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.e current study provides an analytical approach to analyze the blood flow through a stenosed artery by using the Carreau fluid
model..e flow governing equations are derived under the consideration of mild stenosis. Mathematical analysis has been carried
out by considering the blood as non-Newtonian nature. .en, the analytical solution has been investigated by using the regular
perturbation technique. .e solutions obtained by this perturbation are up to the second-order in dimensionless Weissenberg
number (We). .e performed computations of various parameter values such as velocity, wall shear stress, shear stress, and
resistance impedance at the stenotic throat are discussed in detail for different values of Weissenberg number (We). .e obtained
results demonstrate that for shear-thinning fluid, the fluid velocity increases with the increasing parameter m while opposite
behavior is observed with the increase in We. Hence, the presented numerical analysis reveals many aspects of the flow by
considering the blood as a non-Newtonian Carreau fluid model, and the presented model can be equally applicable to other bio-
mathematical studies.

1. Introduction

.e study of artery constriction due to the development of
stenosis has attained prime importance in fluid dynamics
[1–4]. .e blood flow in the vessels is a result of the delicate
relationship between pressure and area of the fluid. .e size
of the stenosis determines the flow type. .ree types of flow
have been studied: mild stenosis as the flow is laminar,
moderate stenosis as the flow is a combination of turbulent
and laminar, and thirdly the flow depicts turbulent nature

when the size of the stenosis is increased. .e characteristics
of the blood flow depend on the shape and size of the
stenosis. Many researchers have analyzed this biomechanical
aspect of the flow theoretically and experimentally in recent
years. Tang et al. [5] propounded that when the blood
pressure is low, stenotic vessels get collapsed and the per-
fusion of the area beyond stenosis is highly compromised
leading to ischemia/infarct. Applications of micropolar
fluids in biomedical sciences have received attention for
blood flow in arteries [6–8].
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In the literature, numerous analytical studies related to
blood flow through stenosed arteries have been extensively
performed [9–13]. In most of these studies, the flow is
considered as laminar with mild stenosis [14]. Considerable
work has been done for non-Newtonian fluid models. .e
Carreau fluid model is one of the generalized Newtonian
fluid models which is also considered as a viscosity model.
.is model helps us to explain the behavior of fluid flow in
high shear regions and modeling blood at narrow arteries
with low shear rates. Firstly, this model was presented by
Carreau [15] in his molecular network theories. .en, Siska
et al. [16] have proposed a procedure for the terminal ve-
locity of nonspherical particles by using Carreau fluid in
transient flow regions. Such regions are responsible for the
development of stenosis in the arteries that could lead to
stroke, nausea, back pain, etc., specifically with regard to
malfunction of the cardiovascular structures. .erefore, the
study of blood vessels especially in stenotic arteries has also
attained importance in the fluid dynamics field [17].

.e shear-thinning and shear-thickening processes of
the fluid are well explained by the Carreau fluid model
[18, 19]. .is method is a mixture of power-law and
Newtonian fluid models. Chhabra and Uhlherr [20] have
analyzed the Carreau viscosity equations for shear-thin-
ning elastic liquids..eoretical analysis of the Carreau fluid
model is studied by Bush and Phan-.ein [21]. Later on,
Lee [22] discussed the Carreau generalized Newtonian
model for error estimations. Tabakova et al. [23] analyzed
the flow dynamics in blood vessels by using the Carreau
model. .ey have studied the oscillatory and steady flows
and approximated their numerical solutions. Liu and Liu
[24] investigated the quantitative analysis of blood flow in
tapered stenosed arteries. .eir main concern is the heat
and mass transfer effect on the fluid. Irfan et al. [25] gave a
numerical analysis of the unsteady Carreau fluid model.
.e flow of blood in the arteries is highly pulsatile with
unequal velocity distribution which is the cause of many
cardiovascular diseases [26]. Ismail et al. [9] constructed a
mathematical model to study the generalized Newtonian
blood flow through a tapered artery. Liu et al. [27] con-
sidered the effects of tapering and stenosis over the blood
flow. Moreover, a numerous range of blood flow phe-
nomena, such as hemodynamics behavior [28], axisym-
metric micropolar model [10], heat and mass transfer
effects [29], Eyring–Prandtl fluid model [30], and the
micropolar fluid model for composite stenosis behavior
[31], have been analyzed comprehensively. Flow of blood-
based nanofluids by using the generalized differential
quadrature method and other epidemiological models is
carried out by many researchers [32–40].

