
Research Article
A New Scheme for Solving Multiorder Fractional Differential
Equations Based on Müntz–Legendre Wavelets
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In this study, we apply the pseudospectral method based on Müntz–Legendre wavelets to solve the multiorder fractional dif-
ferential equations with Caputo fractional derivative. Using the operational matrix for the Caputo derivative operator and
applying the Chebyshev and Legendre zeros, the problem is reduced to a system of linear algebraic equations. We illustrate the
reliability, efficiency, and accuracy of the method by some numerical examples. We also compare the proposed method with
others and show that the proposed method gives better results.

1. Introduction

,is paper is dedicated to the numerical solution of the
multiorder fractional differential equation with Caputo
fractional derivative based onMüntz–Legendre wavelets. Let
α ∈ R+, N ∍ n ≔ [− α], for α ∉ N. Further, let αj ∈ R+(j �

1, . . . , σ ∈ N) which satisfies

0 � α0 < α1 < · · · < ασ < α. (1)

We aim to compute the approximate solution of the
linear or nonlinear fractional differential equation

c
D

α
0(y)(x) � f x, y(x),

c
D

α1
0 (y)(x), . . . ,

c
D

ασ
0 (y)(x) , x ∈ [0, 1],

y
(η)

(0) � qη, qη ∈ R, η � 0, 1, . . . , n − 1,
(2)

where cDα
0 is the Caputo fractional differential operator [1]

and the function f[x, y, y1, . . . , yσ] ∈ C[0, 1] with
y1, . . . , yσ ∈ G (G ⊂ C is an open set) satisfies the Lipschitz
condition

f x, y, y1, . . . , yσ (x) − f x, u, u1, . . . , uσ (x)


≤Lσ 

σ

j�0
yj − uj



, yj, uj ∈ G, (3)
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where Lσ > 0 is independent of x. We also assume for
simplicity that

fα0 ,...,ασ[t, y] ≔ f x, y(x),
c
D

α1
0 (y)(x), . . . ,

c
D

ασ
0 (y)(x) .

(4)

,e existence and uniqueness of L1 solution of the
multiorder fractional differential equation with the Rie-
mann–Liouville and Caputo fractional derivatives under the
assumption that f(x, t) ∈ L1[0, 1] satisfies the Lipschitz
condition with respect to the second variable are investigated
by Kilbas et al. [1]. ,e previous investigation is based on
converting equation (2) into the equivalent Volterra integral
equation and then solving it. But in this study, we solve the
problem directly.

,ere exist some numerical methods that solve the
desired problem. Laksetani et al. [2] introduced an opera-
tional method using B-spline functions to solve the multi-
order fractional differential equation

F u(x),
c
D

β1
0 , . . . ,

c
D

βm

0  � g(x), βi ∈ R. (5)

In this paper, the operational matrix of the Caputo
fractional derivative has been constructed directly, and then
using the collocation method, the problem is solved. In [3],
the authors applied the collocation method to solve the
fractional differential equation

c
D

α
y(t) � f(t, y(t)), α ∈ (0, 1]. (6)

,eir investigation is based on the collocation method
using the Chebyshev–Gauss–Lobatto collocation points.,e
main advantage of this method is its superior accuracy. We
can point out its exponential convergence too. But solving
this problem is not a big challenge because it lacks multi-
order fractional derivatives. Dehestani et al. [4] applied the
fractional-Lucas optimization method to solve the multi-
dimensional and multiorder fractional differential equation
with Caputo fractional derivative. To this end, they used the
operational matrix of fractional derivative for Lucas func-
tions and reduced the problem into a linear or nonlinear
system. ,e result shows the accuracy and efficiency of the
method. A special type of equation (2) is considered by
Bhrawy et al. [5] as

c
D

α
y(t) + cy(t) � f(t). (7)

To solve this equation, they utilized the Laguerre tau
technique. To this end, firstly fractional-order generalized
Laguerre functions are introduced and Caputo fractional-
order derivative is represented by these bases. In [6], after
introducing the fractional-order Legendre functions and the
operational matrix of Caputo derivative, the multiorder
fractional differential equation is solved. For more details,
we refer the readers to [7–10].

,e fractional differential equations are applied to model
various physical phenomena, such as heat conduction,
viscoelasticity, dynamical behavior of quantum particles,
and laxation and diffusion problems [11–16].

