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The quality of ultrasound image is a key information in medical related application. It is also an important index in evaluating the
performance of ultrasonic imaging equipment and image processing algorithms. Yet, there is still no recognized quantitative
standard about medical image quality assessment (IQA) due to the fact that IQA is traditionally regarded as a subjective issue,
especially in case of the ultrasound medical images. As such, the medical ultrasound IQA on basis of convolutional neural network
(CNN) is quantitatively studied in this paper. Firstly, a dataset with 1063 ultrasound images is established through degenerating a
certain number of original high-quality images. Subsequently, some operations are performed for the dataset including scoring
and abnormal value screening. Then, 478 ultrasonic images are selected as the training and testing examples. The label of each
example is obtained by averaging the scores of different doctors. Afterwards, a deep CNN network and a residuals network are
taken to establish the IQA models. Meanwhile, the transfer learning strategy is introduced here to accelerate the training and
improve the robustness of the model considering the fact that the ultrasound image samples are not abundant. At last, some tests

are taken to evaluate the IQA models. They show that the CNN-based IQA is feasible and effective.

1. Introduction and Motivation

Image quality assessment (IQA) is to quantitatively evaluate
the image, which remains a hot topic in image processing
field due to the fact that it is regarded as a benchmark for
image processing systems and algorithms Tang et al. [1], Kim
et al. [2], and Ma et al. [3]. As many pattern recognition
problems, IQA tries to simulate the human perception
process which is easily influenced by image content,
mathematical and psychological effect of the observer, and
many other complex factors Krasula et al. [4]. So far, most of
IQA methods and research studies focus on optical images
rather than medical images. One of the reasons is that the
medical image quality is highly related to its specific ap-
plication. For example, a medical image has overall low
contrast and is noisy, but it is still acceptable for the doctor if
it is effective in judging the state of a certain tissue. Another
is that the medical image including the MR, CT, and US
usually contains artifacts, which are caused by the tissue
movement in imaging or the scattering of beams Krupa and
Bekiesinska-Figatowska [5], Boas and Fleischmann [6], and

Prabhu et al. [7]. Most artifacts cannot be removed. In fact,
the doctors can grasp the useful information from the noisy
images; that is, noisy medical image does not always mean
low quality. By contrast, the noisy optical images are usually
seen as images with low quality. Thus, the medical image
assessment should be conducted from a different viewpoint.

The traditional IQA can be divided into two kinds:
subjective assessment and quantitative assessment Hemm-
sen et al. [8], Kang et al. [9], Bosse et al. [10], and Kim and
Lee [11]. For the former one, the image is scored by ob-
servers. According to whether relying on the other image in
IQA, the subjective assessment can be divided into single
and double excitation cases. In the double excitation as-
sessment, the observers score the image after observing the
considered image and its related one with high quality. It
means that the considered image should have comparably
less quality. The International Telecommunications Union
(ITU) provided a standard for double excitation IQA and it
has been widely used in the fast MR imaging; Union [12],
Shiao et al. [13], Loizou et al. [14], and Hemmsen et al. [8]
attempt to apply it in the ultrasound IQA. In the single
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excitation assessment, the observers score the image only
relying on their experience. It is adaptive to more situations.
For an image, the scores given by different observers may
have some differences. So, a certain number of observers
should take part in the process of assessment. By compar-
ison, the quantitative assessment scores the image through
automatically computing some indexes for the considered
image.

