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In the article titled “Chaos in a Financial System with
Fractional Order and Its Control via Sliding Mode” [1], the
authors identified errors in the code related to the minimum
effective dimension of the derivation order q3. 'e authors
have corrected this error, which has resulted in a number of
changes to the numerical results and to Figures 4 and 7. 'e
authors confirm that this change does not affect the con-
clusions of the article, and with the agreement of the edi-
torial board, the corrected article is as follows.

Abstract

In this paper, the dynamical behaviors and chaos control of a
fractional-order financial system are discussed. 'e lowest
fractional order found from which the system generates
chaos is 2.49 for the commensurate order case and 2.57 for
the incommensurate order case. Also, the period-doubling
route to chaos was found in this system. 'e results of this
study were validated by the existence of a positive Lyapunov
exponent. Besides, in order to control chaos in this frac-
tional-order financial system with uncertain dynamics, a
sliding mode controller is derived. 'e proposed controller
stabilizes the commensurate and incommensurate frac-
tional-order systems. Numerical simulations are carried out
to verify the analytical results.

1. Introduction

Investigating chaos in dynamical systems is one of the most
interesting topics which have been carried out extensively in
different scientific fields such as medicine [1], biology [2],
mathematics [3], and many others. In the literature, several
dynamical systems presenting chaotic behaviors have been
proposed such as the Lorenz system [4], the Chen system [5],
the Lü system [6], and the Newton–Leipnik system [7].
During the last decades, many researchers have taken a great
interest in the subject of chaotic systems’ control. In [8], the
authors used the sliding mode controller to eliminate chaos
in a new uncertain chaotic dynamical system (Liu system).
In [9], a robust adaptive sliding mode controller is used to
remove chaos in a novel class of chaotic systems. Chaos
control in the Lorenz, Chen, and Lü systems using the
backstepping technique is performed in [10]. Chaos control
in the Newton–Leipnik system is carried out using linear
feedback controllers in [11].

Fractional calculus involving fractional-order deriva-
tives, i.e., derivatives of noninteger order, has a history of
over 300 years [12]. During those years, this theory was
considered a purely mathematical concept. Recently, frac-
tional-order derivatives have been widely applied to several
systems in many areas of research to better understand these
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systems [13–19]. Indeed, fractional-order derivatives, pos-
sessing memory, can describe more accurately different
nonlinear phenomena than integer-order derivatives [20,
21]. Very recently, some interesting developments and re-
sults in the theory and applications of fractional calculus
have been obtained in the literature. For example, see [22], in
which the authors used Lie symmetry analysis to obtain an
exact solution of the conformable heat equation. In [23],
useful properties of the Lie group method with the invari-
ance subspace method are combined to obtain a large family
of exact solutions for the fractional Black–Scholes equation.
Also, in [24], the necessary optimality conditions of the
Euler–Lagrange type of variational problems in which
variational functional depends on Atangana–Baleanu de-
rivative are proved. Finally, the Hydon method to determine
discrete symmetries for a differential equation is employed
to construct discrete symmetries for a family of ordinary,
partial, and fractional differential equations in [25]. In
fractional-order systems, it was found that the systems with
derivation orders q1, q2, and q3 generate chaotic behaviors
when q � q1 + q2 + q3 < 3 [13–19]; in other words, chaos
continues to exist in these systems for derivation orders less
than 3.

Since the discovery of chaos by Strotz et al. [26] in an
economical model, various financial and economical models
have been proposed in the literature to better understand
these complex dynamics of these systems. Among others, we
have the forced van der Pol model [27], the IS-LM model
(Investment Saving-Liquidity Money) [28], the new hyper-
chaotic financemodel [29], andmany others [30–33]. In 2001,
Ma and Chen [34] proposed a very interesting model to
represent the dynamics of financial systems. 'e analysis of
this model revealed interesting dynamics and also an extreme
sensitivity to the initial conditions of the variables and pa-
rameters of the system. Financial variables such as the ex-
change rate, gross domestic product, interest rate, and
production, to name a few, have a long memory [35, 36], i.e.,
all future fluctuations of these financial variables are influ-
enced by past and present fluctuations. 'us, fractional-order
derivatives, possessing memory effect, can describe more
accurately the dynamics of financial systems than integer-
order derivatives. In 2008, Chen [14] studied the general-
ization of Ma and Chen system [34], i.e., considered this
system with fractional order. Two routes to chaos were found
in this fractional-order system, namely, the route to chaos via
intermittency and period-doubling. 'e lowest derivation
order found for which the system generates chaotic behavior
was 2.55 in the commensurate fractional-order case and 2.35
in the incommensurate fractional-order case.