.is study aims to investigate the blood flow through a
stenosed artery by using the Carreau fluid model. .e an-
alytical solution of the governing equations with boundary
conditions of the stenotic artery is derived. .e perturbation
solution is obtained by removing the nonlinearity in the
governing equation. .en, the obtained results of the ve-
locity profile, resistance impedance, shear stress, and shear
wall stress are shown with rheological parameters of the
Carreau fluid model, i.e., We and m. Eventually, the

graphical results are presented with different values of pa-
rameters of interest.

2. Problem Formulation

.e fundamental equations used in the derivation of the
governing equations for the problem considered are
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It is assumed that the properties of blood flowing the
cylindrical tube are described by the constitute relation
Carreau model given as [41]

S � μ 1 +(Γ _c)
2

􏽨 􏽩
(m− 1)/2

_c. (4)

Assuming Γ _c≪ 1, we can write

S � μ 1 +
m − 1
2

􏼒 􏼓(Γ _c)
2

􏼔 􏼕 _c, (5)

where Γ is a time constant of the fluid. .e geometrical
representation of the constricted portion is shown in Figure 1
and defined as

h(z) � d(z) 1 − η b
n− 1

(z − 1) − (z − a)
n

􏼐 􏼑􏽨 􏽩, a≤ z≤ (a + b)

� d(z), otherwise,

(6)

with

d(z) � d0 + ξ∗Z. (7)

In the above equation, ξ∗ � tan ϕ is called the tapering
parameter; a is the length of the nonstenotic part, and b is the
length of the stenotic section; the radius of the nontapered
artery in the nonstenotic section is d0; and shape parameter
is n which defined the constriction shape, n � 2 gives the
stenosis symmetric behavior. .e parameter η is written as

η �
δn

n/(n− 1)

d0b
n
(n − 1)

, (8)

where δ is the maximum height of the stenosis defined as

z � a +
b

1/n(n− 1)
􏼐 􏼑

. (9)

.e detailed derivation of the presenting problem is
given here

V � [u(r, z), 0, w(r, z)]. (10)
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Here we defined the rate of strain tensor as given
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By choosing the values of the component of _c from
equation (13), we get
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by assuming
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2
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we get the following components of the extra stress tensor
for the Carreau model:
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Figure 1: Diagram of axially nonsymmetric stenosis in the artery.
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Applying the mild stenotic conditions, we get
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r ,
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Given the above results, the governing equations (1)–(3)
can be rewritten as
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and get the following dimensionless governing equation
after dropping the bars for simplicity
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where We � Γu0/d0 is the dimensionless Weissenberg
number.

2.1. Boundary Conditions. .e following boundary condi-
tions are applied along with geometrical interpretation:

w � 0, at r � h(z), (27)
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where h(z) is already defined in equation (6).

3. Employing Perturbation Approach

To get the perturbation solution for the above defined
mathematical model, equation (26) can be rearranged as
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.e symmetry condition at the center line r � 0 yields
C1 � 0, and thus we can write equation (30) as
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Due to nonlinearity arising in equation (31), we opt
perturbation technique to solve it. We assume

w � w0 + We2w1 + · · · , (32)

p � p0 + We2p1 + · · · , (33)

F � F0 + We2F1 + · · · . (34)

Substituting equations (32) and (33) into equations (27)
and (34), we find that
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Now comparing the coefficients of various powers of We
in equations (35) and (36), the following systems can be
obtained.
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We summarize the results of the perturbation series
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model is given as

Srz �
zw

zr
+ We2

m − 1
2

􏼒 􏼓
zw

zr
􏼠 􏼡

3

, (53)

since

w � −
2F

πh
4 r

2
− h

2
􏽨 􏽩 −

32We2

3π3h10F
3

r
2

− h
2

􏽨 􏽩(m − 1) −
8We2

π3h12F
3
(m − 1) h

4
− r

4
􏽨 􏽩, (54)

We = 0.1
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We = 0.3
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7

λ

Figure 2: Variation of resistance for the Carreau model for m � 2, n � 2, L � 1, andF � 0.6.
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we obtain

zw

zr
� −

4Fr

πh
4 −

64We2F3
(m − 1)r

3π3h10 +
32r

3We2

π3h12 F
3
(m − 1),

(55)

and thus equation (53) gives

Srz � −
4Fr

πh
4 −

64We2F3
(m − 1)r

3π3h10 +
32r

3We2

π3h12 F
3
(m − 1)

+ We2
m − 1
2

􏼒 􏼓 −
4Fr

πh4 −
64We2F3(m − 1)r

3π3h10 +
32r3We2

π3h12 F
3
(m − 1)􏼠 􏼡

3

.