,is paper is organized as follows. In Section 2, we
introduce the Müntz–Legendre wavelets, and we construct

the operational matrix of fractional integration and Caputo
fractional derivative. In Section 3, the pseudospectral
method is applied to solve the generalized Cauchy-type
problems with Caputo fractional differentiation based on
Müntz–Legendre wavelets, and then the error analysis is
investigated. Section 4 is devoted to some numerical ex-
amples to illustrate the accuracy and efficiency of the pro-
posed method.

2. Müntz–Legendre Wavelets

In the last decade, wavelets have been able to get a special
place in numerical analysis and especially in the numerical
solution of equations [17–22]. As you know, one of the ways
to get wavelets is to use multiresolution analysis (MRA).
MRA is a family of nested spaces that satisfies certain cir-
cumstances [23], namely,

0{ } ⊂ · · · ⊂ V− 1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ L
2
(Ω), (8)

where Ω is a bounded interval or is equal to R.
In this paper, we apply Müntz–Legendre wavelets to

solve the multiorder fractional differential equations. To this
end, we give a brief introduction to Müntz–Legendre
wavelets. Assume that the space VJ (J ∈ Z+ ∪ 0{ }) is spanned
by a set of bases which are called multiscaling functions or
mother wavelets, i.e.,

VJ � span ψm
J,b: b ∈B, m ∈M , (9)

where B ≔ 0, 1, . . . , 2J − 1  and M ≔ 0, 1, . . . , r − 1{ },
r ∈ N. ,e parameter r is called the multiplicity parameter,
and J is the refinement level. In the following, we introduce
the functions ψm

J,b.
Assume that λk ≔ kμ where μ is a real constant. Denote

by Lm(x) the Müntz–Legendre polynomials [24] which are
defined on Ω ≔ [0, 1] as

Lm(x) � 
m

k�0
lk,mx

λk , x ∈ Ω, (10)

where the coefficient lk,m is defined by [24]

lk,m ≔


m− 1
i�0 λk + λi + 1( 


m
i�0,i≠k λk − λi( 

. (11)

Among the properties of these functions, we can
mention their orthogonality. ,ese polynomials form an
orthogonal system that satisfies the following relation:

〈Lm′(x), Lm(x)〉 � 
1

0
Lm′(x)Lm(x)dx �

δm′ ,m

2λm + 1
, m≥m′,

(12)

where δm′,m is used for the Kronecker symbol and is given by

δm′,m ≔
1, m � m′,

0, m≥m′.

⎧⎨

⎩ (13)

Now we are ready to introduce the functions ψm
J,b. ,e

Müntz–Legendre wavelets on the interval [0, 1] are defined
as follows [24]:
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ψm
J,b �

2J/2
�������

2λm + 1


Lm 2J
x − b ,

b

2J
≤x≤

b + 1
2J

,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

Let PJ be an operator that projects any function
f(x) ∈ L2[0, 1] onto the subspace VJ as follows:

f(x) ≈ PJ(f)(x) � 
2J− 1

b�0


r− 1

m�0
fb,mψ

m
J,b(x), (15)

where the coefficients fb,m  are evaluated by

fb,m �〈f,ψm
J,b〉 � 

1

0
f(x)ψm

J,b(x)dx. (16)

Let F and Ψ(x) be vectors of dimension N � 2Jr whose
(br + m + 1)-th element is fb,m and ψm

J,b(x), respectively.
Hence, it follows from equation (15) that

f(x) ≈ PJ(f)(x) � F
TΨ(x), (17)

where the superscript T is used for the matrix transpose.
It follows from [24] that there are some error estimates in

the sense of Sobolev norms.

Lemma 1 (see [24]). Let n≥ 0 and r> n. If f ∈ Hn[0, 1], then

f − PJ(f)
����

����L2(0,1)
≤ c(r − 1)

− n 2J− 1
 

− n
f

(n)
�����

�����L2(0,1)
,

(18)

and for s≥ 1, we have

f − PJ(f)
����

����Hs(0,1)
≤ c(r − 1)

2s− (1/2)− n 2J− 1
 

s− n
f

(n)
�����

�����L2(0,1)
,

(19)

where Hn(0, 1) is the Sobolev space and

‖f‖Hn(0,1) � 
n

j�0
f

(j)
�����

�����
2

L2(0,1)
⎛⎝ ⎞⎠

1/2

. (20)

2.1. Representation of the Caputo Fractional Derivative Op-
erator in Müntz–Legendre Wavelets. Recall that the Rie-
mann–Liouville fractional integral operator Iα

0 (α ∈ R+) is
determined by

I
α
af(x) ≔

1
Γ(α)


x

a
(x − s)

