with the media where
they are traveling in, they are called thermal neutrons.
Because many nuclear reactors use a fluid as water to either
refrigerate their nuclei or mediate neutrons generated in the
reactions, the temperature of this media is of critical op-
erational importance to determine the amount of heat that
can be retrieved from the nucleus [20].

Besides, the thermal neutron velocity distribution is
closely related to the media temperature obeying the
Maxwell–Boltzmann law [19, 20], being an important sta-
tistical physics result. )is distribution follows the equation

n(v)dv � 4πn
m

2πKBT
􏼠 􏼡

3/2
⎡⎣ ⎤⎦v

2
e

− mv2/2KBT( )dv, (1)

where n(v)dv is the number of neutrons with velocities
between v and v + dv; n is the number of neutrons in a
unitary volume; m is the neutron mass (1.675 × 10− 27 kg);
KB is the Boltzmann constant (1.380649 × 10− 23 J/K); and T
is the media temperature. Figure 1 shows the Max-
well–Boltzmann distribution for T � 273K, giving the
percentage of neutrons in each state, considering n � 1.

2.2. Complexity Measures. Here, the three complexity
measures are briefly discussed and more detailed descrip-
tions can be found in references [1, 9, 13]. )e basic ideas of
Kolmogorov, LMC, and SDL measures are based on the
calculation of informational entropy.

For a discrete probability distribution composed of n

possible states, each one with probability pi, i � 1, 2, . . . , n,
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Figure 3: )ermal neutron Kolmogorov complexity. (a) Kolmogorov absolute complexity. (b) Kolmogorov normalized complexity.
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the informational entropy (E) associated with the distri-
bution is given by [11]

E � − 􏽘
n

i�1
pilog2pi, (2)

having (bit/state) as its unit.

2.2.1. Kolmogorov Complexity Measure. )efirst ideas about
complexity measures were proposed by Kolmogorov, in the
context of computational algorithms [1], whose complexity
was related to the number of operations required by a
Universal Turing Machine (UTM) to execute the algorithm.
)e main idea is that the minimum number of bits to write a

code to run in a computer emulates a random process and is
called Kolmogorov–Chaitin–Solomonoff complexity [21].

As the length of a code of a program can be interpreted as
a string resulting from a free-compression algorithm, it
makes the Kolmogorov–Chaitin–Solomonoff complexity
closely related to the concept of information measure [1],
presenting very similar results for the most of the algorithms
[22, 23].

Considering this fact, the absolute Kolmogorov com-
plexity is defined here as equal to the informational entropy
E, whose maximum value, Emax � log2 n occurs in the
equiprobable case. As equiprobability of states corresponds
to a completely disordered system, i.e., thermodynamic
equilibrium, a normalized Kolmogorov complexity measure,
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Figure 4: )ermal neutron complexities. (a) LMC complexity measure. (b) SDL complexity measure.
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Δ ∈ [0, 1] can be defined as the system relative disorder,
given by

Δ �
E

Emax
. (3)

2.2.2. LMC Measure. Defining complexity measure in
Kolmogorov’s way gives an idea about necessary compu-
tation resources to describe a system or to perform a task and
was useful to define versatility in biological phenomena [24].
Despite its utility, Kolmogorov measure was not considered
adequate to measure complexity, because it gives only an
idea about the state of disorder.

Considering that complex is a balance between order and
disorder [8], López-Ruiz et al. proposed a measure taking
order and disorder into account. )e disorder was measured
by the normalized Kolmogorov measure Δ, and the order
(D) was measured by the quadratic deviation of the con-
sidered probability distribution from the uniform one; that
is,

D �
􏽐

n
i�1 pi − (1/n)( 􏼁

2

n
. (4)

Consequently, the LMC (López-Ruiz et al.) complexity
measure is defined by [9]

LMC � Δ × D. (5)

2.2.3. SDL Measure. Considering the same idea of the LMC
measure, i.e., taking order and disorder into account, Shiner,
Davison, and Landsberg simplified the calculation consid-
ering that order can be measured just as the complement of
disorder and, consequently, proposed de SDL (Shiner et al.)
measure [13]:

SDL � Δ ×(1 − Δ). (6)

It can be noticed that the measures of order (disequi-
librium) are different for the two measures but defined in
simple operational ways. For the sake of simplicity, im-
provements of these definitions considering Kullback–Lie-
bler measure [25] are not considered.

3. Results

To apply the complexity measures to the Max-
well–Boltzmann statistical distribution and to show how
they depend on the temperature (T), 49 distributions for
T ∈ [20.41K, 1000K] were generated as shown in Figure 2.

)en, for each temperature, the distribution was dis-
cretized taking n � 1000 uniformly sequential intervals Δv �

0.1m/s between 10m/s and 10, 000m/s and associating the
probability given by p · Δv with each interval. )en, a dis-
crete probability distribution for v was associated with each
temperature.

Taking these distributions, informational entropies (E)
can be calculated, with the results about how E, representing
Kolmogorov absolute complexity, in (bit/state), depends on

T shown in Figure 3(a). Based on the data obtained to build
Figures 2 and 3(a), normalized Kolmogorov complexity was
calculated, with the results about how Δ depends on tem-
perature T shown in Figure 3(b).

As Figure 3 shows, Kolmogorov complexity of Max-
well–Boltzmann distribution increases with temperature,
indicating that the thermal neutron set goes to a thermo-
dynamic equilibrium.

To analyze how the thermal neutron system generates a
complex system, considering the order-disorder balance,
LMC and SDL complexity measures were calculated, and
their dependence with temperature is shown in Figure 4.

4. Conclusions

Using complexity measures to the problem related to
Maxwell–Boltzmann distributions gives some hints about
the behavior of the thermal neutron set in a nuclear reactor:

(i) Kolmogorov measures have their values softly
varying for a wide range of temperatures. However,
above 600K, the measures remain practically
constants.

(ii) SDL measure indicates that complexity decreases
with temperature, tending to 0.15, indicating that
disorder surpasses order as temperature increases.

(iii) LMC measure results are similar to SDL, but in a
smaller scale of values.

(iv) According to Figures 3 and 4, it be conjectured that
limT⟶∞Δ � 1 and limT⟶∞LMC � limT⟶∞
SDL � 0. )ese values could be numerically reached
increasing the number of discretization points.
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[3] M. Anand and L. Orlóci, “Complexity in plant communities:
the notion and quantification,” Journal of 8eoretical Biology,
vol. 179, no. 2, pp. 179–186, 1996.

[4] J. R. C. Piqueira, L. H. A. Monteiro, T. M. C. de Magalhães,
R. T. Ramos, R. B. Sassi, and E. G. Cruz, “Zipf’s law organizes a

Complexity 5



psychiatric ward,” Journal of 8eoretical Biology, vol. 198,
no. 3, pp. 439–443, 1999.

[5] L. Von, Bertalanffy—General System 8eory: Foundations,
Development, Applications- George Braziller Inc., New York,
NY, USA, 1968.

[6] E. Morin, On Complexity, Hampton Press, New York, NY,
USA, 2008.

[7] G. Nicolis and I. Prigogine, Self-Organization in Nonequi-
librium Systems, JohnWiley & Sons, Hoboken, NJ, USA, 1977.

[8] K. Kaneko and I. Tsuda, Complex Systems: Chaos and Beyond,
Springer Verlag, Berlin, Germany, 2001.
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