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Cluster growth models are utilized for a wide range of scientific and engineering applications, including modeling epidemics and
the dynamics of liquid propagation in porous media. Invasion percolation is a stochastic branching process in which a network of
sites is getting occupied that leads to the formation of clusters (group of interconnected, occupied sites). .e occupation of sites is
governed by their resistance distribution; the invasion annexes the sites with the least resistance. An iterative cluster growthmodel
is considered for computing the expected size and perimeter of the growing cluster. A necessary ingredient of the model is the
description of the mean perimeter as the function of the cluster size. We propose such a relationship for the site square lattice..e
proposed model exhibits (by design) the expected phase transition of percolation models, i.e., it diverges at the percolation
threshold pc. We describe an application for the porosimetry percolation model. .e calculations of the cluster growth model
compare well with simulation results.

1. Introduction

Percolation theory [1–3] has been developed to study the
properties of connected clusters in graphs and their asso-
ciated percolation processes. .e simplest problem arising
from percolation theory is the site/bond percolation: a
regular lattice is considered in which either the cells (sites) or
the edges (bonds) are the relevant entities. Each site/bond is
independently open with probability p and closed otherwise.
.e term cluster refers to a set of neighboring open sites/
bonds. A fundamental question of percolation theory is
whether for a given p, there exists (in the almost sure sense) a
cluster that spans through the entire lattice. .e probability
of the existence of a spanning cluster depends on the oc-
cupation probability p and the type of the lattice [4–6]. It was
found that there is a strict critical percolation threshold pc

characteristic of the lattice type. For an infinite lattice, the
probability of the existence of the spanning cluster is zero for
p<pc, while it is one for p>pc. At p � pc, there is a sin-
gularity in percolation and many properties of the largest
cluster follow a power law of |p − pc|. To this date, pc was
derived or computed for many different lattice types. For a

few special lattices, the exact value of pc is known, e.g., site
percolation threshold of triangular and bond thresholds of
triangular, square, and honeycomb lattices [7, 8]. .ere also
exist some other more exotic lattice types, such as the
martini lattices and bowtie lattices, for which pc is solved
exactly [9]. For other lattice types, an extensive number of
simulations were carried out to determine pc numerically
[6, 10].

.e existence of the critical threshold pc makes perco-
lation suitable to model numerous natural and engineering
phenomena [11]. An oft-cited application is the modeling of
liquid propagation in a porous medium, while a nowadays
highly relevant application is the modeling of disease spread
[12, 13]. In the latter, the underlying graph is essentially a
network of contacts where the adjacency of the sites defines
the contacts. .is relates the mean coordination number of
the graph, the percolation threshold pc, and the basic re-
production rate (BRP) of diseases that show how many
people can be infected by one infected person on average.
.e critical value of the BRP is 1 and the infection spread
becomes unbounded if one person can potentially infect
more than one other person. For lattices, the critical BRP is
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actually larger as each site has only a small group of local
contacts; this is why reducing contacts (e.g., travel restric-
tions) are effective measures of defense. Another way to stop
the spread of the disease is to immunize people. Translating
this to percolation, the goal is to contain the cluster sizes; i.e.,
a site is susceptible to infection with probability p and has
“immunity” otherwise. Similar to the concept of herd im-
munity, we can contain the finite cluster sizes, if p<pc [14].

We focus on the site variant of the problem, since it is
more general than the bond variant (see Section 4.2 of [15]).
.e more complex percolation models were first developed
to capture the dynamics of liquid propagation in porous
media. .e classical invasion percolation model [16, 17]
assigns so-called invasion resistances r ∈ [0, 1] to the sites of
the lattice. .e liquid propagation is initiated from a des-
ignated set of sites called the starting set. .e unoccupied
sites that are neighbors of some occupied sites constitute the
interface of the occupied cluster (perimeter sites of the
cluster). In each step, the liquid occupies the interfacial site
whose invasion resistance r is the smallest.

Invasion percolation and its variants are complex
branching processes [18]. .e evolution of the occupied
cluster is strongly influenced by its previous states; i.e., the
invasion process has memory. Simulation of the invasion
process requires tracking of the new interfacial sites that are
produced by the recently annexed sites. Our major con-
tribution in this article is the introduction of a simple, it-
erative cluster growth model to calculate the evolution of the
cluster size and perimeter in invasion percolation models.
.is cluster growth model shares many similarities with the
standard epidemic growth algorithm [10, 19].

Bak and Kalmár-Nagy introduced the porosimetry
percolation model [20, 21], which is a variant of the classical
invasion percolation model, to capture the dynamics of
intrusion of nonwetting liquid into porous medium, such as
in mercury injection porosimetry [22, 23]. In this model, the
occupation of the sites is controlled by an external field, the
pressure p ∈ [0, 1] (analogous to the occupation probability
of the classical percolation problem). As opposed to invasion
percolation, in porosimetry percolation, multiple sites can be
added to the occupied cluster in one step. For a given
pressure, every unoccupied, accessible site with r≤p will be
occupied. A site is accessible only if it is part of a path of
interconnected sites in which every site has r≤p and this
path is connected to the starting set.

In porosimetry percolation, we can track the evolution of
the cluster as p is increased, and compute, e.g., the cluster
size as the function of p. In [20], we argued that this per-
colation simulation is essentially an input-output mapping.
.e input is the resistance distribution of the sites (cumu-
lative distribution function of the resistance) and the output
is cluster size per lattice site as a function of p. Indeed, there
is a unique mapping between the input and the output that
only depends on the topology of the lattice porosimetry
percolation is simulated on. However, a deeper study and
explanation were omitted. If this mapping is indeed inde-
pendent of the input resistance distribution of the sites, is it
possible to determine the mapping without simulation? If so,
we could use the mapping to predict the cluster size as

function of p. Can we also use the cluster growth model to
calculate this expected cluster size for any p? In this work, we
intend to answer these questions. We show that the con-
sidered cluster growth model can predict the cluster size
evolution of porosimetry percolation with good accuracy
below the percolation threshold pc.