α− 1
f(s)ds, x ∈ [a, b]. (21)

Note that if f ∈ L1[a, b], then the function
Iα

af ∈ L1[a, b]. We know that there is an operator that
satisfies the relation

RL
D

α
a � D

n
I

n− α
a , (22)

where D ≔ (d/dx) and RLD
α
a is called the Riemann–Liou-

ville fractional derivative operator. ,ere is also another

fractional derivative operator that satisfies the relation
cDα

af(x) ≔ In− α
a Dn(f)(x) and is called the Caputo frac-

tional derivative.
In this section, we would like to represent the Caputo

fractional derivative operator in Müntz–Legendre wavelets.
To this end, we first construct the operational matrix for
fractional integral operator Iα

0 . ,en, applying the opera-
tional matrix of derivative D for Müntz–Legendre wavelets
[25] and relation cDα

af(x) ≔ In− α
a Dn(f)(x), we can find

the operational matrix of fractional derivative for
Müntz–Legendre wavelets.

Applying the projection operator P, the fractional in-
tegral operatorIα

0 acting on the vector functionΨ(x) can be
approximated by

P I
α
0( (Ψ(x)) � Iα(x)Ψ(x), α ∈ (0, 1), (23)

where Iα(x) is the operational matrix of integral for the
Müntz–Legendre wavelets.

To facilitate the evaluation of the operational matrix
elements of fractional integration for the Müntz–Legendre
wavelets, it is necessary to introduce the piecewise fractional-
order Taylor functions. For a fixed J ∈ Z+ ∪ 0{ }, these
functions are constructed as

ϕm
J,b �

t
λm ,

b

2J
≤x≤

b + 1
2J

,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

b ∈B, m ∈M.

(24)

Let Φ(x) be a vector of dimension N whose
(br + m + 1)-th element is ϕm

J,b(x).
To derive matrix Iα(x), we first introduce a matrix of

dimension N × N that is used to transfer the
Müntz–Legendre wavelets Ψ(x) to the piecewise fractional-
order Taylor functions Φ(x). Assume that there is a matrix
of dimension N × N such that

Ψ(x) � T
− 1Φ(x), (25)

where T− 1
J stands for the inverse of the matrix T. ,e matrix

T is called the transformation matrix whose (i, j)-th element
is evaluated by

Ti,j �〈Φi(x),Ψj(x)〉 � 
1

0
Φi(x)Ψj(x)dx, i, j � 1, . . . , N.

(26)

Let Λ be a vector of dimension r whose i-th element is
xλi , and thus it follows from equation (24) that

Φ(x) � [Λ, . . . ,Λ]T
. (27)

It is easy to verify that the Riemann–Liouville fractional
integration of the power functions xκ is equal to power
functions of the same form, i.e.,

I
α
0 x

κ
(  �

Γ(κ + 1)

Γ(κ + α + 1)
x
κ+α

. (28)

,is gives rise to find the i-th element of Iα
0(Φ)(x), via
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I
α
0 Φi( (x) �

Γ λi + 1( 

Γ λi + α + 1( 
x
λi+α. (29)

,us, there exists a diagonal matrix IΦ,α(x) of dimension
N × N such that

I
α
0(Φ)(x) � IΦ,α(x)Φ(x). (30)

,e matrix IΦ,α(x) elements are obtain as follows:

IΦ,α(x) � diag IT,α(x), . . . , IT,α(x) , (31)

where IT,α(x) ≔ xαG (Iα
0(Λ)(x) � IT,α(x)Λ(x)) and G is a

diagonal matrix of the form

(G)i,i �
Γ λi + 1( 

Γ λi + α + 1( 
. (32)

To derive the operational matrix of integral for the
Müntz–Legendre wavelets, it follows from equation (25) that

P I
α
0( (Ψ(x)) � P I

α
0(  T

− 1Φ(x) 

� T
− 1

IΦ,α(x)Φ(x)

� T
− 1

IΦ,α(x)TΨ(x).

(33)

,is gives rise to

Iα(x) ≔ T
− 1

IΦ,α(x)T. (34)

Now using cDα
a ≔ In− α

a Dn, we can introduce the op-
erational matrix for the Caputo fractional derivative

Dα(x) ≔ D
n
In− α(x). (35)

3. Pseudospectral Method

To derive the numerical solution of equation (2), the ap-
proximate solution can be approximated by
Müntz–Legendre wavelets as follows:

y ≈ P(y)(x) � Y
TΨ(x), (36)

where Y is a vector of dimension N that should be deter-
mined. A similar expression is valid for
Fα0 ,...,ασ[x,P(y)(x)] ∈ Cc([0, 1]) where Cc([0, 1]) is the
space of functions that satisfies (x − a)cf(x) ∈ C([0, 1]) for
0≤ c< 1.