Also, to better understand the dynamics of financial
systems, a new model was presented by Liao et al. [37] in
2020. Compared to the model proposed by Ma and Chen
[34], this newmodel takes into account the fact that the price
index is affected by investment demand. 'e study of this
model was carried out numerically by the authors. It was

found that the interaction between three factors in this fi-
nancial system results in a complex behavior of the system.
Complex dynamics behaviors such as period-doubling and
chaos were found in this system [37]. Chaotic behavior is
undesirable in financial systems because it makes predictions
in finance and economics impossible and, therefore, con-
stitutes a risk for investments. 'us, its control in the
presence of uncertainties related to the parameters of the
system and external disturbances turned out to be necessary.

Chaos control in financial systems has been widely
studied in the literature. Several techniques have been
designed for the control of financial chaotic systems [38, 39].
One of these techniques is the sliding mode control. Indeed,
as a mathematical model cannot represent a physical situ-
ation perfectly, it is necessary to consider the uncertainties
linked to the values of the system parameters and also any
external disturbances to which a model may be subjected.
'erefore, it is better to design a robust controller, i.e.,
insensitive to uncertainties and external disturbances. 'e
sliding mode control is a powerful technique to robustly
control uncertain dynamical systems subject to uncertainties
and external disturbances [40–42]. 'e design of the sliding
mode controller has been widely discussed in the literature
[43–46]. 'ese different criteria make the sliding mode
control the right technique for controlling financial systems
with uncertain dynamics. For example, in [38], a fractional-
order sliding mode controller was designed to eliminate the
chaotic behavior in an economical system in the presence of
model uncertainties and external disturbances.

Motivated by the above discussions, in this paper, chaos
in the financial system presented by Liao et al. [37] with
fractional order and robust control of this chaotic behavior
are investigated. 'e study of chaos in this system with
fractional order is carried out for the commensurate and the
incommensurate fractional order to find the minimum ef-
fective dimension, i.e., the lowest sum of derivation orders
from which chaos arises in the system using analytical
methods and numerical simulations. Finally, a sliding mode
control law is designed to control the chaos in this fractional-
order financial system with or without uncertainties and
external disturbances. Numerical simulations are carried out
to show that the controller can suppress chaos in the system
and also can stabilize and maintain the system states on the
sliding surface.

'e remaining part of this paper is structured as follows:
In Section 2, some definitions and analytical conditions for
the existence of chaos in fractional-order systems are given.
'e fractional-order financial system is presented in Section
3. 'e dynamics study of this fractional-order financial
system is carried out in Section 4. In Section 5, a simple but
robust fractional-order sliding mode controller is designed
to globally and asymptotically stabilize the system. Nu-
merical simulations are performed in Section 6 to verify the
analytical results obtained.'is work ends with a conclusion
in Section 7.
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2. Definitions and Lemma

Fractional calculus is a generalization of ordinary calculus.
Some definitions of fractional derivatives are given in [12].
'emost commonly used definitions in the literature are the
Grunwald–Letnikov, the Riemann–Liouville, and the
Caputo definitions [12].

During this work, we will only use the Caputo fractional
derivative, because unlike the Riemann–Liouville definition
of fractional derivative which involves initial conditions of
fractional order, this fractional derivative involves initial
conditions which take the same form as the case of the
integer order, which has a physical interpretation. 'e
Caputo (C) fractional derivative of order q is given by

C
a D

q
t f(t) �

1
Γ(n − q)


t

a
(t − τ)

n− q− 1
f

(n)
(τ)dτ,

n − 1< q< n,

(1)

with a and twhich are numbers representing the limits of the
operator c

aD
q
t . 'e symbol Γ(.) is the gamma function.

Definition 1 (see [47–49]). A saddle equilibrium point is a
fixed point at which the equivalent linearized model has at
least one eigenvalue in the stable region (eigenvalue with the
negative real part) and one in the unstable region (eigenvalue
with the positive real part).