.is article is structured as follows. In Section 2, we
summarize the preliminaries: properties of lattice animals
and invasion percolation clusters. In Section 3, the iterative
cluster growth model is introduced. We derive how the
occupied cluster evolves. We also demonstrate that the
cluster growth model exhibits the criticality feature of
percolation. Details of the cluster growth model are dis-
cussed for the site square lattice. In Section 4, we apply the
cluster growth model to porosimetry percolation. A detailed
description of porosimetry percolation is provided. We
prove that the mapping of porosimetry percolation only
depends on the topology of the network. We compare the
cluster size evolutions obtained with both the cluster growth
model and porosimetry percolation simulations. In Section
5, conclusions are drawn.

2. Preliminaries

In this section, we define the key terms and the literature
results regarding percolation clusters that are the most
relevant to this article. .e occupied cluster (or simply
cluster) is a nearest-neighbor connected set N of occupied
sites inZ2, also called a lattice animal or polyomino..e size
of the polyomino is the cluster size n � |N|.

Another important characteristic is the interface of the
cluster. .e interface M is the boundary of N, consisting of
the perimeter sites, i.e., the set of sites that are not in N but
adjacent to some sites in N. .e perimeter is the number of
interfacial sites (or perimeter sites), i.e., m � |M|.

Let sn,m denote the number of lattice animals with size n

and perimeter m. .e so-called perimeter polynomial Dn(q)

is the generating function:

Dn(q) � 􏽘
m

sn,mq
m

. (1)

For example, the first few perimeter polynomials for
fixed polyominoes are as follows [24]:

D1(q) � q
4
,

D2(q) � 2q
6
,

D3(q) � 4q
7

+ 2q
8
,

D4(q) � 9q
8

+ 8q
9

+ 2q
10

.

(2)

.eperimeter polynomials up to n � 48 are published on
Mertens’ webpage [25]..e number of lattice animals of size
n on the site square lattice is

sn � 􏽘
m

sn,m � Dn(1). (3)

.e relation between the cluster size n and the perimeter
m is discussed thoroughly in the literature as the statistics of
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lattice animals [26–28]. .e mean perimeter (or mean in-
terface size) of lattice animals of size n is

I �
1
sn

􏽘
m

msn,m. (4)

As the enumeration of sn,m is still an open problem
[26, 29], I cannot be computed directly from (4). .ere exist
analytic formulae for both the minimum and maximum
possible perimeter of a polyomino on the site square lattice
as the function of its size [30–32]:

min(m) � ⌈2 +
�����
8n − 4

√
⌉, (5)

max(m) � 2n + 2. (6)

For the mean interface size I, there is an empirical
formula for large polyominoes proposed by Conway and
Guttman [33]:

I ≈ 1.195n. (7)

Note that lattice animals are purely geometric constructs.
In invasion percolation models, the formation of the cluster
is governed by the resistances of the sites. A fundamental
question is the expected cluster size Φ (and interface size I)
for a prescribed pressure p such that any site with r>p

cannot be occupied.
.e probability that a cluster of size n develops from a

single starting site is given by the following [34, 35]:

􏽘
m

sn,mp
n
(1 − p)

m
. (8)

.is equation is the link between percolation clusters
and lattice animals. Based on (8), one could derive Φ (and
I) as the function of p for invasion percolation. However,
this derivation again requires the enumeration of lattice
animals. .ere exist a few formulae that describe the ex-
pected cluster size Φ as a function of p. .ough invasion
percolation is different from ordinary percolation, it also
exhibits the same criticality feature. .is means that above
the critical pressure pc, that is equivalent to the percolation
threshold, of the invasion becomes unbounded. For p<pc,
the occupied cluster consists of a finite number of sites, but
for p>pc, it becomes infinitely large. In particular, the
percolation threshold for the site square lattice is
pc ≈ 0.5927 [36, 37].

Researchers were primarily interested in the properties
of the cluster close to criticality. .eir derivations assumed
that the invasion is initiated from a single site of the lattice.
Sykes et al. [24] derived the expected cluster size Φ for p’s
sufficiently close to pc; that is,

Φ ≈ 0.147 p − pc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− c

, c �
43
18

. (9)

.e “low-density” (small p) series expansion of the
expected cluster size Φ as a function of p is in the following
form (see, for example, [24]):

Φ � 􏽘
i

cip
i
, i � 0, 1, . . . , (10)

where ci are constant coefficients. We determined these
constants up to c47 based on the perimeter polynomials.

In Figure 1, we depict the expected cluster size as a
function of p for the site square lattice. For the simulations, a
finite 1000 × 1000 lattice was created, and the starting set was
an innermost site.

In this figure, we also depicted Φ based on both (9) and
(10). As Figure 1 shows, (9) is only accurate near the crit-
icality, while the series expansion (10) fits well for small p’s
but diverges from the simulated curve around p ≈ 0.45. .is
is why we also calculated the Padé approximant [38] of order
[46/1] of (10) because it is accurate on a broad pressure
range.

.ere also exists a formula similar to (9) for the mean
interface size I of large clusters and p’s sufficiently close to pc

that was derived by Stauffer [34] andWolff and Stauffer [39].
.ey suggested the following relation:

I ≈
1 − p

p
Φ +

1 − p

p
2 φ(x)Φσ , σ �

36
91

, (11)

where x � (p − pc)Φσ and φ(x) � − (f′(x)/f(x)), and

f(x) ≈ 4.81e
− 7.37(x+0.462)2

. (12)

is the scaling function [39]. We can also compute Φ and I

from cluster size and interface size statistics of percolation
clusters. We carried out 235000 numerical simulations on
1000 × 1000 site square lattices and extracted the mean
interface size I as a function of the mean cluster size Φ (the
mean simulation results are analogous to the expected
value). .e starting set was a single, innermost site in the
lattice. .e cluster sizes and the interface sizes were eval-
uated at p � 0.5, 0.51, . . . , 0.59. Figure 2 shows the mean
interface sizes corresponding to different cluster size in-
tervals that are represented by their mean cluster size.

