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In the article titled “A Novel MILP Model for the Pro-
duction, Lot Sizing, and Scheduling of Automotive Plastic
Components on Parallel Flexible Injection Machines with
Setup Common Operators” [1], the authors identified errors
in the datasets used in the study. Specifically, there was an
error in the ci (inventory cost) parameter which uses decimal
values; however, the python code used it as an integer.  e
datasets have therefore been corrected in Tables 6–11, and
the corresponding sections in the results section have been
updated to reflect this. A revised data availability statement
has also been provided.  e authors confirm that the results
and conclusions are the same as reported in the original
article despite the revised datasets.

 e corrected article is as follows:
In this article, a mixed integer linear program (MILP)

model is proposed for the production, lot sizing, and
scheduling of automotive plastic components to minimize
the setup, inventory, stockout, and backorder costs, by
taking into account injection molds as the main index to
schedule on parallel flexible injection machines.  e pro-
posed MILP considers the minimum and maximum in-
ventory capacities and penalizes stockout. A relevant
characteristic of the modeled problem is the dependence
between mold setups to produce plastic components.  e
lot-sizing and scheduling problem solution results in the
assignment of molds to machines during a specific time
period and in the calculation of the number of components

to be produced, which is often called lot size, following a
sequence-dependent setup time. Depending on the machine
on which the mold is setup, the number of units to be
produced will be distinct because machines differ from one
another.  e stock coverage, defined in demand days, is also
included in the MILP to avoid backorders, which is highly
penalized in the automotive supply chain. Added to this, the
proposed model is extended by considering setup common
operators to respond to and fulfill the constraints that appear
in automotive plastic enterprises. In this regard, the MILP
presented solves a lot-sizing and scheduling problem,
emerged in a second-tier supplier of a real automotive
supply chain. Finally, this article validates the MILP by
performing experiments with different sized instances, in-
cluding small, medium, and large.  e large-sized dataset is
characterized by replicating the amount of data used in the
real enterprise, which is the object of this study.  e
goodness of the model is evaluated with the computational
time and the deviation of the obtained results as regards the
optimal solution.

1. Introduction

Production planning, sequencing, and scheduling are key
operations performed by enterprises, and any circumstances
or events that affect them strongly influence the supply chain
operation in which they are embedded. All these three
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planning levels are characterized by the decision-making
time horizon in accordance with three decision-making
levels: strategical, tactical, and operational.  us, production
planning is set at the strategic level by considering families of
products, while sequencing and scheduling are set at a more
operational decision-making level. Accordingly, Gujjula
et al. [1] proposes the following differentiation between these
two concepts: (i) production scheduling deals with the as-
signment of production orders to production intervals with
a short planning horizon and specific time periods and (ii)
production sequencing deals with the sequence of pro-
duction orders for each production interval.

Our aim is to solve a lot-sizing and scheduling problem
with a sequence-dependent setup on parallel flexible ma-
chines. To this end, a mixed integer linear program (MILP)
model is proposed to minimize the setup, inventory,
stockout, and backorder costs by taking into account in-
jection molds as the main index to schedule on parallel
flexible injection machines. We also consider setup common
operators to extend the proposed basic MILP model.

 is article focuses on the specific production lot-sizing
and scheduling problem (LSSP) in parallel flexible machines.
According to Kim et al. [2], the LSSP deals with the min-
imization of production and inventory costs by simulta-
neously optimizing lot sizes and production schedule.  e
authors also refer to small and big bucket models depending
on the number of allowed setups. Accordingly, production
scheduling assigns production orders to production inter-
vals with a short-term planning horizon lasting several days
or shifts. Moreover, the assignment in the scheduling
process has an implicit sequence for each production shift.
 erefore, the main goal is to identify the time period when
to produce, the quantity to produce as the lot size in units or
timeslots, and the production sequence required to meet
demand and to avoid backorders and stockouts.

As enterprises are seen as complex systems in operations
management, their operation mechanisms are difficult to
manage.  is difficulty further increases because enterprises
belong to a supply network system, in which the complexity
and relationships with external actors are latent. Current
global market conditions and constant changes in the supply
chain environment render enterprises as complex systems.
Moreover, researchers have to bear in mind that market
consumers are currently used to acquire highly personalized
products, which is known as mass customization with short
development periods (“time to market”).

In the last few years, novel technologies have been in-
creasingly used, such as cloud computing, big data, artificial
intelligence, and machine learning.  is has become a trend
that has boosted companies to transform their way of op-
erating at enterprise and supply chain levels.  e result of
this digital transformation has been coined as Industry 4.0
[3]. Nevertheless, the application of Industry 4.0 to small-
and medium-sized enterprises (SMEs) is not as idealistic as
the Industry 4.0 definition indicates.  e literature includes
different studies on implementing Industry 4.0 technologies
into different sectors.  e present work focuses on the lit-
erature review by Echchakoui and Barka [4], which studies
the impact that Industry 4.0 has on the plastics industry.  e

relevance of the work by Echchakoui and Barka [4] is aligned
with the present article because we develop MILP to support
the LSSP in a company that belongs to the plastic sector by
particularly focusing on the injection of plastic automotive
components. In the aforementioned literature review, the
authors highlight that implementing Industry 4.0 research
into the plastics industry is still in its initial stages, but
research in this field is growing.