Generally, the quantitative assessment algorithms can be
divided into three kinds: full reference, reduced reference,
and no reference IQA Kang et al. [9] and Zhu et al. [15]. The
tull reference IQA relies on the original high-quality image
in evaluating the considered image. The reduced reference
IQA relies on the part of the high-quality image. There are
not any references for the no reference IQA, which is also
named the Blind Image Quality Assessment (BIQA) Kim
and Lee [11], Ma et al. [16], and Ma et al. [3]. Generally
speaking, the current quantitative image assessment algo-
rithms mostly belong to the full reference and reduced
reference assessment. The traditional image quality indexes
include peak signal-to-noise ratio (PSNR), mean squared
error (MSE), and structural similarity index (SSIM), which
all need the original high-quality image Bianco et al. [17].
Besides, some indexes about the image gradient maps are
also considered. Human visual system- (HVS-) based
methods transfer the image into different space and they
simulate the respondents of human visual cortex neuron
about the low-quality and high-quality images Litjens et al.
[18]. The perceptual difference model (PDM) Daly [19] is
widely used in medical image quality assessment, which
models the ability of humans to perceive a visual difference
between a degraded “fast” MRI image with subsampling of
k-space and a “gold standard” image mimicking full ac-
quisition Huo et al. [20]. Mittal et al estimate the possible
information loss between the considered image and the
original high-quality one on the basis of the normalized
intensity coeflicient in the spatial space [21]. The full or
reduced reference IQA relies on some information to judge
the dissimilarity between high-quality and low-quality im-
ages. It is effective. However, in most situations, there are not
any references in IQA. The former research studies in no
reference IQA mainly dealt with the special image defor-
mation such as noise, blur, and image compression. These
methods perform feature detection and statistic computa-
tion for the considered image, which is computation
complex. Woodard evaluates the MR image according to the
variances of the considered image and its degraded one.
Mortamet et al. evaluated the MR image relying on the part
of the atmosphere in the image because 40% of image is the
atmosphere in the structure MR brain image Mortamet et al.
[22]. Nakhaie and Shokouhi evaluated the image through
wavelet transform [23]. Recently, Eck provided a new rule.
That is, the good-quality image means that it effectively helps
the doctor to detect the changes of tissue Eck et al. [24]. Thus,
the standard of IQA is whether the image can make the
doctor conduct accurate judgement.

In recent years, CNN has been taken in IQA to simulate
the process of human evaluation of optical images inspired
by the success of CNN in image processing and pattern
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recognition De Angelis et al. [25] and Bosse et al. [10]. Kang
firstly proposed no reference IQA on the basis of CNN, in
which the CNN is trained using the samples in LIVE IQA
Kang et al. [9], Zhang et al. [26], and Zhang et al. [27]. Later,
Bianco proposed DeepBIO, which trains a classification
CNN using the other kind of data and then transfers the
network to the image quality assessment [17]. Kim et al.
estimated the quality of an image by adding up the scores of
each patch on the basis of the CNN without any reference.
After that, they designed a deep CNN IQA model which
contains two steps: error map learning and score estimation
Kim et al. [2]. These methods attempt to replace the human
visual perception process using CNN. A certain number of
labeled images are taken to train the CNN. To the best of our
knowledge, the related reports are mainly about MR or CT
IQA. So far, a few researchers have used deep learning to
assess the quality of ultrasound images. In Wu et al.’s work
[28], a computerized fetal US image quality assessment
scheme is proposed to assist the implementation of US
image quality control in the clinical obstetric examination by
introducing two deep CNNs. It is adaptive to a special
application, and we intend to provide a universal method to
evaluate the image quality. The remainder of this paper is
organized as follows. Section 2 introduces the way to collect
the training samples. The CNN is designed in Section 3, and
the results are shown in Section 4. Finally, we conclude our
method in Section 5.

2. Dataset

2.1. Optical Image Samples. To train an IQA CNN, we first
collect lots of image samples. In optical image quality as-
sessment, LIVE IQA [23] is one of the popular and widely
used datasets. It contains 29 original high-resolution ref-
erence images. Each original image is degraded into some
low-quality images through JPG compression, Gaussian
convolution, fast Rayleigh fading, or adding white noise.
Then, a total of 982 images including the original ones are
obtained. Each of these images is scored at least by 20
observers. The average score for each image is taken as its
label. In our algorithm, the images in LIVE are taken to
pretrain the IQA CNN. Afterwards, the CNN is finely tuned
by some ultrasound images.