Definition 2 (see [47–50]). In a three-dimensional (3D)
dynamical system, a saddle fixed point is called a saddle
equilibrium point of index 1 if one of its eigenvalues is
unstable (positive) and the other two are stable (negative).
However, a saddle fixed point is called saddle equilibrium
point of index 2 if two of its eigenvalues are unstable and the
other is stable.

To analyze the stability of fixed points in a fractional-
order system, the following lemma can be used [47, 48, 51].

Lemma 1 (see [47]). For an incommensurate fractional-
order system, i.e., a fractional-order system in which deri-
vation orders are not the same, an equilibrium point E∗ of the
system is asymptotically stable if the condition

|arg(λ)|>
π
2M

, (2)

is satisfied for all roots λ of the following equation:

det(Δ(λ)) � det diag λMq1 , λMq2 , · · · , λMqn   − J  � 0,

(3)

in which J is the Jacobianmatrix of the system evaluated at the
equilibrium point E∗ and M represents the least common

multiple (LCM) of the denominators ui
′s of qi

′s, where
qi � vi/ui, vi and ui ∈ Z+, for i � 1, 2, . . . , n.

Condition (2) can be rewritten as follows:
π
2M

− min
i

arg λi( 


 < 0. (4)

Hence, an equilibrium point E∗ will be asymptotically
stable if its roots λi satisfy condition (4).

'e term π/2M − min
i

|arg(λi)|  is called the instability
measure for equilibrium points in fractional-order systems
(IMFOS). 'is measure is a necessary [47] but not a suffi-
cient condition for the presence of chaos in a fractional-
order system [52–54].

3. The Chaotic Financial System with
Fractional Order

Recently, as reported in the literature [37], the financial
model takes into account the interaction between the in-
terest rate x, the investment demand y, and the price index
z. 'e system is described as follows:

dx

dt
� dz +(y − e)x,

dy

dt
� − ky

2
− lx

2
+ m,

dz

dt
� − cz − δx − ρy,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

in which the parameters e, k, c, m, l, ρ, and δ are constants.
'e authors numerically investigated the chaotic behaviors
in this system. In [37], system (5) exhibits chaotic behavior
when e � 0.3, k � 0.02, c � 1, m � 1, l � 0.1, ρ � 0.05, d �

1.2, and δ � 1 and initial conditions (1.2, 1.5, 1.6) are
considered (see Figure 1).

In this paper, we consider system (5) with fractional
order. Standard derivatives are replaced by fractional-order
derivatives as follows:

D
q1x � dz +(y − e)x,

D
q2y � − ky

2
− lx

2
+ m,

D
q3z � − cz − δx − ρy,

⎧⎪⎪⎨

⎪⎪⎩
(6)

where qi ∈ (0, 1) and Dqi � dqi /dtqi (i � 1, 2, 3). If
q1 � q2 � q3 � q, then system (6) is called a commensurate
fractional-order system; otherwise, it is called an incom-
mensurate order system [47].

'e Jacobian matrix of system (6) is evaluated at one of
its equilibrium points E∗ � (x∗, y∗, z∗) and is given by
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J �

y
∗

− e x
∗

d

− 2lx
∗

− 2ky
∗ 0

− δ − ρ − c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (7)

When the values of the system parameters are chosen as
above, the equilibrium points of system (6) can be calculated
by solving the equations Dq1x � 0, Dq2y � 0, and Dq3z � 0.
'e system has four equilibrium points which are given by

E1 � (0.049498497, − 7.070201517, 0.304011579),

E2 � (0.076160842, 7.069016737, − 0.429611679),

E3 � (3.087391472, 1.529728564, − 3.163877901),

E4 � (− 3.093050811, 1.471456216, 3.019478000).

(8)

'e corresponding eigenvalues and their nature are
given in Table 1.

Taking into account Definition 2 and from Table 1, it can
be seen that fixed points E1 and E2 are saddle equilibrium
points of index 1 and the others are saddle equilibrium
points of index 2.