Note that typical large percolation clusters do not obey
equation (7); their mean interface size is actually signifi-
cantly smaller. .ey rather tend to maintain a “spherical”
shape as they spread isotropically on average. Although
Figure 2(a) suggests a predominantly linear relation between
I and Φ, there is also a softening nonlinear component that
is noticeable at smaller Φ’s, see Figure 2(b).

Figure 3 demonstrates the difference between the pe-
rimeter distribution of all possible polyominoes and sim-
ulated percolation clusters of the same size.

3. The Cluster Growth Model

We consider an iterative cluster growth model to calculate
the evolution of percolation clusters..e inputs of the model
are the pressure p, the starting cluster size Φ0 and interface
size I0 of the prescribed starting set, and the function
I � g(Φ). We want to calculate the evolution of the expected
cluster size Φ and the corresponding mean interface size I.
.e cluster growth model exhibits the criticality feature of
percolation models as the iteration diverges at and above the
percolation threshold.

We consider uniform resistance distribution of the sites
(without the loss of generality, see Section 4.1) and a
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connected starting set. .e expected number of sites that get
occupied from the initial interface is pI0 at pressure p; this
leaves (1 − p)I0 interfacial sites unoccupied. After the first
round of iteration, Φ1 is obtained immediately as

Φ1 � Φ0 + pI0. (13)

We have pI0 recently occupied sites; these sites are the
“surviving branches.” Each of these sites provides some (e.g.,

0–3 for the site square lattice) “new” interfacial sites; let us
denote the total number of these new interfacial sites with
ΔI. In the next step, the cluster can only occupy the new
interfacial sites; thus, the expected number of sites annexed
by the cluster is pΔI. Figure 4 explains how the cluster and
its interface evolve in one iteration and how to interpret ΔI.

Let us assume that Φk− 1 and Ik− 1 are already obtained as
in Figure 4(b). .e following sites constitute Ik− 1:

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Pressure p

104

10

100

1000

1

Ex
pe

ct
ed

 cl
us

te
r s

iz
e Φ

Percolation simulation
Series expansion (10)
Padé approximant of (10)
Sykes’ formula (9)

Figure 1: Simulated mean cluster size and expected cluster sizes based on Sykes’ formula (9), their low-density series expansion ap-
proximation (10) of Φ, and the [46/1] Padé approximant of (10).
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Figure 2: .e mean interface size I of percolation clusters for different cluster size intervals (circles). .e thin line connects the first
(Φ, I) � (1, 4), which is the data point corresponding to a single-site cluster, and the last available data point to highlight the nonlinear
relation between I and Φ.
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(i) All the “extinct” interfacial sites that already con-
tributed to Ik− 2 (dots in Figure 4(b))

(ii) “New” interfacial sites that became part of the in-
terface in the k − 1th iteration (circles in Figure 4(b))

.e extinct interface sites were already tested in the
k − 1th step. Since they were not occupied, their resistance
must be larger than p. .erefore, in the kth step, only the
new interface sites will be considered for possible occupa-
tion. Based on Figure 4(b), ΔI can be derived and it is

ΔI � Ik− 1 − Ik− 2 +Φk− 1 − Φk− 2. (14)

.us, the expected number of sites annexed in the kth
iteration step is p(Ik− 1 − Ik− 2 +Φk− 1 − Φk− 2). Now, we have
Φk and from this train of thought, a simple recursive formula
is derived for the expected cluster size and interface size:

Φk � Φk− 1 + p Ik− 1 − Ik− 2 +Φk− 1 − Φk− 2( 􏼁, k≥ 2,

Ik � g Φk( 􏼁, k≥ 1,
(15)

where g(Φk) is a function of the cluster size. Based on the
preliminaries (see Section 2), we expect that g(Φk) consists
of a linear and a nonlinear part, i.e.,

(a) (b)

Figure 4: (a) .e cluster (filled squares) and its interface (dots) after the k − 2th iteration step: Φk− 2 is the number of black sites and Ik− 2 is
the number of dots. (b) .e cluster (filled and striped squares) and its interface (dots and circles) after the k − 1th iteration step: Φk− 1 is the
number of black and striped sites and Ik− 1 is the number of dots and circles. .e striped sites are the recently occupied sites, while the circles
designate the new interface sites whose number is ΔI. .e dots are now “extinct” interfacial sites.
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Figure 3: Probability density function of perimeters for all the possible polyominoes of size n � 48 and simulated percolation clusters having
the same size.
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Ik � g Φk( 􏼁 � gl Φk( 􏼁 + gnl Φk( 􏼁, gl Φk( 􏼁 � aΦk + b.

(16)

We also expect g(Φk) to be a strictly monotonously
increasing function. In Section 3.2, we dissect g(Φk) further
for the site square lattice. Finally, the complete formula of
the iteration describing the cluster growth model is as
follows:

Φ1 � Φ0 + pI0,

Φk � Φk− 1 + p Ik− 1 − Ik− 2 +Φk− 1 − Φk− 2( 􏼁, k≥ 2,

Ik � aΦk + b + gnl Φk( 􏼁, k≥ 1.

(17)

3.1. Critical Behavior of the Cluster Growth Model. We
demonstrate that the cluster growth model exhibits the
criticality feature of percolation. .e iterative cluster growth
calculation yields a difference equation for the cluster size
(assuming that I0 � g(Φ0) holds); i.e.