 e origin of this article lies in the H2020 Project
Cloud Collaborative Manufacturing Networks (C2NET)
[5], whose research focuses on providing a cloud plat-
form, in which a set of tools and technologies are em-
bedded to support the following: (i) data management
and interoperability; (ii) the optimization of plans at
enterprise and supply chain levels; and (iii) the inte-
gration of collaborative processes among supply network
members.  e C2NETcloud platform is built according to
an open-source philosophy, which makes it affordable
and easy to use by SMEs in terms of both monetary and
expertise or knowledge required for its use.  e opti-
mization module contains advanced optimization models
and algorithms to support and calculate replenishment,
production, and delivery plans at both the enterprise and
network levels.  e calculation of plans at the enterprise
level is characterized by only considering the resources
and data from a single enterprise, while the calculation of
plans at the network level uses the constraints, resources,
and data from two supply chain enterprises, or more, as
input data. When solving replenishment, production, and
delivery plans from a collaborative network perspective,
the output data of one enterprise plan are used as the
input data of another enterprise plan. If we consider two
enterprises from a network, A and B, where A is the
supplier and B is the manufacturer, the replenishment
plan of company B is constrained by the production plan
of company A. Hence, information is exchanged and a
loop plan is calculated until the materials required by
company B coincide with the materials that can be
produced by company A. On the C2NET cloud platform
(CPL), the negotiation loop is operated by the collabo-
rative module (COT), the plan calculation is managed by
the optimization module (OPT), and data exchange and
information interoperability are handled by the data
collection framework module (DCF) [6].  e operation
and management of the complex large-scale systems that
characterize enterprises are covered by the models and
tools developed in the CLP with the help of embedded
intelligent methods.

Different enterprises from diverse sectors were involved
in the C2NET project to validate and test the generated
results.  e enterprise study object of this article is the
automotive industry, which is included in one of the in-
dustrial pilots.  e automotive supply chain is characterized
by the need to perform flexible manufacturing to meet the
demand of the original equipment manufacturer (OEM) in
terms of delivery time, scheduling, and lot size in a just-in-
time (JIT) production system [7]. When addressing the LSSP
in the automotive industry, suppliers are highly penalized
when the components supplied to the OEM are delayed.
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 us, the automotive components’ manufacturers have to
manage minimum and coverage stocks to avoid potential
penalizations.  e coverage goal is set in demand days so
that suppliers have to produce at least 3 days of demand in
advance (commonly used in the automotive industry) to
stock production, as advances to avoid delaying demand
because it could imply stopping the automotive assembly
line in OEM facilities.

 e main objective of this article is to model a real
problem from a second-tier supplier in the automotive
supply chain and to solve it in a reasonable computation
time. Accordingly, a lot-sizing and sequencing model is
hereafter provided to respond to the requirements of a
second-tier supplier from an automotive supply chain.
 e proposed optimization model is embedded in the
OPTmodule of the C2NET CPL. A novel MILP model for
automotive plastic components’ production lot-sizing
and scheduling on parallel flexible injection machines is
proposed with setup common operators.  e MILP
model was implemented in Pyomo [9], used as an ex-
tensible python-based open-source optimization mod-
eling language for linear programming and nonlinear
programming, among others. Finally, a complex large-
scale problem is addressed to deal with the scheduling
plan of an automotive components’ manufacturer.

 e reminder of this document is organized as follows.
Section 2 presents a literature review to gain insight into
works that have addressed similar type problems and to
justify this study’s contribution. Section 3 describes and
analyzes the problem to be solved. Section 4 presents the
novel MILP model for the automotive plastic components’
production lot-sizing and scheduling on parallel flexible
injection machines. We take this MILP as the base model.
Section 5 puts forward an extension of the basemodel, which
contemplates common setup operators in the proposed
LSSP to provide a more realistic perspective to the base
model by taking into account the studied plastic compo-
nents’ injection industry. Section 6 offers comprehensive
numerical experimentation by considering different data
sizes for both proposed models, including small, medium,
and large datasets. is article is concluded by discussing the
findings obtained with the addressed problem.

2. Related Studies

A large amount of research has been conducted into dif-
ferent LSSP characteristics, but very few studies present
optimization approaches that combine or integrate LSSP
characteristics, that is, lot sizing and scheduling. According
to Rı́os-Soĺıs et al. [10], the product-part-mold-machine
(PPMM) problem and the part-mold-machine (PMM)
problem study this combination of approaches and indicate
that this problem type is scarcely addressed in the literature.
Rı́os-Soĺıs et al. [10] defined products as final products and
parts as components that derive from the bill-of-materials
parts explosion. Furthermore, Rı́os-Soĺıs et al. [10] classified
the PPMM as bilevel capitated LSSP. Accordingly, the first
part of the PPMM and PMM lot-sizing and scheduling
problems seeks to determine the optimal size of either a lot

of products in the PPMM approach or the parts in the PMM
approach. Both approaches seek to assign parts or pieces to
molds and molds to the machines.  e second part is in-
volved in the scheduling that aims to determine the order of
processing molds in machines during each planning time
period.

Studies such as Ibarra-Rojas et al. [11] addressed the
problem of manufacturing parts that are produced in
molds and are mounted on machines.  is study proposes
an MILP that seeks to maximize the production of parts
and also determines the batch size of every part and the
assignments of parts to mold and machines. An update of
this study is that proposed by Rı́os-Soĺıs et al. [10], which
aims to determine the lot size of a finished product; that
is, it determines the number of finished products to be
manufactured, the number of parts to be manufactured,
and the assignment of the parts to the mold and the mold
to the machine.  e model of Rı́os-Soĺıs et al. [10] also
contemplates the feasibility of scheduling molds in ma-
chines during each period. However, in their experi-
mental results, they only handle one period of time
periods and propose working with multiple time periods
as a future research line. Different approaches have been
proposed in the literature to optimally solve scheduling in
engineering; in this regard, Li et al. [12] highlighted the
importance on the use and application of MILP to deal
with the aforementioned problem in the engineering
research area.

Studies about LSSP are paid more attention by re-
searchers and companies given their applicability to the
real world [13]. In our literature review, we find studies
that integrate batch sizing decisions into restrictions for
scheduling problems (see Table 1), studies such as that
presented by Stadtler [14], in which a combined approach
to support a single machine LSSP is proposed. For this
purpose, an MILP is formulated to minimize mainte-
nance and inventory setup costs over a planning horizon.
Wolosewicz et al. [15] combined production planning
and scheduling by proposing an MILP that seeks to
determine the lot size for a fixed sequence of operations in
the machines, taking into account the times and oper-
ating costs. Kim et al. [2] presented a combined approach
in an MILP that seeks to minimize the sum of the cost of
production, installation, and inventories. James and
Almada-Lobo [16] presented an MILP for the scheduling
problem and capacitated lot-sizing of a single machine
and a parallel machine with sequence-dependent setup
times and costs. Meyr and Mann [17] put forward an
MILP to simultaneously determine production lot sizes
and schedules on nonidentical parallel production lines.