P fα0 ,...,ασ[x,P(y)(x)] (x) � F
TΨ(x). (37)

To compute the elements of matrix F, let yJ � P(y);
then, using cDα

a ≔ In− α
a Dn,

P fα0 ,...,ασ x, yJ(x)  (x) � f x, yJ(x),
c
D

α1
a yJ (x), . . . ,

c
D

ασ
a yJ (x) 

� f x, yJ(x),I
n1− α1
0 D

n1 yJ (x), . . . ,I
nσ − ασ
0 D

nσ yJ (x) ,

I
nj − αj

0 D
nj yJ (x) ≔ Y

T
I

nj− αj

0 D
nj (Ψ)(x) � Y

T
I

nj− αj

0 D
nj (Ψ)(x)

� Y
T
D

nj Inj− αj
(x)Ψ(x), j � 1, . . . , σ.

(38)

It follows from equations (36) and (38) that we can
compute the residual in approximating equation (2) as
follows:

rJ(x) � DαY
T

− F
T

 (x)Ψ(x). (39)

We aim to reduce the residual to zero. One of the
available methods is to use the pseudospectral method such
that rJ(xi) � 0 where xi are the collocation points. In this
paper, we use the shifted Legendre and Chebyshev poly-
nomial zeros. ,is gives rise to a system of linear or non-
linear algebraic equations that should be solved to find the
unknown coefficients Y. To apply the initial conditions (2),
we replace the first n equations of the obtained system of the
pseudospectral method with them.

rJ xi(  η ≔ Y
T
D

ηΨ(0) − qη, η � 0, . . . , n − 1. (40)

3.1. Convergence Analysis. It follows from [1] that the
fractional integration operators Iα

0 is bounded in Lp[0, 1]

(see [1] Lemma 1(a))

I
α
0y

����
����Lp(0,1)
≤Cα‖y‖Lp(0,1),

Cα �
1
Γ(α + 1)

.

(41)

Also there is an optimal error estimate in term of error
between the Müntz–Legendre polynomials derivative Dy

and the exact derivative P(Dy), via

‖Dy − P(Dy)‖L2(0,1)≤CD(r − 1)
1− n

|y|Hn,r− 1(0,1), (42)

where CD is a constant and

|g|
2
Hn,r− 1(0,1) � 

r− 1

l�min n,r− 1{ }

g
(l)

(t)
�����

�����
2

L2(0,1)
(43)

is a seminorm.

Theorem 1. Let n � [− α] and α ∈ R+. Assume that
fα0 ,...,ασ[t, y] ∈ Hn[0, 1] and satisfies the Lipschitz condition
(3). Also, assume that y and yJ are the exact and the ap-
proximate solutions (39) of equation (2), respectively.

If y is a sufficiently smooth function, then the overall
error

4 Complexity



e(x) �
c
D

α
0(y)(x) − P

c
D

α
0(y)( (x) − fα0 ,...,ασ[t, y] + P fα0 ,...,ασ t, yJ   (44)

satisfies

‖e(x)‖L2(0,1)⟶ 0, as r⟶∞, or J⟶∞. (45)

Proof. If fα0 ,...,ασ[t, y] ∈ Hn[0, 1], then by Lemma 1, we can
write

fα0 ,...,ασ t, yJ  − PJ fα0,...,ασ t, yJ  
�����

�����L2(0,1)
≤ c1(r − 1)

− n 2J− 1
 

− n
f

(n)
α0 ,...,ασ t, yJ 

�����

�����L2(0,1)
. (46)

Using the Lipschitz conditions (3) and (41), we can write
the following bound:

fα0 ,...,ασ[t, y] − fα0 ,...,ασ t, yJ 
�����

�����L2(0,1)
≤ Lσ


 

σ

j�0

c
D

αj

0 y − yJ 

����������

����������
L2(0,1)

� Lσ


 

σ

j�0
I

nj− αj

0 D
nj y − yJ 

����������

����������
L2(0,1)

≤ Lσ


 

σ

j�0
Cnj− αj

D
nj y − yJ 

�����

�����L2(0,1)
.