Φ1 � Φ0 + pI0,

Φk � (1 + p + pa)Φk− 1 − (p + pa)Φk− 2 + p gnl Φk− 1( 􏼁(

− gnl Φk− 2( 􏼁􏼁, k≥ 2.

(18)

Equation (18) can be transformed into a set of two first-
order nonlinear difference equations as follows:

Φk− 1

Φk

􏼠 􏼡 �
0 1

− (p + pa) 1 + p + pa
􏼠 􏼡

Φk− 2

Φk− 1
􏼠 􏼡

+
0

p gnl Φk− 1( 􏼁 − gnl Φk− 2( 􏼁􏼂 􏼃
􏼠 􏼡.

(19)

Let us investigate the stability of (19) via fixed-point
analysis. Linearization of (19) around the fixed point Φ∗ of
the iteration yields

Φk− 1

Φk

􏼠 􏼡 �
0 1

− p − pa − pgnl
′ Φ∗( 􏼁 1 + p + pa + pgnl

′ Φ∗( 􏼁
􏼠 􏼡

Φk− 2

Φk− 1
􏼠 􏼡 � A

Φk− 2

Φk− 1
􏼠 􏼡.

(20)

.e eigenvalues λ1, λ2 of A are obtained by solving the
following characteristic equation:

λ2 − TrAλ + detA � λ2 − 1 + p 1 + a + gnl
′ Φ∗( 􏼁( 􏼁( 􏼁λ

+p 1 + a + gnl
′ Φ∗( 􏼁( 􏼁 � 0, λ1 � 1, λ2 � p 1 + a + gnl

′ Φ∗( 􏼁( 􏼁.

(21)

Based on Figure 2, we expect a softening nonlinearity;
i.e., we have

lim
Φ∗⟶∞

gnl
′ Φ∗( 􏼁 � 0. (22)

We get the eigenvalues λ1 � 1, λ2 � p + pa for
Φ∗ ⟶∞. Since λ1 � 1, the fixed point is a neutral point for

|λ2|< 1 (Lyapunov stable). .is latter can only hold for
p + pa≤ 1, so this is a condition for marginal stability. For
p + pa> 1, the second eigenvalue |λ2|> 1 regardless of the
value of Φ∗ and the system becomes unstable. .is shows
that the radius of convergence of the system (20) is p + pa �

1 for large Φ’s. .e cluster growth model is consistent with
the existence of the critical threshold pc, if

a �
1 − pc

pc

, (23)

holds near pc. .is result is also consistent with equation
(11).

3.2. Interface Update for the Site Square Lattice. We attempt
to construct a function I � g(Φ) based on literature results
that provides accurate calculations compared to percolation
simulations.We present here our proposal for the site square
lattice, but such a relation can be derived for any other types
of lattices.

.emean interface size I of the cluster of expected sizeΦ
can be calculated with Stauffer’s formula (11). Substituting
equation (12) into φ(x) and then φ(x) into (11) leads to

I ≈
1 − p

p
Φ + 6.81

1 − p

p
2 Φ

σ

+ 14.74
1 − p

p
−
1 − p

p
2 pc􏼠 􏼡Φ2σ , p<pc.

(24)

.is equation also shows softening nonlinearity as the
exponents σ < 2σ < 1. We recall that this formula is only
accurate for large Φ’s near pc. To make use of (24), we have
to determine the lower threshold Φth above which it is
applicable with reasonable accuracy. Since we argued that
the relation between the mean interface size and the cluster
size is softening nonlinear, we expect that the ratio I/Φ
decreases for increasing Φ. We can test this expectation by
substituting either (9), or the series expansion approxima-
tion (10), or the Padé approximant of (10) into (24). We
could not work with (9) and (10) due to their inaccuracy in
the important midrange p ∈ [0.45, 0.55]; see Figure 1.
However, the Padé approximant is accurate in this particular
range; it is a significant improvement over the original series
expansion approximation (10). We substituted the Padé
approximant into equation (24) and plotted I/Φ against p.

Figure 5 shows that I/Φ is not decreasing for some
p<pth! Via iterative search, we found that I/Φ has a
maximum at pth � 0.465 (marked by a vertical line in the
figure) and the corresponding threshold cluster size is
Φth � 29.69. .is shows that (24) is only applicable for
Φ≥Φth � 29.69.

Moreover, note that, in the limit of p⟶ pc, equation
(24) reduces to

I ≈
1 − pc

pc

Φ + 6.81
1 − pc

p
2
c

Φσ . (25)

We see that the applicability of (24) is heavily restricted:
it is only valid for a single-site starting set,Φ0 � 1 and I0 � 4.
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Moreover, we cannot use it, until the expected cluster size
exceeds the threshold size Φth � 29.69. However, we need to
update I also for smallerΦ’s and for different starting sets in
the iteration.

We assume that below the threshold Φth, the cluster
develops through separate branches. .e threshold value
Φth � 29.69 corresponds to the particular starting set
Φ0,ref � 1, I0,ref � 4 with pth � 0.465. We adjust Φth for any
larger values of p, Φ0, and I0. A larger Φ0 must increase the
threshold size by the same amount, while a larger p and/or I0
increases the number of branches emanating from the
starting set by the ratio pI0/(pthI0,ref ). Equation (26) assigns
Φth,mod ≥Φth accordingly:

Φth,mod � Φ0 − Φ0,ref +
pI0

pthI0,ref
Φth, Φth � 29.69,

Φ0,ref � 1, I0,ref � 4.