Our model deals with the problem contemplated by
Rı́os-Soĺıs et al. [10] and Ibarra-Rojas et al. [11]. By
continuing with the future research lines indicated by
these authors, our study considers many periods when
modeling and running experiments to solve the LSSP.  e
base model herein proposed also bears in mind stock
coverage constraints, which are typical in the studied
automotive supply chain industry context.  e proposed
novel MILP also contemplates an objective function
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based on the assembly line and allows idle times among
molds, which is a fundamental characteristic for real
cases and has been ignored by former studies. Finally, the
base model is extended by offering a scenario that comes
closer to reality by considering another index that rep-
resents the workers who change molds and, thus, bears in
mind the casuistry associated with the LSSP that refers to
the setups of the usual operators.

3. Problem Description

 e main aim of this article is to propose a novel MILP
model for the production scheduling carried out by an
automotive plastic components’ manufacturer that acts as a
second-tier supplier in the automotive supply chain. Plastic
components are produced in molds that are mounted on
parallel flexible injection machines. Injection machines
shape plastic pellets into automotive semifinished products
to then be assembled on an OEM production line. Never-
theless, for industry, studying car components is treated as
the second-tier supplier’s end products.

According to Rı́os-Soĺıs et al. [10], lot-sizing and
scheduling plans of mold-injection enterprises entail deci-
sion-making to determine (i) the lot size as the amount of
components to be produced during a period of time or a
number of periods to produce the same component and (ii)
the assignment of molds to machines by considering that
components can be produced only in specific molds with
their shape cavity.

 e second-tier supplier herein studied is characterized by
having specific molds that produce each automotive compo-
nent. When two molds are available to produce the same
component, these molds involve different processing times
given their technical particularities. Eachmold can also be setup
on different machines to produce the same automotive com-
ponent, but the same mold mounted on different machines has
different production rates depending on the machine on which
it is setup. Accordingly, productivity differs depending on the
mold and machine assignment (see Figure 1). Moreover, in the
automotive sector, two different parts are produced in the same

mold, including right- and left-hand parts, which is known as
biproduct injection molding [18].

 e studied enterprise has 21 injection machines and
a set of molds to produce the range of components de-
livered to the first-tier supplier and finally to the various
OEMs that belong to different automotive supply chains,
depending on the car brand.  e enterprise works three
shifts per day over a 5-day week and reserves overtime
shifts on the sixth weekday in the event of production not
finishing during the normal operation time. Workers are
told that they will work overtime periods at least 1 week
beforehand.

Molds are changed using cranes and, therefore, a setup
time is incurred. A limited number of workers are in charge
of changing and mounting molds to the assigned machines.
Moreover, these workers, known as setup common opera-
tors, work only two of the three shifts that the enterprise
arranges.

One of the requirements of the enterprise’s study is that,
once the mold is setup on a machine, the mold should
remain for at least 24 h so as not to saturate the work of the
limited setup common operators and to not incur on too
many setups because the setup time is estimated between 1
and 3 h, which obviously has an associated setup cost. If a
longer production time is needed, the mold is set up during
the required time periods without incurring any setup costs.
 us, the modeled problem should contemplate no setup
carry-over cases.

Backorders are highly penalized in the automotive
supply chain.  erefore, enterprises in the automotive in-
dustry use stock coverage, which indicates the number of
demand days that stocks can cover. Normally in the auto-
motive industry, stock coverage is set at 3 demand days; for
example, for the demand of four units for the next three
periods (d1 � 4 units, d2 � 4 units, and d3 � 4 units), stock
coverage is defined as 12 units at the end of the first period.
Moreover, as warehouses have space limitations, a maxi-
mum inventory is considered.

With regard to the demand, the automotive industry
updates the demand during each period for the next five

Table 1: Literature review of recent lot-sizing and scheduling problems.

Authors Objectives Industrial application Resolution methods Solver

[2] Minimize the sum of production, setup, and
inventory costs Zinc refinery

Heuristic algorithm combining a
decomposition scheme with a local

search procedure
CPLEX

[11] Maximize the weighted cost of produced pieces
Automotive,

consumer goods, and
toys

Decomposition approach CPLEX
11.2

[14] Minimize the sum of inventory holding and setup
costs in the planning interval Pharmaceutical Xpress-

MP

[10] Maximize the profit of finished products
Automotive,

consumer goods, and
toys

Iterative heuristic based on
mathematical programming

Gurobi
6.05

[17]
Minimize inventory holding, sequence-dependent

setup, and line-specific production costs of
potentially heterogeneous production lines

- Decomposition-based approach GLPK
4.44

[15] Minimize the sum of production, inventory and
setup costs - Lagrangian heuristic Xpress-

MP

4 Complexity



frozen periods.  e OEM works with considerable demand
information (1 year of demand horizon), but only com-
municates the demand for the next 6 months to the first-tier
supplier. Finally, first- and second-tier suppliers normally
work to a 3-month demand horizon and with daily periods.
 e LSSP considers a 21-day horizon.