(56)
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Figure 3: Variation of resistance for the Carreau model for We � 0.2, n � 2, L � 1, andF � 0.6.
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Figure 4: Wall shear stress variation for the Carreau model for n � 2, L � 1, F � 1, andm � 0.8.
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Finally, at maximum height, i.e., h � 1 − δ, the wall shear
stress of the stenosis can be written as

τs � Srz|h�1− δ �
4

π(1 − δ)
3 − F −

16We2

3π2(1 − δ)
6 (m − 1)F

3
+
8We2(m − 1)

π2
(1 − δ)

8 F
3

􏼢 􏼣. (57)
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Figure 5: Wall shear stress variation for the Carreau model for n � 2, L � 1, F � 1, andWe � 0.2.
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Figure 6: Velocity variation for the Carreau model for n � 2, L � 1, F � 3, andm � 0.5.
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4. Graphical Results and Discussion

In this section, the effect of rheological parameters of the
Carreau fluid model, i.e., We and m on velocity profile,
resistance impedance, wall shear stress, and shear stress at
the stenotic throat, is graphically performed and dis-
cussed. .e Weissenberg number is the ratio of the re-
laxation time of the fluid and a specific process time.
Relaxation time increases when we increase the Weis-
senberg number and velocity field easily increases and
skin friction decreases. Another aspect of increasing the
Weissenberg number is that it reduces the magnitude of
the fluid velocity for shear-thinning fluid, while it arises

for the shear-thickening fluid. Figure 2 shows that re-
sistance impedance is an increasing function of the
Weissenberg number We.

In Figure 3, it is observed that the resistance impedance
increases as there is an increase in power-law index m. It
explains the the fluid shear-thinning behavior (m< 1) slowly
compared to Newtonian (m � 1) and shear-thickening
(m> 1) fluids.

.e behavior of shear stress for We and m is shown in
Figures 4 and 5. It is observed that the magnitude of wall
shear stress increases by increasingWe as shown in Figure 4.
.e opposite behavior is observed when m is increased as
seen in Figure 5.
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Figure 7: Velocity variation for the Carreau model for n � 3, L � 1, F � 3, andWe � 0.1.
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Figure 8: Variation of shear stress at the stenotic throat.
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.e effect of the severity of stenosis on the velocity
profilew is shown in Figures 6 and 7. In Figure 6, the velocity
profile increases at the center of the channel by increasing m.

And in Figure 7, an increase in We decreases the velocity
at the channel center. It can be seen that for a fixed value of
prescribed flux F, the velocity profile w increases near the
center, while it decreases near the wall with an increase in the
severity of stenosis.

In Figure 8, we noticed that the shear stress at the
maximum height of stenosis behaves differently by in-
creasing We and m. It is analyzed that shear stress by fixing
Weissenberg number We and flow rate F at the stenosis
throat increases with an increase in m. While shear stress
decreases with an increase in We with defined values of
power-law index m and flow rate F.

5. Conclusion

In this study, we have analyzed the numerical solution of the
blood flow with its non-Newtonian nature. Analytical so-
lutions are derived from the given governing equations. .e
presented computation results of various parameter values,
namely, velocity, wall shear stress, shear stress, and resis-
tance impedance at the stenotic throat, are studied in detail
for different values of Weissenberg number (We) and
power-law index m. From the analysis of the related facts
and figures, the following results are concluded:

(1) .e velocity profile increases at the center of the
channel by increasing m. However, an increase in
We decreases the velocity at the channel center.

(2) Resistance impedance is an increasing function of
We and m.

(3) .emagnitude of shear stress increases by increasing
We, while it shows the opposite behavior when m is
increased.

(4) Shear stress at the maximum height of stenosis
behaves differently by increasing We and m.

Conclusively, the present work may be an improvement
in the analysis of pulsatile blood flow through a mild stenotic
tapering artery.

Nomenclature

We: Weissenberg number
Γ: Time constant of the fluid
ξ∗: Tapering parameter
a: Length of the nonstenotic part
b: Length of the stenotic section
d0: Radius of the nontapered artery in the nonstenotic

section
n: Shape parameter
δ: Maximum height of the stenosis
τs: Wall shear stress
Δp: Pressure drop
λ: Resistance impedance
m: Power-law index
w: Velocity profile

F: Flow rate
Srz: Shear stress
S: Extra stress tensor
θ: Tapering angle.
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