(26)

Let us assume that the starting set is small, i.e.,Φ0≪Φth,
but it is not restricted to the single-site case with Φ0 � 1,
I0 � 4. To calculate Φ and I with high accuracy, a piecewise
g(Φ) is proposed. .e linear part gl(Φ) is

gl(Φ) �

2Φ + 2, 1≤Φ≤ 2,

0.736Φ + 2, 2<Φ<Φth,mod,

1 − p

p
Φ + 2, Φ≥Φth,mod.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

.e nonlinear part gnl(Φ) is

gnl(Φ) �

0, 1≤Φ≤ 2,

1.722Φσk + 0.152Φ2σ , 2<Φ<Φth,mod,

6.81
1 − p

p
2 Φ

σ
+ 14.74

1 − p

p
−
1 − p

p
2 pc􏼠 􏼡Φ2σ , Φ≥Φth,mod.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

Explanations of the cases are as follows:

(i) For 1≤Φ≤ 2, the expected cluster size Φ is between
that of a size of a single site (n � 1) and a domino
(n � 2). In this case, the interface size is trivial; see
equation (6): I � max(I) � 2Φ + 2.

(ii) In the range 2<Φ<Φth,mod, we use a fit obtained
from the mean interface size vs. cluster size statistics
from percolation simulations; see Figure 2. .e
constant parameter b � 2 was prescribed to keep
consistency with the previous case. .e structure of
the fit is analogous to Stauffer’s formula but with
constant coefficients.

(iii) ForΦ≥Φth,mod, we can finally use Stauffer’s formula
(24)..e constant parameter b � 2 was kept again to
keep consistency with the previous case.

Calculations with small starting sets are useful to
compare the cluster growth model with literature and

simulation results. However, for a lot of practical uses, we
need very large starting sets for which Φ0≫Φth. For such
large starting sets, we will simply use

I � g(Φ) �
1 − pc

pc

Φ + 2 + 6.81
1 − pc

p
2
c

Φσ , Φ0≫Φth.

(29)

.at is consistent with the limit expression (25) of
Stauffer’s formula for large cluster sizes. .e relaxation of Ik

is required at some iteration steps to avoid two possible
contradictions. For starting sets with I0≫g(Φ0), it is
possible to get Ik≪ Ik− 1 for low p’s. .is is highly atypical
during the low-pressure build-up of percolation clusters.
Moreover, we experienced that Stauffer’s formula may yield
(Ik/Φk)> (Ik− 1/Φk− 1) when p≪pc, whereas I/Φ ratio must
decrease as Φ increases; see Figure 5. .erefore, we also
incorporate a simple relaxation:

0.30 0.35 0.40 0.45 0.50 0.55
Pressure p

0.4

0.2

0.6

0.8

1.0

I/Φ

Figure 5: .e ratio I/Φ against p calculated with the Padé
approximant of (10). .e vertical line marks the maximum of I/Φ
on p ∈ [0, pc].
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Ik �

Ik− 1, g Φk( 􏼁< Ik− 1,

g Φk( 􏼁, Ik− 1 ≤g Φk( 􏼁≤
Ik− 1

Φk− 1
Φk,

Ik− 1

Φk− 1
Φk, g Φk( 􏼁>

Ik− 1

Φk− 1
Φk.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

Now, we show an example of how Φ and I evolve in the
cluster growth model. We study the (Φ, I) plane depicted in
Figure 6. All the possible (Φ, I) pairs are located within the
white area, which is bounded by the theoretical limits based
on equations (5) and (6). In Figure 6, the dots show the
evolution of (Φk, Ik) for pressure pth ≤p<pc and starting
Φ0≪Φth. By design, the iteration attracts any pair of initial
values (Φ0, I0) onto I � g(Φ) in one iteration step..us, the
iteration jumps to (Φ1, I1) located on g(Φ) and then follows
g(Φ) towards the fixed point (Φ∗, I∗). Upon reaching
Φth,mod, the function g(Φ) changes as specified by (27) and
(28). Hence, there is a slight but still noticeable breakpoint
here. Further breakpoints can be caused by the relaxation
(30), which was the case in the depicted example.

4. Application for Porosimetry Percolation

A porosimetry percolation simulation can compute the
evolution of the cluster for any p ∈ [0, 1], Φ can be com-
puted for any p, and it is finite on a finite network of sites.
.e cluster growth model can only calculate the evolution of
the cluster for pressures below pc, since the iteration diverges
for p≥pc. .erefore, we cannot replace porosimetry per-
colation simulation with the current cluster growth model.
Still, such a model has high practical importance since the
larger pores and most of the volume of a porous medium are
invaded typically at low pressures. .erefore, geologists and
reservoir engineers particularly focus on the low pressure
part of measurement results.

We note that in the approaches cited below, percolation
is simulated mostly on simple, connected graphs that rep-
resent three-dimensional pore structure rather than on
regular lattices. Site lattices are special subsets of simple,
connected graphs, as any site lattice can be defined as a
simple, connected graph. .e sites are the vertices of the
graph, and their adjacency defines the edges of the graph.

Our main goal with porosimetry percolation was to
exploit the most important result of a mercury injection
porosimetry measurement, the saturation curve. .e satu-
ration ϕ shows the fraction of the total pore volume occupied
by mercury at pressure p, the saturation curve shows ϕ as a
function of p. In the terminology of percolation and cluster
growth models, the saturation can be interpreted as the
expected cluster size scaled by the size of the network, e.g.,

ϕ �
Φ
L
2, (31)

where L is the side length of a finite site square lattice. .e
Washburn equation [40] specifies the relation p ∼ 1/ρ be-
tween pressure p and pore size ρ of the smallest pore, which

can be filled up with mercury at that pressure. .at is, a
larger p is required to fill a pore characterized by a smaller ρ.
.e pore size ρ is a physical property that is interpreted in
percolation models as r ∼ 1/ρ, the resistance of the pore. We
clarify that resistance r is a pressure-type quantity; it is equal
to pressure p at which the pore can be occupied. Based on
these relations, the resistance distribution of pores and thus
the pore size distribution (PSD) can be derived from the
saturation curve [41].