A detailed flowchart of the processes is presented in
Figure 2, from the generation of the customer demand to
the final resolution of the second-tier supplier model.
Accordingly, in the automotive supply chain, the OEM
generates customer orders, according to the final cus-
tomer demand.  e OEM transforms the customer orders
into the master production scheduling (MPS), which
jointly with bill of materials (BOM) and the inventory
availability computes the materials requirement plan
(MRP).  e OEM demand plan is generated from the
MRP and transferred to the first-tier supplier.  en, the
first-tier supplier obtains its demand by using a simple
bill-of-materials parts explosion given the OEM demand
plan.  e second-tier supplier estimates the component
requirements from the final requirements in a frozen
sequence transferred by the first-tier supplier, and the
demand plan is generated [8].  en, the second-tier
supplier proceeds to compute the LSSP model with the
aim of (i) assigning molds to machines, (ii) scheduling the
processing molds in machines during each planning time
period, and (iii) calculating the optimal lot size of
products.  e LSSP is modeled by considering molds to
be the main index.  e proposed production lot-sizing
and scheduling base model has as main inputs the data
parameters described in Table 2. Nevertheless, if setup
common operators are considered when solving the

LSSP, data parameters related with the type of operators
have to be taken into account for building the extended
version of the base model. Finally, the proposed MILP is
solved by the second-tier supplier using the Gurobi solver
obtaining optimal or near-optimal solutions of the
production LSSP. In a nutshell, the objective of the
proposed MILP is to minimize the total costs, namely,
setup and inventory costs, penalization costs for coverage
stockouts, backorder costs, and tool setup costs, such as
the route cost of selecting one machine or another to
setup a tool.

4. MILPModel forLot-SizingandSchedulingon
Parallel Flexible Injection Machines:
Notation and Model Formulation

 e lot-sizing and scheduling on parallel flexible injection
machines problem under study is notated in Table 2, where
the main indexes related to machines, tools, products, and
periods are notated.  e input data parameters are pre-
sented, and decision variables are established as the output
data of the MILP model for lot-sizing and scheduling on
parallel flexible injection machines.

 e formulation of the MILP model for lot-sizing and
scheduling on parallel flexible injection machines is de-
scribed next.  e objective function minimizes total costs,
including setup and inventory costs, penalization costs for
coverage stockouts, backorder costs, and tool setup costs,
such as the route cost of selecting one machine or another to
set up a tool.

Min z � 
i


j


t

csj · SAijt + 
k


t

cik · INVkt + 
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rij · crij · SAijt, (1)

❶

❷

❸
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Components Moulds
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Machines

Figure 1: Production scheme on parallel flexible injection machines of plastic components in the automotive supply chain.
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Figure 2: Flowchart of the proposed solution methodology.
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subject to sequence constraints:

Sijt ≤ rij, ∀i, j, t, (2)

SAijt ≤ rij, ∀i, j, t, (3)


j

Sijt · rij ≤ 1, ∀i, t, (4)


i

Sijt · rij ≤ aj, ∀j, t. (5)

Constraints (2) and (3) constrain only setup tools j on
previously assigned specific machines i. Constraint (4)
determines that one or any tool j can be set up for
production during each time period t. Constraint (5)
guarantees that the total amount of tools j available for
production can only be set up as a maximum during each
time period t.

Production and capacity constraints:

Xkt < � 
i


j

pkt · rij · TPijt, ∀k, t, (6)

Xnpkt < � 
j


i

npjk · rij · SAijk, ∀k, t, (7)

Xkt
′ � Xkt − Xnpkt, ∀k, t, (8)

TPijt � tpt · Sijt, ∀i, j, t. (9)

Constraint (6) computes the amount of product k

produced during time period t and ensures that a specific
tool j is able to be set up on machine i during time period t

when product k is produced. Constraint (7) determines the
amount of product k no longer produced when tool j is set
up during time period t on machine i by considering that
another tool j is set up on machine i during time period
t − 1.  is also ensures that such a specific tool j is able to be
set up on machine i during time period t when product k is
produced. Constraint (8) computes the amount of product k

to be produced during time period t by subtracting Xnpkt as
the amount of product k no longer produced when tool j is
set up. Constraint (9) determines the production time used
during time period t when tool j is set up on machine i. In
TPijt, we indicate the production lot size during period
times, e.g., 24 h. is means that if tool j is set up onmachine
i, the tool cannot be changed by another one for the next
24 h.  erefore, the minimum lot size corresponds to the
products produced during the 24 h that tool j is set up on
machine i.

Setup constraints:

Table 2: Nomenclature for the model.

Index
i Index of machines i ∈ 1, . . . , I{ }

j Index of tools j ∈ 1, . . . , J{ }

k Index of products (parts) k ∈ 1, . . . , K{ }

t Index of time periods t ∈ 1, . . . , T{ }

Data
aj Total amount of tools j available for production
cbk Backorder cost of product k.
cik Inventory cost of product k

covkt Stock coverage defined as the number of time periods for the stock minimum coverage of product k during time period t

crij Setup cost of tool j on machine i

csj Setup cost of preparing tool j

cstk Coverage stockout cost of product k.
dkt Demand of product k during time period t
INVk0 Initial inventory of product k

INVMAXk Maximum inventory units for product k during time period t

INVMINk Minimum inventory units for product k during time period t

nct Amount of tool changes allowed during time period t

npjk Amount of products k no longer produced when tool j is set up
pjk Amount of products k produced when tool j is set up
rij 1 if tool j can be set up on machine i, 0 otherwise.
tpt Production time available during time period t

Decision variables
Bkt Backorder of product k during time period t

INVkt Inventory level of product k at the end of time period t

SAijt

1 if tool j is set up onmachine i during time period t and is not set up on machine i during time period t − 1; 0 if tool j is set up
on machine i during time period t − 1

Sijt 1 if tool j is set up on machine i during time period t, 0 otherwise
STkt Coverage stockout of product k during time period t

TPijt Production time of tool j set up on machine i during time period t

Xkt Amount of product k to produce during time period t

Xnpkt Amount of product k no longer produced during time period t, while a tool is set up
Xkt
′ Amount of product k to produce during time period t by subtracting Xnpkt
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SAijt � Sijt, ∀i, j, t � 1, (10)

SAijt ≥ Sijt − Sijt−1, ∀i, j, t> 1,

SAijt ≤ 1, ∀i, j, t> 1,
(11)


i


j

SAijt ≤ nc, ∀t. (12)

Constraint (10) allows the first setup of tool j to be
determined on machine i, which enables it to be modeled if
tool j is set up during time period t on machine i for the first
time and decision variables Sijt and SAijt take the same value
1. Constraint (11) ensures that SAijt does not take values
above 1. Constraint (12) limits the amount of tool changes
allowed during time period t.