Using the Adams–Bashforth–Moulton predictor-cor-
rector method proposed by Diethelm et al. [55], the nu-
merical solution of system (6) can be written as follows:

xn+1 � x0 +
h

q1

Γ q1 + 2( 
dz

p
n+1 + y

p
n+1 − e x

p
n+1 

+
h

q1

Γ q1 + 2( 


n

j�0
χ1,j,n+1 dzj + yj − e xj ,

yn+1 � y0 +
h

q2

Γ q2 + 2( 
− k y

p
n+1 

2
− l x

p
n+1 

2
+ m 

+
h

q2

Γ q2 + 2( 


n

j�0
χ2,j,n+1 − ky

2
j − lx

2
j + m ,

zn+1 � z0 +
h

q3

Γ q3 + 2( 
− cz

p
n+1 − δx

p
n+1 − ρy

p
n+1 

+
h

q3

Γ q3 + 2( 


n

j�0
χ3,j,n+1 − czj − δxj − ρyj ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where
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Figure 1: Phase diagrams and time series of system (5): (a) projected onto the x − y phase plane, (b) projected onto the x − z phase plane,
(c) time series of x, and (d) time series of y.
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x
p
n+1 � x0 +

1
Γ q1( 



n

j�0
θ1,j,n+1 dzj + yj − e xj ,

y
p
n+1 � y0 +

1
Γ q2( 



n

j�0
θ2,j,n+1 − ky

2
j − lx

2
j + m ,

z
p
n+1 � z0 +

1
Γ q3( 



n

j�0
θ3,j,n+1 − czj − δxj − ρyj ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χi,j,n+1 �

n
qi+1 − n − qi( (n + 1)

qi , j � 0,

(n − j + 2)
qi+1 +(n − j)

qi+1

− 2(n − j + 1)
qi+1,

1≤ j≤ n,

1, j � n + 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θi,j,n+1 �
h

qi

qi

(n − j + 1)
qi − (n − j)

qi ,

1≤ j≤ n, i � 1, 2, 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

4. Dynamics Analysis of the Financial
System with Fractional Order

In this section, the numerical method proposed by
Diethelm et al. [55] and presented in the previous section
is used to solve numerically system (6) in the commen-
surate and incommensurate fractional-order cases. 'e
parameters’ values defined in Section 3 and initial con-
ditions (x0, y0, z0) � (1.2, 1.5, 1.6) will be considered in
this part. Using the well-known tools for studying dy-
namical systems such as phase diagrams, time series,
bifurcation diagram, and largest Lyapunov exponent, the
dynamics of the financial system with fractional order will
be investigated.

4.1. Dynamics for the Commensurate Fractional-Order
System. Here, we consider system (6) when q1 � q2 � q3 � q

(commensurate order). System (6) does not exhibit chaotic
behavior if it satisfies the inequality q< 2/πmin

i
|arg(λi)| 

[47, 48, 51] with λi being the eigenvalues of the Jacobian
matrix of system (6) evaluated at one of its fixed points. For
the equilibrium points E3 and E4, we have
min

i
|arg(λi)|  � 1.2819; hence,

q<
2
π
min

i
arg λi( 


  ≈ 0.816. (11)

Figure 2 shows that the largest Lyapunov exponent of
system (6) with commensurate fractional order is positive
only if q> 0.82. 'erefore, the system does not show chaotic
behavior when q< 0.82. It is found using numerical simu-
lations that the system exhibits a chaotic attractor for
q≥ 0.83. For q � 0.83, phase diagrams are shown in
Figure 3(a) for the x − y phase plane and in Figure 3(b) for
the x − z phase plane. Figures 3(c) and 3(d) show the time
series of state variables x and y, respectively, for q � 0.83. As
it can be seen, the system exhibits chaotic behavior, and this
is confirmed by a positive Lyapunov exponent for q � 0.83.

'erefore, the minimum effective dimension of system
(6) for the commensurate fractional order is 0.83 × 3 � 2.49.
'us, simulation results show that chaos exists in this
fractional-order financial system with a derivation order less
than 3. For numerical simulations, the step size h � 0.01 is
used.

4.2. Dynamics for the Incommensurate Fractional-Order
System. When one of the system’s derivation orders has a
different value from the other two, we get an incommen-
surate fractional-order system [47].

By observing Figure 4, we can see that the largest
Lyapunov exponent of system (6) is positive for q1 ≥ 0.57
with q2 � q3 � 1 (see Figure 4(a)), for q2 ≥ 0.87 with q1 �

q3 � 1 (see Figure 4(b)), and for q3 ≥ 0.89 with q1 � q2 � 1
(see Figure 4(c)). For example, we consider the following
cases.