However, this derived PSD is incorrect due to the
shielding mechanism [42–44]. Shielding occurs when nar-
row capillaries surround a large pore, preventing it from
being filled up with mercury at the pressure equal to its
resistance; hence, this large pore is shielded. It will be oc-
cupied at a higher pressure, so it will contribute to the
saturation curve at that higher pressure. .erefore, any
resistance distribution and PSD derived from the saturation
curve are distorted compared to the real PSD.

Many studies discuss how to fix the PSD derived from
the saturation curve. Iterative optimizationmethods [44–46]
that take the PSD derived from measurement data as an
initial guess are a popular approach..e optimization goal is
to find a PSD for which the simulated saturation is close to
the measured one. .ere are other methods as well that do
not require material injection into the porous sample; e.g.,
imaging techniques [47–49] are common.

Bak and Kalmár-Nagy [20] proposed another method to
compute the PSD of porous rock samples, which involves
porosimetry percolation simulations on a random graph
model of the pore network. Compared to previously men-
tioned iterative methods, which were similar in spirit, their
method does not require an iterative search to get the correct
PSD. .is method also requires an initial input distribution
that is derived from the measured saturation curve that we

Expected cluster size Φ

Ex
pe

ct
ed

 in
te

rfa
ce

 si
ze
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(Φ0,I0)

(Φ
∗
,I
∗
)

Φth,mod

Figure 6: .e evolution of the iteration shown in the (Φ, I) plane.
.e initial position and the fixed point are denoted by empty and
filled squares, respectively. .e solid line and the dots show the
evolution of (Φk, Ik). .e vertical line marks Φth,mod.
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denote with ϕ1(p). As an initial guess, the PSD derived from
ϕ1(p) is used to assign a preliminary resistance distribution
to the network on which porosimetry percolation is simu-
lated. .e result of the simulation is another saturation
curve, denoted by ϕ2(p). .e main idea was to treat the
simulation as an input-output mapping: from input ϕ1(p), it
yielded output ϕ2(p). .e task is to find input ϕ0(p) for
which the output is the measured ϕ1(p). .en, the resistance
distribution and the PSD can be derived from ϕ0(p) instead
of ϕ1(p). .e method is illustrated in Figure 7.

.e mapping P relates ϕ1(p) and ϕ2(p) as

ϕ2(p) � P ϕ1(p)( 􏼁. (32)

Since the saturation curves are strictly monotonously
increasing functions on p ∈ [0, 1], P is a continuous bi-
jection, whose inverse is also continuous; i.e., P is a ho-
meomorphism. .us, the inverse of P exists and it can be
used to obtain ϕ0(p) as

ϕ0(p) � P
− 1 ϕ1(p)( 􏼁. (33)

It was argued in [20] that P does not depend on the
input ϕ1(p), it only depends on the structure of the network
porosimetry percolation is simulated on.We provide a proof
to this claim in the next subsection.

4.1. Porosimetry Percolation Mapping. We consider a lattice
onZ2 and the starting set is a single site. Since resistance r is
a pressure-type quantity, we can describe the input resis-
tance distribution with a cumulative distribution function
(CDF) F(p) ≡ F(r).

Distribution F(p) shows the probability that the resis-
tance of a site is r≤p. Based on equation (8), the probability
that the occupied cluster will have a size of n is given by

􏽘
m

sn,mF
n
(p)(1 − F(p))

m
. (34)

.e expected cluster size is

Φ � 􏽘
n

n 􏽘
m

sn,mF
n
(p)(1 − F(p))

m
. (35)

Assuming a finite network of sites, the saturation is Φ
scaled with the number of sites in the lattice. For instance,
the expected saturation of a site square lattice with L2 sites is
as follows:

ϕ �
1
L
2 􏽘

n

n 􏽘
m

sn,mF
n
(p)(1 − F(p))

m
. (36)

We can calculate (36) for all p ∈ [0, 1] to get the satu-
ration curve ϕ(p).

Let us draw the resistances of the sites from a uniform
distribution; i.e., we have F(p) � p. In this case, the
identity function is transformed into ϕ(p) by the mapping
P; i.e.,

ϕ(p) � P(p). (37)

Do we get the same ϕ for any resistance distribution
F(p)? Based on (36) and (37), we can formulate

ϕ(p) � P(p) �
1
L
2 􏽘

n

n 􏽘
m

sn,mp
n
(1 − p)

m
, p ∈ [0, 1].

(38)

Substituting F(p) for p into (38) yields

ϕ(p) � P(F(p))

�
1
L
2 􏽘

n

n 􏽘
m

sn,mF
n
(p) 1 − (F(p))

m
( 􏼁, p ∈ [0, 1].

(39)

We got back equation (32) on the left-hand side with
different notations. .is proves that mapping P is indeed
independent of F(p).

.e independence ofP from F(p) is an important result
since it means we can predict the expected cluster size/
saturation as the function of the pressure without actual
simulations for any F(p), e.g., using the proposed cluster
growth model.

4.2. Tests with Small Starting Sets (Φ0≪Φth). We test the
cluster growth model on the site square lattice with the
interface update proposed in Section 3.2. Based on Section
4.1, we can draw the resistances of the sites from uniform
distribution without loss of generality.

First, we calculated the evolution of Φ and I for
p ∈ [0, pc) for three different starting sets: single site
(Φ0 � 1, I0 � 4), maximum perimeter tromino
(Φ0 � 3, I0 � 8), and maximum perimeter heptomino
(Φ0 � 7, I0 � 16). We also carried out porosimetry perco-
lation simulations with these starting sets on a site square
lattice of size L � 1000 (the number of sites was L2 � 106). In
the simulations, the sites constituting the starting set were
always located in the innermost position within the lattice, as
far as possible from its boundaries. In Figure 8, the evolution
of the expected cluster size Φk vs. the iteration number k is
depicted for the single-site starting set; the parameter of the
curves is p.