2.2. The Ultrasound Samples. The ultrasound image samples
in this paper come from two ways. The first is through
downloading the images from publicly accessed websites.
The other way is by collecting 700 ultrasound images from
the Tongji Hospital, affiliated to Huazhong University of
Science and Technology. These images are captured in the
department of gynaecology, ophthalmology department,
and internal medicine and surgical department and strictly
screened by some experienced doctors. Then, 95 high-
quality ultrasound images remained, which corresponded to
the tissues of liver, lymph node, bladder, breast, kidney,
heart, blood vessel, pancreas, and uterus. All the images are
in 8-bit bmp format. A part of the original high-quality
ultrasonic images are shown in Figure 1.
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FIGURE 1: Original high-quality ultrasound images.

In order to create an ultrasound image database con-
taining different quality levels, similar to many methods in
generating the samples, we degrade the high-quality ultra-
sound images through JPEG compression, Gaussian blur-
ring, and adding white and speckle noise. The speckle noise
is common in ultrasound image; the model in Li et al.’s work
[29] is used to generate the speckle noise due to the fact that
this model has been validated to effectively describe the
speckle noise. Meanwhile, the commonly used degeneration
methods are also used to generate the low-resolution images.
Specifically, the function “imwrite” in Matlab is taken to
perform JPEG compression, in which the quality factor is a
random integer between 0 and 100. In adding the white
noise, the original image is normalized to 0 and 1. Then, the
Gaussian noise with ¢ standard error 0<§<2 is added.

Afterwards, the noisy image is restored to 0—255. In
Gaussian blurring, a 7 x 7 template is taken to convolute the
original image. The standard error of the Gaussian template
is randomly selected between 0 and 1. In generating the
speckle noisy images, we used the exponential form noise
model in Li et al.’s work [29] as

u(x) = v(x) + v (x)n(x), (1)

where u(x) and v(x) are the original and observed images,
respectively. 7(x) ~ N (0, 8%) is the Gaussian distributed
noise whose average value is zero and the standard error is a
random data between 0 and 6. The simulation effect is better
when y = 5. In generating the speckle noise images, 7 dif-
ferent standard errors are taken. In each of the remaining



three methods, 6 levels of degeneration are conducted for the
original images. For each method, we randomly choose half
of the 95 images to do degeneration. At last, 1063 ultrasound
images are generated.

2.3. Scoring the Ultrasound Samples. Four doctors from
Tongji Hospital scored the acquired ultrasound images with
a single excitation method. It is out of two considerations:
one is that the number of images to be scored is relatively
large, and double evaluation is more prone to visual fatigue;
the other is that the double excitation only fits limited sit-
uations. The four doctors all major in biomedical imaging.
The scores are from 0 to 100. It should be mentioned that the
images are unorganized before scoring to make the objective
scoring. After obtaining the scores of all images, we remove
some inconsistent score samples. For each original image,
the absolute deviation between the scores and the mean of
four observers can be easily computed. When the deviation
is greater than a given threshold, it will be regarded as outlier
and discarded. For accepted samples, the mean opinion
score (MOS) value is taken as its label. It is clear that the
different threshold can lead to a different number of samples.
The higher the threshold is, the more consistent the samples’
scores are, leading to less samples. In our experiment, the
threshold is set to be 10, which balances the consistency
among samples’ scores and samples’ numbers. After scoring,
478 images remained.

2.4. Outliers’ Screening and Distribution Balance. Based on
the simple selection of abnormal samples in Section 2.3, a
CNN is used to conduct further outliers’ screening for the
samples on the basis of the principle of random consistency.
The screening process is shown in Figure 2. The network
mentioned in the flowchart is shown in Section 3. The basic
rule is to first randomly select some images in the database to
train the initial evaluation model. Then, we input all data
into the model to predict the score value and detect the
abnormal samples according to the difference between the
prediction score and the actual label. This process (Figure 2,
dotted box section) is carried out for several times; then each
image can obtain multiple groups of predicted values. If
some images show anomalies in multiple predicted values,
they will be screened. The above screening process is re-
peated several times and 78 images are discarded.