Inventory balance equations:

INVkt � INVi0 + Xkt
′ − dkt + Bkt, ∀k, t � 1, (13a)

INVkt � INVkt−1 + Xkt
′ − dkt + Bkt − Bkt−1, ∀k, t> 1.

(13b)

Inventory balance equations (13a) and (13b) guarantee
appropriate values for the inventories, quantities to produce,
and backorders for each time period t � 1 and t> 1,
respectively.

Stock coverage constraint:

INVkt ≥ INVMINkt, ∀k, t, (14)

INVkt ≤ INVMAXkt, ∀k, t, (15)

INVkt + STkt ≥ 
c�cov

c�1
dk(t+c), ∀k, t<T − cov. (16)

Constraints (14) and (15) limit the inventory levels for
each product k according to the available space for inventory
holding during time period t. Constraint (16) is a constraint
for the stock coverage of products.

Bound and nature variables:

SAijt, Sijt ∈ 0, 1{ }, ∀i, j, t, (17)

Xkt, INVkt, Bkt, STkt, Xnpkt, BXkt
′ , ∈ N, ∀k, t, (18)

TPijt ∈ N, ∀i, j, t. (19)

Constraint (17) indicates the binary nature of setup Sijt

and the setup amount SAijt variables. Constraints (18) and

(19) indicate the continuous nature of the represented
variables.

5. MILPModel forLot-SizingandSchedulingon
Parallel Flexible Injection Machines with
Setup Common Operators: Notation and
Model Formulation

 e MILP model for lot-sizing and scheduling on parallel
flexible injection machines described in the above section
provides a solution to an LSSP that emerged in a second-tier
supplier of a real automotive supply chain. In this section,
the base model is extended by considering setup common
operators to respond and fulfill the constraints that arise in
automotive plastic enterprises. In this regard, the base model
is extended to offer coming closer to reality by considering
another index which represents the workers who change
molds. It also bears in mind the casuistry associated with the
LSSP problem that refers to setup common operators.

 e nomenclature for the extended model is represented
in Table 3. In order to avoid repetitions, the data and de-
cision variables used for the MILP model for lot-sizing and
scheduling on parallel flexible injection machines with setup
common operators are considered to be the same as in the
base model. Table 3 only shows the new data and decision
variables in relation to the previous base model.  ere are
different types of operators and a distinct number of workers
corresponding to each operator type. For example, let us
consider only one setup operator type that corresponds to
the qualified technician category and is specialized in
changing molds. Companies have a setup operator type
corresponding to the auxiliary technician category, whose
task involves helping the qualified technician, as well as a
setup operator type corresponding to the mechanic category
and provides support whenever failure of a mechanic,
electric or physical, among others, occurs. All these cate-
gories or operator types have varying numbers of workers
who go on different shifts. For example, in a company like
that herein studied that has 21 machines, there could be two
qualified technicians, four auxiliary technicians, and one
mechanical technician per shift.

 e formulation of the MILP model for lot-sizing and
scheduling on parallel flexible injection machines with setup
common operators is described next.  e objective function
minimizes total costs, which include setup costs with
common setup operators, inventory costs, penalization costs
for coverage stockouts, backorder costs, and tool setup costs,
such as the route cost of selecting one machine or another to
set up a tool.

Min z � 
i


l


j


t

csj · SAiljt + 
i


l


j


t

slciljt · SAiljt + 
k


t

cik · INVkt + 
k


t

cstk · STkt + 
k


t

cbk · Bit + 
i


l


j


t

rij · crij · SAiljt,

(20)

subject to sequence constraints:
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Siljt ≤ rij, ∀i, l, j, t, (21)

SAiljt ≤ rij, ∀i, l, j, t, (22)


j

Siljt · rij ≤ 1, ∀i, l, t, (23)


i

Siljt · rij ≤ aj, ∀j, t, l. (24)

Equations (21) and (22) constrain only setup tools j by
setup operators l on specific previously assigned machines
m. Constraint (23) determines that one or any tool j can be
set up by setup operator l for production during each time
period t. Constraint (24) guarantees that the total amount of
tools j available can only be set up for production as a
maximum during each time period t by setup operator l.

Production and capacity constraints:

Xnpkt < � 
i


l


j

npjk · rij · SAiljk, ∀k, t, (25)

TPijt � tpt · Siljt, ∀i, l, j, t. (26)

Constraint (25) determines the amount of products k no
longer produced when tool j is set up by operator l on
machine I during time period t by considering that another
tool j is set up on machine i during time period t − 1. It also
ensures that such a specific tool j can be set up on machine i

during time period t when product k is produced. Constraint
(26) determines the production time spent during time
period t when tool j is set up by operator l on machine i.

Setup constraints:

SAiljt � Siljt, ∀i, l, j, t � 1, (27)

SAiljt ≥ Siljt − Siljt−1, ∀i, l, j, t> 1,

SAiljt ≤ 1, ∀i, l, j, t> 1,
(28)


i


j

SAiljt ≤ nct, ∀l, t. (29)

Constraint (27) allows the first setup of tool j performed
by operator l onmachine i to be determined and enables it to
be modeled if tool j is set up during time period t on
machine i for the first time. Decision variables Siljt and SAiljt

take the same value 1. Constraint (28) ensures that SAiljt

does not take values above 1. Constraint (29) limits the
amount of tool j changes allowed during time period t and
set up by operator l on machine i.

Labor constraint:


i


j

SAiljt · slailj ≤ slsl, ∀l, t. (30)

Constraint (30) limits the amount of tool changes
allowed during time period t to the available number of
workers of type operator l by considering the number of
setup type operators l required to set up tool j on machine i.