Figure 8 shows that the evolution calculated with the
cluster growth model is close to the simulated evolution for
p<pc. Results are also shown for some p≥pc cases to
demonstrate that the iteration indeed diverges for those
pressures.

In Figure 9, Φ/Φ0 is shown for the pressure range
p ∈ [0, pc) with the three different starting sets. In Figure 10,
the results for the single-site starting set are also shown
together with the expected cluster size calculated with (9).
.e calculations of the cluster growthmodel were performed
with k � 10000 iterations, i.e., Φ � Φ10000. .e simulation
results are averaged over 1000 simulations.

Figures 9 and 10 show that the cluster growth model
provides a good approximation of Φ for 0≤p<pc, though
the calculation overshoots both the simulation result and
Sykes’ expected cluster size close to pc..e calculation is also
convincing for the tromino and heptomino starting sets.
.is justifies the proposed interface update, which is de-
scribed by equations (27) and (28).
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To quantify the accuracy of the iterative calculation
compared to porosimetry percolation simulation results, the
relative error of the iterative cluster growth calculation
against the simulation data was computed for p � 0.01i,
i � 0, 1, . . . , j, where j � 55, 58, 59 were chosen. .e mean
and root mean squared (RMS) of these relative errors are
listed in Table 1.

According to the relative errors, the cluster growth
model considerably overshoots the simulation result near pc.
Still, the relative errors are acceptable if we exclude the data
points that are very close to pc. In fact, in the simulations, the
finite size of the lattice limits the expansion of the cluster.We
argue that the simulation result would be closer to the cluster
growth model near threshold pc, if the simulations were
carried out on a much larger lattice.

In Figure 11, representative visualizations of the evo-
lution on the (Φ, I) plane are shown for p � 0.55. .e
evolution of the cluster growth model shows nice agreement
with the simulated evolutions.

We can conclude based on the results that the cluster
growth model predicts the evolution of the occupied cluster
with good accuracy in the low-pressure range 0≤p<pc.

4.3. Results for Large Starting Sets (Φ0≫Φth). Calculation
with large initial cluster sizes is of high practical importance.
Consider a simulation in which the starting set is all the sites
that are located on one or multiple edge boundaries of the
lattice. In other words, we choose one or more sides of the
lattice to be the starting set. .e motivation behind this
choice of the starting set is that it can be a simple model for
the invasion of a dry rock sample immersed in nonwetting
liquid.

We use the cluster growth model to predict the evolution
ofΦ and I for inputs (Φ0, I0) that correspond to the size and
perimeter of one or more sides of a finite lattice..at is, for a
1-sided invasion of the site square lattice of size L, we have

Φ0 � L,

I0 � L.
(40)

In the 4-sided invasion case, the starting set completely
surrounds the rest of the lattice; we have

Φ0 � 4L − 4,

I0 � 4(L − 2) − 4.
(41)
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Figure 7: .e unknown ϕ0(p), the experimental saturation curve ϕ1(p), and the simulated saturation curve ϕ2(p).
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Figure 8: (a) .e evolution of Φk for single-site starting set with different p’s. (b) .e evolution of Φk for single-site starting set with
p � 0.25 and p � 0.55. .e thick lines are calculated with the cluster growth model and the thin lines are individual simulation results.
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We carried out the calculations with the cluster growth
model and porosimetry percolation simulations. We investi-
gated 6 cases altogether: 2 different starting set configurations
(1-sided and 4-sided invasions) and 3 different lattice sizes
(L � 500, 1000, 2000). In Figure 12, the expected saturationϕ �

Φ/L2 of the lattice is shown in the pressure range 0≤p<pc for
the different starting sets..e calculations of the cluster growth
model were performed with k � 10000 iterations, i.e.,
Φ � Φ10000. .e simulation results are averages of 1000, 500,
and 100 simulations for L � 500, 1000, 2000, respectively.

.e plots are convincing regarding the accuracy of the
cluster growth model. Similar to Section 4.2, the relative
error of the iterative cluster growth calculation against the
simulation data was computed for p � 0.01i, i � 0, . . . , j,

where j � 55, 58, 59 were chosen. .e mean and RMS of
these relative errors are listed in Table 2.

.e listed relative errors demonstrate that the estimation
of the cluster size with the cluster growth model is quali-
tatively good and also quantitatively acceptable for these
starting sets. For the smallest L � 500 case, the expected
cluster size significantly overshoots the mean simulation
result near pc. Again, the finite size of the lattice explains the
issue: in the simulations, the expansion of the cluster is
confined by the lattice boundaries, while there is no such
restriction in the cluster growth model. For larger lattices,
this becomes a lesser issue.

In Figure 13, representative visualizations of the evo-
lution on the (Φ, I) plane are shown for p � 0.55.
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Figure 9: Φ scaled with the starting size Φ0 calculated using both the cluster growth model and porosimetry percolation simulations. .e
starting sets were (a) single site (Φ0 � 1, I0 � 4), (b) maximum perimeter tromino (Φ0 � 3, I0 � 8), and (c) maximum perimeter heptomino
(Φ0 � 7, I0 � 16).

Complexity 11



1000

100

10

1

0.01 0.02 0.05 0.10
pc–p

Φ
/Φ

0

0.20 0.50

Porosimetry percolation
Cluster growth model
Sykes’ formula (9)

Figure 10: Φ scaled with the starting size Φ0 vs. pc − p on a log-log plot. .e starting set was a single site (Φ0 � 1, I0 � 4).

Table 1: Mean and RMS of the relative errors (Φcalc − Φsim/Φsim) of the cluster growth calculation for small starting sets.