After scoring and outliers’ screening, the distribution of
the average subjective score of the remaining images is not
balanced, so a certain distribution balance method is needed
to balance the image samples in the database. In this paper,
the image expansion is performed on the interval with less
samples by rotating the original image at three angles of
90°,180°, and 270°, and their labels take the corresponding
unrotated images’ labels. The image dataset after rotation
expansion contains 478 ultrasound images. It should be
mentioned that the subjective evaluation is conducted in
condition of common electric incandescent lamp, the
monitor is 4K LED monitor, and the view distance is about
sixty centimeters. Simply, the subjective evaluation is con-
ducted under the common office by the experienced doctors.
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FiGure 2: The flowchart of outliers’ screening.

3. CNN for IQA

3.1. Deep CNN for IQA. Due to the complexity of the
medical ultrasound image content, the shallow neural net-
work may not be able to well simulate the perception of HVS
in evaluating the image. As such, this project adopts a deep
convolutional neural network to assess the quality of medical
ultrasound images. The research on HVS shows that human
is sensitive to the deformation between images. Therefore,
we firstly train a CNN to learn the difference between
distorted image and the related undistorted one. After that,
the objective scoring for each image is carried out on the
basis of the estimated distortion. It tries to simulate the
human perceptual processes.

Accordingly, this paper designs a deep CNN to do IQA,
which is called DCNN-IQA-14. This network adds six con-
volution layers to DCNN-IQA-8 in Kim et al.’s work [2] and
their structures are shown in Figures 3 and 4. The objective
error map is predicted in the first stage. The whole network is
a full convolution network; that is, it only contains convo-
lution layer. Zero padding strategy is used in each convolution
layer to make the convolution process to retain the pixel
information, and two downsampling operations are used to
reduce the data dimension. Except for the last layer, each layer
has a convolution kernel size of 3 x 3, which is activated by
ReLU. In the last layer, the 1 x 1 convolution kernel is used to
output the error map prediction. If the error map is directly
used in the second stage to do quality assessment, its
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FIGURE 4: The structure of DCNN-IQA-14 for ultrasound image quality assessment.

prediction result is not fine due to the fact that the predicted
error map has only one channel and that much information
about the difference among images is lost. Therefore, the
feature map of the penultimate output is used in the second
stage of training. In the second stage, the fourteenth con-
volution layer of the network will return to the final subjective
score through two full-connection layers.

Before the training, all samples should be normalized. The
normalization operations include the following steps. The first
is to reduce the image to a quarter of the original image size
and then enlarge it to the original size. Then, Gaussian Low
Pass is taken to do filtering. Subsequently, the filtered image is
subtracted from the original image. Finally, we divided them
into the nonoverlapped patches with size of 112 x 112. Each
patch’s label is the MOS value of the related image. Let I
represent the deformation image, I, represent the corre-
sponding high-quality reference image, I and I'°“, re-
spectively, represent the corresponding image after zooming
in and zooming out low-pass filtering, and T, and T, are the

preprocessed images; then the error map calculation formula is
given by o
ey =|I, - 14|, ()

where e, is a label for the first training stage. Stochastic
gradient descent (SGD) algorithm is taken to minimize the
objective function shown in the following equation:

argmingy | £ (1:0) . ) e ) 7 (3)
ij

where (i, j) is the gray value of pixels in the image, e is the
difference between the distorted image and its corre-
sponding original reference image, and 7 is reliability map
obtained by measuring the texture intensity.

In the second training stage, besides the feature map
obtained in the first stage, two manually extracted features
are added to full-connection layer FCI: 85" and y,, re-
spectively, the variance of the low-pass dlstorted image and
the mean of the reliability map. By using the subjective



scores of each distorted image as labels and minimizing
equation (4), the final score-predictive model can be trained.
It should be mentioned that two CNNs are taken to do
evaluation, which is just an example to illustrate the effec-
tiveness of the proposed solution. Certainly, there are many
other networks which can obtain the same or even better
results. As this paper mainly intends to propose this issue
and an effective solution, the comparison of different net-
works is not our main topic.

argming Z “f([d; 0) (i, j) - 8”2. (4)
0

3.2. Classical Classification Network for IQA. In the exper-
iment, we also used a 34-layer depth residual network
(ResNet). The last layer of the network is replaced by a full-
connection layer to output the score of 1 x 1. This network is
called ResNet-IQA and the structure is shown in Figure 5.
Except for the first layer, each layer has a convolution kernel
size of 3 x 3, which is activated by ReLU.