Bound and nature variables:

SAiljt, Siljt ∈ 0, 1{ }, ∀i, l, j, t. (31)

Constraint (31) indicates the binary nature of the setup
Siljt and setup amount SAiljt variables. Finally, the MILP
model for lot-sizing and scheduling on parallel flexible in-
jectionmachines with setup common operators is also subject
to constraints (6), (8), (13a), (13b), (14)–(16), (18), and (19).

6. Case Study and Computational Experiments

 e proposed base MILP model for lot-sizing and sched-
uling on parallel flexible injection machines and the ex-
tendedMILP model for lot-sizing and scheduling on parallel
flexible injection machines with setup common operators
were implemented in Python 3.8.2, using Pyomo [9] as an
extensible python-based open-source optimization model-
ing language for linear programming.  e performance of
the proposed model was evaluated on a set of instances that
reflect different characteristics of the real-world case of the
automotive components industry under study. All the nu-
merical tests were conducted on a personal computer
equipped with an Intel (R) Core (TM) I5-8500 @ 3.00GHz
Processor and 8GB RAM. We used Python 3.8.2 and tested
applying Gurobi 9.0 to solve the mixed integer linear pro-
gramming model.

In the next section of data generation, it is described how
the data are generated to run the computational experi-
ments.  e datasets generated to validate the proposed
models correspond to small, medium, and large datasets.
Sized datasets can be accessed through a link available at the
end of the document. Finally, the last section presents the
results of the computational experiments carried out.

Table 3: Nomenclature for the model.

Index
l Index setup type operators l ∈ 1, . . . , L{ }

Data
slailj Number of setup type operators l required to setup the tool j on machine i

sclilj Cost of type operator l to setup the tool j on machine i

slsl Number of available workers of type operator l available
Decision variables

Siljt 1 if the tool j is setup by setup operator l on machine i during time period t, 0 otherwise

SAiljt

1 if tool j is set up by setup operator l on machine i during time period t and is not set up on machine i during time period t − 1; 0 if
tool j is set up by setup operator l on machine i during time period t − 1

Complexity 9



6.1. Data Generation. For the data generation, we define
various instance sets, including small, medium, and large
data sizes.  e small dataset corresponds to the minimum
amount of data required to test the proposed model; the
medium dataset allows to test the model with a reasonable
number of parameters and variables to be solved by the
model, approaching to the realistic view of the LSSP; and
finally, the large dataset replicates the real amount of data
managed by real-world enterprises when solving the LSSP.
For the computational experiments, all the datasets are built
through considering the parameter values depicted in Ta-
ble 5.  e data values are created in the way that mostly
represents real data from the automotive components in-
dustry; next, the data values are defined as follows:

 e parameter aj determines the total amount of tools j

available for production; in this regard, only one unit of
each tool is available, and this means that there are not
duplicated tools to produce the same components.
 e backorder cost (cbk) and the coverage stockout
cost (cstk) are represented by a very high value (equal
toM (99999)) in order to avoid customer missing parts
in the model resolution.
Inventory costs (cik) are set with values uniformly
distributed in given interval; U(u1, u2) is a random
variable which is uniformly distributed on [u1, u2].
 e stock coverage is defined in three days of demand.
Nevertheless, in small datasets where the number of
periods is lower than three, we have considered one
coverage day of demand (covkt � 1) in order not to
have unfeasible solutions in the model resolution, in
such a way that the model considers one period of
future demand (dt + 1) to be produced during period t.
Random [r1, r2] values denote a random integer value
over the interval from r1 to r2.  e following data
parameters use Random [r1, r2] values: setup cost of a
tool (crij), setup cost of preparing a tool (csj), max-
imum inventory (INVMAXk), and the amount of
products no longer produced when a tool is set up
(npjk).

 e amount of products produced when a tool is set up
(pjk) is also denoted as Random [r1, r2]. In this regard,
[r1, r2] indicates that product k is assigned to the tool j;
otherwise, pjk � 0. Parts are randomly assigned to
tools, with the condition that each part must be
assigned to one tool. Table 4 proposes an example of
assignment on a small dataset composed of three tools
and six products.

In order to generate the values for the demand, blocks
of seven time periods corresponding to the 7 days of the
week are considered. In this regard, the first five periods
of the week will have demand values set as Random (15,
40); otherwise, dkt � 0 on the sixth and seventh periods
of the week, that is, on Saturday and Sunday.

 e minimum inventory (INVMINk) is set as one unit
for all the products k; accordingly, the initial inventory
(INVk0) is also set as one unit for all products k.

 e amount of tool changes allowed (nct) is defined by
Random (I, I + 5) with I being the minimum number
of machines changes allowed, which coincides with the
total number of machines. Considering the same
scheme of blocks of weeks divided in 7 periods, no tool
changes are allowed in the 7th period of the week,
nct � 0; this is because on Sundays the enterprise does
not produce, uses it as a day of rest or for machine
maintenance, etc.
According to this last statement, the time available for
production (tpt)) is 24 hours for the first five periods of
the week and 16 hours for the 6th period of the week. No
time production is available for the 7th period of the
week.
rij � 1 indicates that all the tools can be set up on all the
machines.

 e aforementioned parameters and values are defined
for the base model.  e three parameters added for the
extended model, which considers setup common operators,
are described in Table 5.

slailj � 1 indicates that one setup type operator is re-
quired to setup the tool j on machine i

 e cost of type operator l to setup the tool j on
machine i (sclilj) is set with values uniformly distrib-
uted in given interval; U(u1, u2) is a random variable
which is uniformly distributed on [u1, u2].
Finally, the number of available workers of type op-
erator l available (slsl) must be as much as the number
of machines I.

In addition, we attach the link to the synthetic data
generator, so that the model can be reproduced in future
research http://hdl.handle.net/10251/161636.