Case 1. Fix q2 � q3 � 1, and let us take different values of q1:

(i) q1 � 0.55 and q2 � q3 � 1 . In this case, we have v1 �

11, u1 � 20, and v2 � v3 � u2 � u3 � 1, so
M � LCM(20, 1, 1) � 20 and

Table 1: Equilibrium points, corresponding eigenvalues, and their nature.

Equilibrium points Eigenvalues Nature
E1 λ1 � − 7.1758, λ2 � − 1.1944, λ3 � 0.2828 Saddle equilibrium point
E2 λ1 � 6.6418, λ2 � − 0.8428, λ3 � − 0.2828 Saddle equilibrium point
E3 λ1 � − 0.7378, λ2,3 � 0.4532 ± 1.5251i Saddle equilibrium point
E4 λ1 � − 0.7548, λ2,3 � 0.4337 ± 1.5487i Saddle equilibrium point
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Δ(λ) � diag λMq1 , λMq2 , λMq3  − J E3(  � diag λ11, λ20, λ20  − J E3( , (12)

det(Δ(λ)) � λ51 − 1.22972856λ40 + 1.061189142λ31 + 1.801422624λ20 + 0.061189142λ11 + 1.867529457 � 0. (13)
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Figure 3: Phase diagrams and time series of system (6) with fractional order q � 0.83: (a) projected onto the x − y phase plane, (b) projected
onto the x − z phase plane, (c) time series of x, and (d) times series of y.
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Figure 2: 'e largest Lyapunov exponent with the variation of derivation order q.
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By solving equation (13), we have

IMFOS �
π
2M

− min
i

arg λi( 


 �
π
40

− 0.079176

� − 0.00064< 0.

(14)

In this case, IMFOS< 0; therefore, for the derivation
orders q � (0.55, 1, 1), system (6) does not exhibit a
chaotic behavior.

(ii) Consider now q1 � 0.57 and q2 � q3 � 1; by the same
procedure as the above case, we have M � 100 and

det(Δ(λ)) � λ257 − 1.22972856λ200

+ 1.061189142λ157 + 1.801422624λ100

+ 0.061189142λ57 + 1.867529457 � 0.

(15)

By solving equation (15), we have

IMFOS �
π
2M

− min
i

arg λi( 


 �
π
200

− 0.015682

� 0.000026> 0.

(16)

IMFOS> 0; therefore, for the given derivation orders,
the system satisfies the necessary condition to present a
chaotic attractor. Numerical simulations confirm this

conclusion in Figure 5. Hence, the lowest value for which
q1 in this case generates a chaotic behavior is 0.57, where
λmax > 0.

Case 2. Fix q1 � q3 � 1, and let us take different values of q2:

(i) Consider q1 � 1, q2 � 0.86, and q3 � 1; by the same
procedure as the above case, we get
M � LCM(1, 50, 1) � 50 and
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Figure 4: Largest Lyapunov exponents with variation of derivation orders: (a) q1, when q2 � q3 � 1, (b) q2, when q1 � q3 � 1, and (c) q3,
when q1 � q2 � 1.
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det(Δ(λ)) � λ143 + 0.061189142λ100 − 0.22972856λ93

+ 1.892340326λ50 − 0.02972856λ43

+ 1.867529457 � 0.

(17)

By solving equation (17), the IMFOS of the system is

IMFOS �
π
2M

− min
i

arg λi( 


 �
π
100

− 0.027339

� 0.004077> 0.

(18)

In this case, IMFOS> 0 but system (6) does not
exhibit chaotic behavior (λmax < 0). 'is shows that
the condition IMFOS≥ 0 is a necessary condition for
chaos to exist and not the sufficient one.

(ii) Consider now q1 � 1, q2 � 0.87, and q3 � 1; by the
same procedure as the above case, we have M � 100
and

det(Δ(λ)) � λ287 + 0.061189142λ200 − 0.22972856λ187

+ 1.892340326λ100 − 0.02972856λ87

+ 1.867529457 � 0.

(19)

'e system’s IMFOS is

IMFOS �
π
2M

− min
i

arg λi( 


 �
π
200

− 0.013605

� 0.002103> 0.

(20)

In this case, the system exhibits a chaotic behavior as it
can be seen in Figure 6, where we can observe the chaotic
attractor of the system.

'erefore, the lowest value for which q2 in this case
generates chaotic behavior is 0.87, where λmax > 0.