Divide the ultrasound images into the nonoverlapped
patches with size of 112 x 112 as the input. Each patch’s label
is the MOS value of the related image and each patch is
normalized according to the following formulas:

501G ) —u))

1, j) = 56, )+C (5)

Yy I+ pj+q)
4PQ ’

VER b Ui+ pj+ @) - s )Y
4PQ ’

u(i, j) =
(6)

6(i, j) =

In equation (5), I (i, j) represents the original gray value
of point (4, j) and 1G, j) is the related one after normali-
zation. y (i, j) and 6 (4, j) are the mean value and the variance
of the window centered at the considered point, respectively.
P and Q are the width and height of the window. They are
generally assigned to be 3. C is a constant. In training the
CNN, the samples are divided into three kinds: the training
data, the validation data, and the testing samples. Their ratios
are 0.6, 0.2, and 0.2, respectively, and the loss function is
shown as follows:

1 N
L= Y I Ceiw) = 2l (7)

n=1
where N denotes the number of image patches, x,, is the

input patch, w represents the weight, f (x,;w) denotes the
score computed by the network, and y, is the label of the
input patch. The SGD is taken to train the CNN to compute
the optimized w by minimizing the difference between
f(x,;w) and y,,.

4. Experiments and Analysis

4.1. DCNN-IQA of Different Convolution Layers Trained from
Scratch. In this experiment, we used ultrasound images to
train the DCNN-IQA with 8 convolution layers and 14
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convolution layers, respectively. Ultrasound images are from
the database established in Section 2, with a total of 478
images, and all the images are divided into three kinds: 60%
training data, 20% validation data, and 20% testing data. It
should be mentioned that there is no repetition among three
kinds of data. After that, we use the linear correlation co-
efficient (LCC) and Spearman’s rank-order correlation co-
efficient (SROCC) to evaluate the accuracy of IQA results.

S (X - X) (Y, - Y)
VIl (X - X)X, (Y- ¥)

6Yd
2

LCC =

(8)

SROCC=1-— 271 (9)

n(n - 1)

In equations (8) and (9), X and Y denote the subjective
score and the predicted score by the DCNN. 7 is the number
of the testing numbers and d; denotes the difference between
the numbers of each image after ranking the computed and
original scores.

The results are shown in Figure 6. It can be known that
the increase of network layers has no significant effect on the
final fitting effect of the model. However, when the number
of training epochs is small, the deeper network can learn and
acquire image information faster. In the first 40 epochs, the
fitting effect of DCNN-IQA-14 is better than that of DCNN-
IQA-8, which is consistent with the results in most cases. But
due to the increase of computation, the training time of each
round is longer in the deeper network. In addition, because
of the limited amount of data, the more network layers are,
the easier the phenomenon of fitting will appear. Based on
these factors, we choose the 8-layer DCNN-IQA network,
DCNN-IQA-8, in follow-up studies.

4.2. DCNN-IQA Trained by Transfer Learning. As mentioned
above, lots of samples are needed to train the DCNN.
However, the medical image samples are usually rare.
Moreover, some results in our experiments show that the
DCNN may lead to overfitting if there are fewer samples.
Inspired by the transfer learning in many other applications,
we introduce transfer learning to our application. Specifi-
cally, the DCNN-IQA is firstly trained using the labeled
optical images in LIVE dataset. During the training, we still
randomly take 60% data as the training data, 20% as vali-
dation data, and the remaining 20% as the testing data. After
that, the second training stage of DCNN is finely tuned by
the ultrasound images as mentioned in Section 4.1.