6.2. Results and Computational Experiments. Using the
aforementioned synthetic data generator, a set of experi-
ments have been conducted to validate the two proposed
models: (i) base LSSP model, an MILP model for lot-sizing
and scheduling on parallel flexible injection machines, and
(ii) extended LSSP model, an MILP model for lot-sizing and
scheduling on parallel flexible injection machines with setup
common operators.

In order to give the reader a clear insight of the input
data parameter values and the output data results once
implemented the proposed MILP, we include an example of
a small dataset size.  e small dataset of the base model is
characterized by having 2 machines, 4 tools, 6 parts, and 3
periods.  e results obtained with the decision variables in
the MILP model for lot-sizing and scheduling on parallel
flexible injection machines are presented in Tables 6 and 7.

According to the results obtained in the MILP model for
lot-sizing and scheduling on parallel flexible injection ma-
chines, all the available capacity is occupied in the three
defined periods. Notwithstanding, demand was higher than
the available capacity and, therefore, the model had to delay
the demand of products k � 2, 3, 4. Figure 3 shows the Gantt
chart showing the schedule obtained after applying the base
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MILP model. Each row represents a machine i and each
rectangle a tool j; inside the rectangle, we have indicated the
parts k and processing time t of each tool j.

 e input and output data for the small, medium, and
large datasets of the base LSSP model are presented at
https://doi.org/10.4995/Dataset/10251/161642.

 e input data of the extended LSSP model are char-
acterized by considering 2 machines, 4 tools, 6 parts, 3
periods, and 4 type operators.  e results obtained with the
decision variables in the MILP model for lot-sizing and
scheduling on parallel flexible injection machines with setup
common operators are presented in Tables 8 and 9.

According to the obtained results, all the available ca-
pacity is occupied along the three defined periods. Never-
theless, demand was higher than the available capacity and,
therefore, the model had to delay the demand of products
k � 2, 4 in periods t � 1, 2 and had to delay the demand of
products k � 3, 6 in period t � 3.  e solution provided in

Table 4: Amount of products produced when a tool is set up.

j k pjk

1 4 4
2 1 2
2 5 2
2 6 2
3 2 2
4 3 3

Table 5: Generation of values for data parameters.

Parameter Value
aj 1
cbk 99999
cik U (0.1, 1)
covkt 1 when T< 3; otherwise, 3 when T> 3
crij Random (5, 15)
csj Random (45, 50)
cstk 99999
dkt Random (15, 40) if T � first 5 periods of the week; otherwise, 0 if T � 6th and T � 7th periods of the week
INVk0 1
INVMAXk Random (10000, 20000)
INVMINk 1
nct Random (I, I + 5) 0 if T � 7th period of the week
npjk Random (2, 5)
pjk Random (2, 5)
tpt 24 hours if T � first 5 periods of the week; 16 hours if T � 6th period of the week; 0 hours if T � 7th period of the week
rij 1
slailj 1
sclilj U (2.5, 3.5)
slsl I

Table 6: Small dataset results of the base LSSP MILP: lot-sizing,
inventories, coverage stockout, and backorders.

k t Xkt Xnpkt Xkt
′ STkt INVkt Bkt

1 1 48 0 48 2 21 0
1 2 27 0 27 0 25 0
1 3 0 0 0 0 1 0
2 1 0 0 0 33 1 35
2 2 48 0 48 30 1 21
2 3 48 0 48 0 1 4
3 1 72 0 72 0 39 0
3 2 0 0 0 11 19 0
3 3 0 0 0 0 1 12
4 1 0 0 0 14 1 30
4 2 0 0 0 32 1 45
4 3 78 0 78 0 1 0
5 1 48 0 48 8 31 0
5 2 41 0 41 0 33 0
5 3 0 0 0 0 1 0
6 1 48 0 48 19 15 0
6 2 48 0 48 5 29 0
6 3 0 0 0 0 1 6

Table 7: Small dataset results of the base LSSP MILP: scheduling.

i j t SAijt Sijt TPijt

1 2 1 1 1 24
1 2 2 0 1 24
1 1 3 1 1 24
2 4 1 1 1 24
2 3 2 1 1 24
2 3 3 0 1 24

Complexity 11
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Table 8: Small dataset results of the extended LSSP MILP, with setup common operators: lot-sizing, inventories, coverage stockout, and
backorders.

k t Xkt Xnpkt Xkt
′ STkt INVkt Bkt

1 1 48 0 48 2 21 0
1 2 27 0 27 0 25 0
1 3 0 0 0 0 1 0
2 1 0 0 0 33 1 35
2 2 48 0 48 30 1 21
2 3 48 0 48 0 1 4
3 1 72 0 72 0 39 0
3 2 0 0 0 11 19 0
3 3 0 0 0 0 1 12
4 1 0 0 0 14 1 30
4 2 0 0 0 32 1 45
4 3 78 0 78 0 1 0
5 1 48 0 48 8 31 0
5 2 41 0 41 0 33 0
5 3 0 0 0 0 1 0
6 1 48 0 48 19 15 0
6 2 48 0 48 5 29 0
6 3 0 0 0 0 1 6

Table 9: Small dataset results of the base LSSP MILP: scheduling.

i l j t Siljt SAiljt TPijt

1 1 2 1 1 1 24
1 2 2 1 1 1 0
2 1 4 1 1 1 0
2 2 4 1 1 1 0
1 2 4 1 0 0 24
2 1 3 2 1 1 0
2 2 3 2 1 1 0
1 1 2 2 1 0 24
1 2 2 2 1 0 0
1 2 3 2 0 0 24
1 1 1 3 1 1 24
1 2 1 3 1 1 0
2 1 3 3 1 0 0
2 2 3 3 1 0 0
1 2 3 3 0 0 24

Machine 1

Machine 2

Period 1 Period 2 Period 3

Part 1 Part 5 Part 6 Part 4

Mold
setup
time

Mold
setup
time

Mold
setup
time

Mold
setup
timeTool 2 Tool 1

Part 3

Tool 4

Part 2

Tool 3

Figure 3: Gantt chart base MILP model for lot-sizing and scheduling on parallel flexible injection machines.
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the scheduling shows that the two type operators l are
assigned to change the tools j.