Case 3. Fix q1 � q2 � 1, and let us take different values of q3:

(i) Consider q1 � 1, q2 � 1, and q3 � 0.88; then, M �

LCM(1, 1, 25) � 25 and

det(Δ(λ)) � λ72 + λ50 − 1.168539418λ47

+ 0.031460582λ25 + 1.831151184λ22

+ 1.867529457 � 0.

(21)

By solving equation (21), we get

IMFOS �
π
2M

− min
i

arg λi( 


 �
π
50

− 0.051947

� 0.010885> 0.

(22)

In this case, IMFOS> 0 but the system does not
exhibit chaotic behavior (λmax < 0).

(ii) Consider now q1 � 1, q2 � 1, and q3 � 0.89; then,
we have M � 100 and

det(Δ(λ)) � λ289 + λ200 − 1.168539418λ189

+ 0.031460582λ100 + 1.831151184λ89

+ 1.867529457 � 0.

(23)

From equation (23), we get
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Figure 5: Phase diagrams of system (6) with fractional orders q1 � 0.57 and q2 � q3 � 1 projected onto (a) the x − y phase plane and (b) the
x − z phase plane.
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IMFOS �
π
2M

− min
i

arg λi( 


 �
π
200

− 0.012974

� 0.002734> 0.

(24)

Hence, for the derivation orders q � (1, 1, 0.89), system
(6) satisfies the necessary condition for the existence of chaos
in the system. In this case, this is confirmed numerically in
Figure 7.

'erefore, the lowest value from which q3 in this case
generates chaotic behavior is q3 � 0.89, where. λmax > 0.

When the value of q3 increases from 0.85 to 0.90, the
route to chaos via period-doubling is found. 'e bifurcation
diagram and largest Lyapunov exponent when the deriva-
tion order q3 varies on the closed interval [0.85, 0.90] are
plotted in Figure 8. Clearly, from the bifurcation diagram,
the period-doubling route to chaos can be seen.
Figures 9(a)–9(d) show that the system has period-1, period-
2, and period-4 and chaotic attractors for
q3 � 0.85, 0.87, 0.878, and 0.89, respectively. Note that the
step size used for the numerical simulations in this section is
h � 0.01.

From these three cases, we deduce that the minimum
effective dimension of system (6) in the incommensurate
fractional-order case is 2.57.

In the next section, a simple but robust fractional-order
sliding mode control law will be designed to control chaos in
system (6).

5. The Sliding Mode Controller Design

According to the sliding mode control theory, to design a
sliding mode controller, we have two steps:

(i) Build a sliding surface, which represents the desired
dynamics of the system such as stability

(ii) Develop a control law in a way that the system
states are brought towards the sliding surface
in a finite time and are maintained in a neigh-
borhood of the sliding surface when time evolves
[38]

'e sliding mode control law is itself composed of two
parts; the first, which is continuous, is called equivalent
control law and the second is discontinuous. 'e equiv-
alent control law describes the behavior of the system to
be controlled when its trajectories are on the sliding
surface. 'e discontinuous reaching law ensures the
convergence of all the system states towards the sliding
surface.

To control chaos in fractional-order financial system (6),
the controller u(t) is added at the level of the second state
equation as follows:

D
q1x � dz +(y − e)x,

D
q2y � − ky

2
− lx

2
+ m + u,

D
q3z � − cz − δx − ρy.

⎧⎪⎪⎨

⎪⎪⎩
(25)

Motivated by the literature [38, 43], as a choice for the
sliding surface, we choose the following fractional-order
sliding surface:

σ(t) � D
q2− 1

y(t) + D
− 1

ky
2
(t) + lx

2
(t) + ηy(t) 

� D
q2− 1

y(t) + 
t

0
ky

2
(τ) + lx

2
(τ) + ηy(τ) dτ,

(26)

where η is an arbitrary positive constant. In the slidingmode,
the invariance conditions of the surface must be satisfied and
are defined as follows (i.e., the sliding surface and its de-
rivative must satisfy the relations which appear in the fol-
lowing equation):
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Figure 6: Phase diagrams of system (6) with fractional orders q1 � 1, q2 � 0.87, and q3 � 1 projected onto (a) the x − y phase plane and
(b) the x − z phase plane.
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σ(t) � 0,

d

dt
σ(t) � _σ(t) � 0.