The results are shown in Figure 7. From them, it can be
known that transfer learning significantly accelerates the
training process. Transfer learning for 20 epochs has reached
the LCC value of 100 epochs for direct learning. In transfer
learning, the ROCC value not only improves the learning
speed significantly but also achieves the result that direct
learning cannot achieve. These results all indicate that the
learning of natural image quality assessment has a significant
improvement on the final fitting effect of ultrasonic image
quality evaluation. Transfer learning can effectively solve the
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FicUre 5: The structure of ResNet-IQA.
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network training overfitting problem caused by the limited
amount of ultrasound images and improve network per-
formance to a certain extent.

4.3. Comparison with Other Assessment Metrics. In this
experiment, we use the ResNet-IQA mentioned in Section
3.2 to do ultrasound image quality assessment. We ran-
domly generate 10 groups’ training data. In each group,
there are also 478 images from the database, and all the
images are divided into three kinds: 60% training data, 20%
validation data, and 20% testing data. The results are shown
in Table 1.

LCC and SROCC are two error metrics to evaluate the
IQA model by comparison with the scores of the experi-
enced doctors. According to the above experiments, our IQA
conforms to the doctor’s evaluation. Meanwhile, the PNSR
and SSIM are usually used in image processing. As such, they

are used to evaluate the quality of ultrasound image in this
paper. Afterwards, we compare the parameters of PNSR and
SSIM with the doctor’s scores. Their correlations are eval-
uated in metrics of LCC and SROCC. The comparisons are
shown in Table 2. Finally, for the 10 groups of experiments,
the average LCC is 0.832 and the average SROCC s 0.797. In
the table, w/o indicates no transfer learning and w indicates
transfer learning. It should be mentioned that the larger the
score of the image in the database is, the worse the image
quality is. Therefore, the calculated PSNR and SSIM values
are negatively correlated with subjective score. According to
the data in the table, the traditional assessment methods of
PSNR and SSIM have poor correlation with the subjective
assessment of doctors; and the consistency between the
CNN-based assessment method and the subjective quality
score is far better than the traditional method, while the deep
CNN assessment model based on transfer learning further
improves the accuracy of the assessment on the basis of the
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TaBLE 1: 10 groups’ test results of ResNet-IQA.

Group 1 2 3 4 5 6 7 8 9 10

LCC 0.770 0.867 0.864 0.826 0.711 0.884 0.863 0.809 0.863 0.860

SROCC 0.749 0.780 0.833 0.812 0.679 0.873 0.828 0.764 0.815 0.836

TaBLE 2: Comparison of CNN-based and traditional IQA methods.

DCNN-IQA
Index PNSR SSIM ResNet-IQA
w/o
LCC -0.615 —-0.517 0.754  0.787 0.832
SROCC —-0.609 -0.608  0.732  0.797 0.797

ordinary deep CNN model. ResNet-IQA model performs
best in linear correlation, and it is the same as DCNN-IQA in
transfer learning on SROCC.

5. Conclusion

Ultrasound image plays a vital role in medical related ap-
plications. How to quantificationally assess the quality of
ultrasound image remains an untouched issue. In this paper,
CNN is used to evaluate the quality of ultrasound image.
Based on the study of optical IQA, we introduce the CNN
into the assessment of ultrasound image. We collected ul-
trasound images from hospitals and websites and established
a medical ultrasound image database with subjective score
tags. The ultrasound images are captured by different types
of equipment. These images are scored by four experienced
doctors and the average score is used as the gold standard of
image in IQA. Deep CNN is applied to ultrasound IQA task,
and the network adjustment and training strategy design are
carried out for ultrasound images. The transfer learning
strategy is borrowed here to overcome the obstacle of the
scarcity of labeled ultrasound samples. Transfer learning can
also speed up training and improve IQA accuracy. Mean-
while, we modified the classic classification network for
ultrasound IQA. These methods are compared with tradi-
tional evaluation methods. The results show that the method
based on deep CNN is more reliable than the traditional
metrics, and the results of transfer learning and ResNet are
better than that of deep CNN.

There is still a long way to go. First, the ultrasound
images should be further collected from more channels.
Moreover, more experienced doctors will join in scoring the
images to obtain the gold standard. Another future research
should design a more applicable CNN.
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