(47)

Now, applying equation (41) and ,eorem 2 [24], we
have

fα0 ,...,ασ[t, y] − fα0 ,...,ασ t, yJ 
�����

�����L2(0,1)
≤ Lσ


 

σ

j�0
Cnj − αj

CD
nj (r − 1)

1− n
y

nj − 1( 


Hn,r− 1(0,1)

≤ Lσ


 

σ

j�0
Cnj − αj

CD
nj (r − 1)

1− n 2J− 1
 

− n
y

n+nj− 1( 
������

������L2(0,1)
.

(48)

Also, using Lemma 1 and equation (41), we have

c
D

α
0(y)(x) − P

c
D

α
0(y)( (x)

����
����L2(0,1)
≤ c2(r − 1)

− n 2J− 1
 

− n c
D

α
0y

����
����L2(0,1)

� ≤ c2(r − 1)
− n 2J− 1

 
− n

I
n− α
0 D

n
(y)

����
����L2(0,1)

≤Cn− αc2(r − 1)
− n 2J− 1

 
− n

y
n

����
����L2(0,1)

.

(49)

Subtracting equation (2) from equation (39), one can
write

e(x) �
c
D

α
0(y)(x) − P

c
D

α
0(y)( (x) − fα0 ,...,ασ[t, y] + P fα0 ,...,ασ t, yJ   + fα0 ,...,ασ t, yJ  − fα0 ,...,ασ t, yJ . (50)
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Taking norms from both sides of equation (50) and using
equations (46)–(49), we end up with

‖e(x)‖L2(0,1)≤
c
D

α
0(y)(x) − P

c
D

α
0(y)( (x)

����
����L2(0,1)

+ fα0 ,...,ασ[t, y] − fα0 ,...,ασ t, yJ 
�����

�����L2(0,1)

+ fα0 ,...,ασ t, yJ  − P fα0 ,...,ασ t, yJ  
�����

�����L2(0,1)

≤Cn− αc2(r − 1)
− n 2J− 1

 
− n

y
n

����
����L2(0,1)

+ Lσ


 

σ

j�0
Cnj − αj

CD
nj (r − 1)

1− n 2J− 1
 

− n
y

n+nj− 1( 
������

������L2(0,1)

+ c1(r − 1)
− n 2J− 1

 
− n

f
(n)
α0 ,...,ασ

t, yJ 
�����

�����L2(0,1)
.

(51)

Suppose that C1 ≔ maxCnj− αj
CD

nj  (j � 0, . . . , σ) and
C ≔ max Cn− αc2, C1, c1 ; then, we can obtain the following
from equation (51):

‖e(x)‖L2(0,1)≤C(r − 1)
− n 2J− 1

 
− n

y
n

����
����L2(0,1)

+ Lσ


 

σ

j�0
y

n+nj − 1( 
������

������L2(0,1)
+ f

(n)
α0 ,...,ασ t, yJ 

�����

�����L2(0,1)
⎛⎝ ⎞⎠. (52)

It is easy to show that ‖e(x)‖L2(0,1)⟶ 0 as r⟶∞ or
J⟶∞. □

4. Numerical Implementation

In this section, we reported the numerical results for some
examples to show the accuracy and efficiency of the method.

To this end, we have performed all numerical computations
in Maple and Matlab simultaneously. Wherever collocation
nodes have not been reported, we have used Legendre nodes.

Example 1. Let us dedicate the first example to the following
one.

c
D

α
0(y)(x) +

c
D

α1
0 (y)(x) +[y(x)]

2
� x

2
− x 

2
+

2x
2− α

Γ(3 − α)
+

2x
2− α1

Γ 3 − α1( 
−

2x
1− α1

Γ 2 − α1( 
,

y(0) � 0, y′(0) � − 1.

(53)

,e exact solution is reported in [4] as follows:

y(x) � x
2

− x. (54)

To show the ability and efficiency of the proposed
method, Tables 1 and 2 are reported. ,e absolute error for
proposed method is compared with the fractional-Lucas
optimization method [4] and Chebyshev wavelet method
[26] in Table 1. ,e results illustrate that the proposed
method is flexible against other methods and gives a better
approximation. We show L2–error, L∞–error, and CPU
time for different values of α and α1 taking μ � 0.5 in Table 2.

Example 2. ,e second example is dedicated to the fol-
lowing equation:

c
D

α
0(y)(x) +[y(x)]

2
� x +

xα+1

Γ(α + 2)
 

2

,

y(0) � 0y′(0) � − 1.