Case |Φcalc − Φsim|/Φsim (%)
���������������������

1/j 􏽐 (Φcalc − Φsim/Φsim)2
􏽱

(%)

Φ0 � 1, I0 � 4
j � 55 5.2 7.4
j � 58 7.6 14.2
j � 59 17.5 78.8
Φ0 � 3, I0 � 8
j � 55 6.7 8.4
j � 58 8.0 10.9
j � 59 16.1 64.8
Φ0 � 7, I0 � 16
j � 55 8.8 10.4
j � 58 9.0 10.9
j � 59 16.1 56.9
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Figure 11: Simulated and calculated evolutions on the (Φ, I) plane for (a) single site (Φ0 � 1, I0 � 4), (b) maximum perimeter tromino
(Φ0 � 3, I0 � 8), and (c) maximum perimeter heptomino (Φ0 � 7, I0 � 16) starting sets. .e thick lines show the evolution of the cluster
growth model and the thin lines are evolutions computed with individual porosimetry percolation simulations. .e empty squares and full
squares correspond to the starting and fully evolved clusters, respectively.
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Figure 12: ϕ � Φ/L2 (expected cluster size scaled with the lattice size) calculated using both the cluster growth model and porosimetry
percolation simulations. 1-sided invasion of lattices having (a) L � 500 (Φ0 � 500, I0 � 500), (b) L � 1000 (Φ0 � 1000, I0 � 1000), and (c)
L � 2000 (Φ0 � 2000, I0 � 2000). 4-sided invasion of lattices having (d) L � 500 (Φ0 � 1996, I0 � 1988), (e) L � 1000 (Φ0 � 3996,
I0 � 3988), and (f) L � 2000 (Φ0 � 7996, I0 � 7988).

Table 2: Mean and RMS of the relative errors (Φcalc − Φsim/Φsim) of the cluster growth calculation for 1-sided and 4-sided invasion cases.

Case |Φcalc − Φsim|/Φsim (%)
���������������������

1/j 􏽐 (Φcalc − Φsim/Φsim)2
􏽱

(%)

1-sidedL � 500
j � 55 1.4 2.3
j � 58 2.1 4.3
j � 59 6.1 31.5

1-sidedL � 1000
j � 55 2.6 3.4
j � 58 2.8 3.7
j � 59 3.8 8.5

1-sidedL � 2000
j � 55 4.9 6.8
j � 58 5.7 8.1
j � 59 5.7 8.1

4-sidedL � 500
j � 55 4.3 5.7
j � 58 4.5 6.0
j � 59 8.7 33.2

4-sidedL � 1000
j � 55 5.8 8.1
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Table 2: Continued.

Case |Φcalc − Φsim|/Φsim (%)
���������������������

1/j 􏽐 (Φcalc − Φsim/Φsim)2
􏽱

(%)

j � 58 6.7 9.4
j � 59 7.8 13.2

4-sidedL � 2000
j � 55 6.8 9.6
j � 58 8.0 11.4
j � 59 7.9 11.4
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Figure 13: Calculated and simulated evolutions on the (Φ, I) plane for the following cases: 1-sided invasion of lattices having (a) L � 1000
(Φ0 � 1000, I0 � 1000), (b) L � 2000 (Φ0 � 2000, I0 � 2000), and 4-sided invasion of lattices having (c) L � 500 (Φ0 � 1996, I0 � 1988), (d)
L � 1000 (Φ0 � 3996, I0 � 3988)..e thick lines show the evolution of the cluster growthmodel; the thin lines are evolutions computed with
individual porosimetry percolation simulations. .e empty squares and full squares correspond to the starting and fully evolved clusters,
respectively.
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With everything considered, the results prove the via-
bility of the cluster growth model for possible application on
predicting the prime characteristics (Φ and I) of the oc-
cupied cluster in lattices (or in simple connected graphs) for
the low-pressure range 0≤p<pc.

5. Conclusions

We considered a cluster growth model to predict the expected
size of the invasion percolation clusters via an iterative cal-
culation. A thorough description of the iteration was given..e
method exhibits the phase transition of percolation models as
the iteration diverges for p≥pc. .e cluster growth model can
only predict the size of the fully evolved cluster for 0≤p<pc as
it cannot treat finite lattices yet. We provided a detailed in-
terface update formula for the site square lattice and extensively
tested the cluster growth model with this lattice type.

We showed an application of the cluster growth model for
the porosimetry percolation simulation. A significant finding of
this study is the proof that the mapping between the input and
the output of the simulation only depends on the topology of
the network porosimetry percolation. .is allows us to study
the problem with uniform resistance distribution without the
loss of generality.

Calculations with the cluster growth model and poros-
imetry percolation simulations were carried out for different
scenarios to compare the calculated expected cluster size with
the simulated mean cluster size. We performed calculations
and simulations assuming connected starting sets. .ough the
cluster growth model does not take into account the finite size
of the lattice, the results still show that the evolution of the
simulated and calculated cluster sizes nicely agree. .e cluster
growth model mostly provided an accurate estimation of the
cluster size in the low-pressure range 0≤p<pc. For instance,
the mean relative errors of the iterative cluster growth calcu-
lation against the simulation results were 2.6 − 7.9% for L �

1000, 2000 lattices for the 1-sided and 4-sided invasion cases.
.e RMS of the relative errors were 3.4 − 11.4% for the same
cases. A significant finding of this study is the proof that the
mapping between the input and the output of the simulation
only depends on the topology of the network porosimetry
percolation is simulated on.

In future work, we intend to apply this model to net-
works having different topology, e.g., three-dimensional
lattices. To do this, an extensive number of numerical
simulations will be required to determine an accurate re-
lation between the cluster size and the interface size. We also
plan to improve the cluster growth model to manage finite
lattices. .en, we will calculate Φ and I for pressures p≥pc

when a finite lattice is considered.
.e far aim of this work is to test and utilize the proposed

cluster growth calculation on simple, connected graphs
representing real rock samples with real pore network
statistics.
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