 e experimental results obtained with the tests
conducted for all the datasets employed in the validation
for both the base model and the extended model in which
the labor index is added are presented in Tables 10 and 11.
 e input and output data for the small, medium, and
large datasets of the extended LSSP model are presented
at https://doi.org/10.4995/Dataset/10251/161643. Four
instances are generated of each dataset size.  e synthetic
instances for the base model have been generated through
the aforementioned proposed generator: http://hdl.
handle.net/10251/161636.  e synthetic instances for
the extended model with common setup operators have
been generated through the following generator: http://
hdl.handle.net/10251/161635.

 e computational results (Table 10) show that the
MILP model for lot-sizing and scheduling on parallel
flexible injection machines in small (S1, S2, S3, and S4)
and medium (M1, M2, M3, and M4) instances achieves
optimal results (GAP � 0%) in, at maximum, 24 seconds.
With regard to the large instances generated (L1, L2, L3,
and L4), the calculation time on average is set as 2.8
hours, finding a very near-optimal solution, with an
average 0.24% GAP. In this regard, it is worth to highlight
that the large dataset L1 achieves the optimal solution in a
very reduced computational time of 2 seconds.

 e computational results (Table 11) show that the MILP
model for lot-sizing and scheduling on parallel flexible injec-
tion machines with setup common operators in small (S1, S2,
S3, and S4) and medium (M1, M2, M3, and M4) instances
achieves optimal results (GAP� 0%) in, at maximum, 79.9
seconds. With regard to the large instances generated (L1, L2,
L3, and L4), the calculation time on average is set as 3.7 hours
finding a very near-optimal solution, with an average 2.81%
GAP. In this regard, it is worth to highlight that the large
dataset L1 achieves the optimal solution in a very reduced
computational time of 242 seconds.

 e experiments carried out for both the base model and
the extended model that consider common setup operators
are valid for its application on solving LSSP models with real
amount of data managed by real-world enterprises.

7. Discussion and Conclusions

 is paper addresses the LSSP applied to an automotive
plastic components’ enterprise. An MILP base model is
proposed to deal with the lot-sizing and scheduling problem
on parallel flexible injection machines to mainly minimize
the setup, inventory, stockout, and backorder costs by taking
into account injection molds as the main index to schedule
parallel flexible injection machines.  e MILP base model is
extended to provide the enterprise under study with a more
realistic solution that considers setup common operators.
 erefore, the extended LSSPmodel, anMILPmodel for lot-
sizing and scheduling on parallel flexible injection machines
with setup common operators, is presented.  is produces a
model that adapts to the restrictions of the company under
study, an automotive plastic components’ enterprise.  e

peculiarity of this model is that it takes injectionmolds as the
main index to schedule parallel flexible injection machines
by considering setup common operators.  e novelty of
both proposed models lies in our study considering many
periods when modeling and running experiments to solve
the LSSP. Moreover, the proposedMILP bears in mind stock
coverage constraints, which are typical in the studied au-
tomotive supply chain industry context, and contemplates
an objective function that allows idle times among molds,
which is a fundamental characteristic for real cases and has
been ignored by former studies.

Finally, this paper validates the proposed MILP by per-
forming experiments with different sized instances, including
small, medium, and large datasets.  e large dataset is char-
acterized by replicating the amount of data used in the real
enterprise that is the object of this study.  e goodness of the
model is evaluated with the computational time and the de-
viation of the obtained results as regards the optimal solution.

 is study is not without its limitations.  e small and
medium datasets are solved in both cases in very efficient
computing times.  e application of the proposed model using
the large dataset is more limited in computational efficiency
terms. To solve this problem, the literature indicates the gen-
eration of heuristics, metaheuristics, and matheuristics.  e last
type falls within the authors’ future research options as far as the
contemplatedmodel herein is concerned. us, the first research
line intends to improve the computational efficiency to solve the
model by applyingmatheuristics, which would consist in solving
the binary variables in both the base model (Sijt and SAijt) and
its extended version (Siljt and SAiljt) by a metaheuristic tech-
nique, e.g., genetic algorithms, taboo search, and simulated
annealing.  e metaheuristics result will be provided as input
data for the MILP.  e following research lines focus on im-
proving the model by considering new constraints that will be
very useful for the real firm. In this way, the second future
research line is a second extension of the basemodel that bears in
mind the availability of materials. For this purpose, inventory
equations are to be added that consider the list of materials
needed tomanufacture end products. Finally, for the third future
research line, a third extension of the model is proposed by
considering space limitations in a warehouse’s volume. In this
way, part volumes are calculated to meet both stock coverage
and limited warehouse space, contemplated from the premise
that all parts have different volume requirements.  is means
that the model and its third extension (or third generation) will
be capable of meeting the stock coverage of large-sized parts and
stocking small-sized ones so that when they have to be produced,
the production resources related to bigger pieces will be used.
 e third-generation model will allow bigger-sized parts to be
stored, whichwill be left at the stock coverage level by calculating
the quantity of smaller parts whose coverage can be extended.

8. Data Availability

 e instances generated (input and output datasets) and
analyzed during the study are available at the following
links: (i) base LSSP model, an MILP model for lot-
sizing and scheduling on parallel flexible injection ma-
chines: https://doi.org/10.4995/Dataset/10251/161642;
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(ii) extended LSSP model, an MILP model for lot-sizing
and scheduling on parallel flexible injection machines
with setup common operators: https://doi.org/10.4995/
Dataset/10251/161643.  e algorithms developed for
generating the synthetic datasets are available at the
following links: (i) base LSSP model, an MILP model for
lot-sizing and scheduling on parallel flexible injection
machines: http://hdl.handle.net/10251/161636; (ii) ex-
tended LSSP model, an MILP model for lot-sizing and
scheduling on parallel flexible injection machines with
setup common operators: http://hdl.handle.net/10251/
161635.
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