(27)

From equations (26) and (27), we get

D
q2y(t) � − ky

2
(t) + lx

2
(t) + ηy(t) . (28)

From system (25) and equation (28), we obtain the
equivalent control law as follows:

ueq �
d

q2y

dt
q2

+ ky
2

+ lx
2

− m,

� − ky
2

+ lx
2

+ ηy  + ky
2

+ lx
2

− m

� − ηy − m.

(29)

Regarding the discontinuous reaching law, it is chosen as
follows:

ur � Grsign(σ), (30)

in which

sign(σ) �

+1, if σ > 0,

0, if σ � 0,

− 1, if σ < 0,

⎧⎪⎪⎨

⎪⎪⎩
(31)

and Gr is the gain of the controller.
Finally, the total control law has the following form:

u(t) � ueq(t) + ur(t) � − ηy − m + Grsign(σ). (32)

Theorem 1. System (6) with control law (32), i.e., system (25)
is globally and asymptotically stable if the controller gain
Gr < 0.
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Figure 7: Phase diagrams of system (6) with fractional orders q1 � 1, q2 � 1, and q3 � 0.89 projected onto (a) the x − y phase plane and
(b) the x − z phase plane.
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Figure 8: Bifurcation diagram and largest Lyapunov exponent (λmax) of system (6) with order q3: (a) bifurcation diagram and (b) largest
Lyapunov exponent (λmax).
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Proof. For this, let us choose the Lyapunov quadratic
function as follows:

V �
1
2
σ2, (33)

and its derivative gives

_V � σ _σ � σ D
q2y + ky

2
+ lx

2
+ ηy 

� σ − ky
2

− lx
2

+ m + u + ky
2

+ lx
2

+ ηy 

� σ − ky
2

− lx
2

+ m − ηy − m + Grsign(σ)

+ ky
2

+ lx
2

+ ηy

� σ Grsign(σ) 

� Gr|σ|< 0.

(34)

'erefore, we have found a Lyapunov function which
satisfies the conditions of Lyapunov theorem, i.e., V> 0 and
_V< 0. 'us, system (25) with sliding mode control law (32)
is globally and asymptotically stable. □

Theorem 2. Suppose that system (25) is perturbed by un-
certainties and an external disturbance. Bus, the system has
the following form:

D
q1x � dz +(y − e)x,

D
q2y � − ky

2
− lx

2
+ m

+Δg(x, y, z) + p(t) + u,

D
q3z � − cz − δx − ρy,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(35)

in which Δg(x, y, z) and p(t) are supposed to be bounded,
i.e., |Δg(x, y, z)|≤ μ1 and |p(t)|≤ μ2, where μ1 and μ2
are positive constants. System (35) with sliding mode
control law (32) is globally and asymptotically stable if
Gr < − (μ1 + μ2).

Proof. For this, let us choose Lyapunov quadratic function
(33); thus, we have

_V � σ _σ � σ D
q2y + ky

2
+ lx

2
+ ηy 

� σ − ky
2

− lx
2

+ m + Δg(x, y, z) + p(t)

+ u + ky
2

+ lx
2

+ ηy

� σ[Δg(x, y, z) + p(t)+ Grsign(σ)

≤ Gr + μ1 + μ1( |σ|< 0.

(36)

'us, the proof is achieved. □
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Figure 9: Phase diagrams showing the period-doubling route to chaos for system (6) with q1 � q2 � 1 and fractional order: (a) q3 � 0.85,

(b) q3 � 0.87, (c) q3 � 0.878, and (d) q3 � 0.89.
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6. Numerical Simulations

'is part of the paper presents three illustrative examples to
verify the effectiveness of the proposed control technique.
Numerical simulations are carried out with initial conditions
(x0, y0, z0) � (1.2, 1.5, 1.6), η � 0.5, and Gr � − 2. For the
commensurate fractional-order case,
q1 � q2 � q3 � q � 0.83 is chosen for which the system is
chaotic (see Figure 3). For the incommensurate fractional-
order case, q1 � 1, q2 � 0.88, and q3 � 1 are chosen. For this
choice, the largest Lyapunov exponent is positive (see
Figure 4(b)). 'e corresponding phase diagrams and time
series are shown in Figure 10. Note that the controller can be
activated in the system at any time. In this part, it is activated
at t � 20 sec.