(55)

,e exact solution is reported in [5] as follows:

y(x) �
x
α+1

Γ(α + 2)
, 0< α≤ 2. (56)

In Table 3, we compare the maximum of absolute value
error of our method with fractional-order generalized
Laguerre functions (FGLFs) [5]. In this example, we set the
value of μ equal to α. L2–errors taking different vales for r

and absolute value of error for different values of α are
plotted in Figure 1.
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Example 3. We dedicated this example to the Bagley–Torvik
equation [27, 28]:

D
2
y(x)+

c
D

3/2
0 (y)(x) + y(x) � 1 + x,

y(0) � 1, y′(0) � 1.
(57)

,e exact solution can be found in [27, 28], which is
y(x) � x + 1.

In Figure 2, we plot the exact solution along with the
approximate solution. Also, in this figure, the absolute value
of error is reported for μ � 0.5, r � 3, and J � 1. In Table 4,
we compare the proposed method with the Bessel

Table 1: Comparison of the absolute error for Example 1.

x

Our method
Fractional-Lucas optimization

method [4] (m � 2)
Chebyshev wavelet method [26]

(M � 6, k � 4)Chebyshev nodes
(r � 5, J � 1, μ � 0.5)

Legendre nodes
(r � 5, J � 1, μ � 0.5)

0.1 1.3620 × 10− 49 2.0240 × 10− 49 2.8022 × 10− 17 8.8658 × 10− 6

0.2 6.2780 × 10− 49 5.2750 × 10− 49 1.1208 × 10− 14 8.5359 × 10− 6

0.3 1.3344 × 10− 48 9.4020 × 10− 49 2.5219 × 10− 14 8.1318 × 10− 6

0.4 2.1909 × 10− 48 1.4212 × 10− 48 4.4835 × 10− 14 7.6897 × 10− 6

0.5 3.1020 × 10− 48 1.9086 × 10− 48 7.0055 × 10− 14 7.1843 × 10− 6

0.6 4.0646 × 10− 48 2.4139 × 10− 48 1.0087 × 10− 13 6.7665 × 10− 6

0.7 4.9381 × 10− 48 2.8187 × 10− 48 1.3730 × 10− 13 6.3058 × 10− 6

0.8 5.8985 × 10− 48 3.3089 × 10− 48 1.7934 × 10− 13 5.8497 × 10− 6

0.9 6.8068 × 10− 48 3.7540 × 10− 48 2.2697 × 10− 13 5.4018 × 10− 6

Table 2: L2–error, L∞–error, and CPU time taking different values for α and α1 for Example 1.

α � 1.75 α � 1.80
α1 � 0.2 α1 � 0.5 α1 � 0.8 α1 � 0.2 α1 � 0.5 α1 � 0.8

L2–error 5.52 × 10− 49 2.41 × 10− 48 2.76 × 10− 48 1.35 × 10− 47 1.16 × 10− 47 1.33 × 10− 47

L∞–error 8.92 × 10− 49 3.66 × 10− 48 4.24 × 10− 48 2.10 × 10− 47 1.78 × 10− 47 2.07 × 10− 47

CPU time 0.906 0.969 1.031 0.953 0.985 0.968

Table 3: ,e maximum of absolute value error taking different values for r and α for Example 2.

r � 8 r � 12
α � 0.5 α � 0.7 α � 0.8 α � 0.5 α � 0.7 α � 0.8

Our method 8.31 × 10− 46 9.72 × 10− 5 1.56 × 10− 4 7.55 × 10− 46 1.89 × 10− 5 3.32 × 10− 5

FGLFs [5] 1.42 × 10− 14 4.28 × 10− 3 6.08 × 10− 3 1.42 × 10− 14 1.74 × 10− 3 1.87 × 10− 3
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Figure 1: Plot of L2–errors taking different vales for r (a) and absolute value of error for different values of α (b) for Example 2.
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collocation method [28]. We observe that our method gives
a better result than [28]. In this example, we put μ � 0.5.

5. Conclusion

In this paper, we apply the pseudospectral method based on
Müntz–Legendre wavelets to solve the multiorder fractional
differential equations with Caputo fractional derivative. To this
end, we represent the Caputo fractional derivative operator in
the Müntz–Legendre wavelets. ,e results illustrate that by
selecting the proper value for μ, the proposed method gives
better results than others. ,e most important advantage of this
method over other methods is its flexibility and ease of use. In
most cases, the approximate solution is very close to the exact
solution and we can almost say that the exact solution is
obtained.
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