Case 1: commensurate order without uncertainty and
an external disturbance
As it was shown above, system (25) without the
controller u(t) is chaotic forq1 � q2 � q3 � q � 0.83.
Now, applying controller (32) to the system, simu-
lation results can be seen in Figure 11. From this
figure, it is observed that control law (32) can effec-
tively asymptotically stabilize the state variables of
system (25) (see Figures 11(a)–11(c)). Besides, the
time series of the sliding surface σ(t) is plotted in

Figure 11(d). From this figure, it can be observed that
the controller stabilizes the trajectories of the system
on the sliding surface and maintains them on this
surface when time evolves.
Case 2: commensurate order with uncertainty and an
external disturbance
In this part, we disturb the fractional-order financial
system by an uncertainty defined by
Δg(x, y, z) � 0.2 sin(

����������
x2 + y2 + z2


) and an external

disturbance p(t) � 0.5 sin(2t), where |Δg(x, y, z)|

≤ μ1 � 0.2 and |p(t)|≤ μ2 � 0.5. 'e time series of
system (25) state variables (see Figures 12(a)–12(c))
and the time series of sliding surface (26) (see
Figure 12(d)) in the presence of control law (32) can
be seen through Figure 12. From this figure, we can see
that the controller stabilizes the system in the presence
of uncertainty and external disturbance.
Case 3: incommensurate order with uncertainty and
an external disturbance
In this case, we disturb financial system (25) with the
incommensurate fractional order by the same un-
certainty and external disturbance as Case 2.

'e time series of system (25) state variables and the time
series of the sliding surface in the presence of control law
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Figure 10: Phase diagrams and time series of system (6) with q1 � 1, q2 � 0.88, and q3 � 1: (a) projected onto the x − y phase plane,
(b) projected onto the x − z phase plane, (c) time series of x, and (d) time series of y.

12 Complexity



(32) are shown in Figure 13. From this figure, it can be
observed that the state variables of the system are stabilized.

In each figure, the time series of the sliding surface is
plotted to show the ability of the controller to bring back
all the system states onto the sliding surface and to
maintain them on this surface when time evolves.

Simulation results show that controller (32) is able to
stabilize systems (25) and (35) in commensurate and
incommensurate fractional-order cases. 'erefore, the
designed control law can suppress chaos in this fractional-
order financial system in the presence or absence of
uncertainty and external disturbance.
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Figure 11: 'e time series of the controlled commensurate fractional-order system state variables and corresponding time series of the
sliding surface without uncertainty and external disturbance (the control input is activated at t � 20 sec).
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Figure 12: 'e time series of the controlled commensurate fractional-order system state variables and corresponding time series of the
sliding surface with uncertainty and external disturbance (the control input is activated at t � 20 sec).
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7. Conclusions

In this paper, the dynamics of a financial system with
fractional order as well as the robust chaos control in this
system are studied analytically and numerical simulations
are performed to confirm the analytical results.'e existence
of chaos in this study is validated by a positive Lyapunov
exponent and by an analytical condition existing in the
literature. 'e fractional-order system exhibits rich dy-
namics behaviors such as periodic and chaotic behaviors. A
period-doubling route to chaos is found in this system.
Numerical simulations revealed that chaos exists in this
fractional-order system for derivation orders less than 3.'e
lowest derivation order found to have chaos in the com-
mensurate fractional-order case is 2.49 and 2.57 for the
incommensurate fractional-order case. Regarding the robust
control of chaos in the system, by using Lyapunov’s stability
theorem, a simple but robust fractional-order sliding mode
control law has been designed to stabilize the chaotic tra-
jectories of the fractional-order financial system in the
presence or absence of uncertainty and external disturbance.
It should be noted that the controller has been applied only
at the investment demand state equation to fully control the
system. Numerical simulations show that this controller is
effective and can control the financial system with com-
mensurate and incommensurate fractional orders. In [14],
Chen studied the fractional-order version of the financial
system proposed by Ma and Chen [34]. 'e lowest deri-
vation order obtained in [14] for chaos to exist is 2.55 in the
commensurate order case and 2.35 in the incommensurate
order case. Compared to the fractional-order version of Liao
et al. [37] proposed in this paper, the emergence of chaos is
enhanced in the commensurate order case and suppressed in
the incommensurate order case. It is well known that time
delay can affect the behavior of dynamical systems. For
future works, chaotic dynamics analysis of this fractional-
order financial system with time delay can be considered.
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