Research Article

Impact of Nanofluid Flow over an Elongated Moving Surface with a Uniform Hydromagnetic Field and Nonlinear Heat Reservoir

Haroon U. R. Rasheed,¹ Saeed Islam,¹ Zeeshan Khan,² Sayer O. Alharbi,³ Hammad Alotaibi,⁴ and Ilyas Khan ¹³

¹Department of Mathematics, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
²Sarhad University of Science and Information Technology, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
³Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
⁴Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Correspondence should be addressed to Ilyas Khan; ilyaskhan@tdtu.edu.vn

Received 6 March 2021; Revised 9 April 2021; Accepted 29 April 2021; Published 24 May 2021

Copyright © 2021 Haroon U. R. Rasheed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The increasing global demand for energy necessitates devoted attention to the formulation and exploration of mechanisms of thermal heat exchangers to explore and save heat energy. Thus, innovative thermal transport fluids require to boost thermal conductivity and heat flow features to upsurge convection heat rate, and nanofluids have been effectively employed as standard heat transfer fluids. With such intention, herein, we formulated and developed the constitutive flow laws by utilizing the Rossland diffusion approximation and Stephen’s law along with the MHDeffect. The mathematical formulation is based on boundary layer theory pioneered by Prandtl. Governing nonlinear partial differential flow equations are changed to ODEs via the implementation of the similarity variables. A well-known computational algorithm BVPh2 has been utilized for the solution of the nonlinear system of ODEs. The consequence of innumerable physical parameters on flow field, thermal distribution, and solutal field, such as magnetic field, Lewis number, velocity parameter, Prandtl number, drag force, Nusselt number, and Sherwood number, is plotted via graphs. Finally, numerical consequences are compared with the homotopic solution as a limiting case, and an exceptional agreement is found.

1. Introduction

In the recent development, nanofluid has gained considerable attention from researchers, engineers, scientists, and mathematicians due to its significant implementations in diverse fields of sciences. These applications cover the following areas: chemical engineering, space science, nuclear science, solar energy collection, and several other areas. The nanofluid applications can also be employed in other real-world problems which include engine oils, heat exchangers, and thermal conductivity [1]. The word nanofluid is considered to incorporate small nanoparticles whose dimension is up to 1–100 nm in the base liquid; biofluid, lubricants, oil, and ethylene are the common examples of nanofluids [2]. Eastman et al. [3] studied to develop the thermal behavior of nanofluids by incorporating various nanosized material particles to base fluids. Chamkha et al. [4] examined radiation effects on mixed convection in view of the vertical cone embedded in the porous medium with the nanoliquid. The influence of hydromagnetic free convective and heat transfer was analyzed by Sheikhholeslami et al. [5]. The consequences of MHD flow and viscous dissipation on the momentum boundary layer of the nanoliquid were evaluated by Abbas and Sayed [6]. The hydromagnetic flow of nanofluids over a revolving disk was reported by Mahanthes et al. [7]. Later on, various potential investigations have been carried out by many researchers and engineers into the development and implications of these fluids [8–11]. Heat transfer rheology in convective flow nanofluids with thermal conductivity and electrical behavior received exceptional importance for their

Kumaret al. [25] conducted an analytical solution to hydromagnetic stretching surface with thermal radiation effect and velocity slip. Jahan et al. [37] contributed well to radiative sheet with the slip condition. Sparrow and Cess [32], Ozisik [33], Siegel and Howell [34], Howell [35], Takhar et al. [36], and Hussain and Takhar [37] all contributed well to radiative heat transfer analysis.

2. Basic Flow Equations

Here, we considered steady magnetohydrodynamic boundary layer nanofluid flow with a uniform velocity U moving towards an infinite plate. The velocity of the infinite plate is defined by the relation $U_w = \lambda U$; here, λ denotes the velocity parameter. The nanofluid flow is confined at $0 \leq y$.

The coordinate system is chosen in the form such that the $y - \lambda$ axis is normal to the direction of flow, and the magnetic interaction is employed normal to the plate. Let T_w be the fluid temperature and C_w be the concentration at the wall, and free-stream numbers are T_{∞} and C_{∞}. The proposed model is described by the following set of differential equations. The flow map and coordinates axes are presented in Figure 1.

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \quad (1)$$

$$u - \frac{\partial v}{\partial y} = \frac{\alpha B_0^2}{\rho_f}, \quad (2)$$

$$\frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} = \frac{a B_0^2}{k} \frac{\partial^2 T}{\partial y^2} + \tau \left(D_T \frac{\partial T}{\partial y} + \frac{D_T}{T_{\infty}} \left(\frac{\partial T}{\partial y} \right)^2 \right), \quad (3)$$

$$u - \frac{\partial v}{\partial y} = D_f \frac{\partial^2 C}{\partial y^2} + \frac{D_T}{T_{\infty}} \frac{\partial^2 T}{\partial y^2}. \quad (4)$$

Here, (u, v) are the velocity components in coordinates axes, ν is the kinematic viscosity, k is the thermal conductivity parameter, q_r denotes the heat flux, D_f represents Brownian diffusion coefficient, D_T represents the thermophoresis diffusion coefficient, B_0 denotes the field strength, σ is the electrical conductivity parameter, τ represents the ratio of the nanoparticle heat capacity to the base fluid heat capacity, T_w is the shear stress, $a = k/(\rho c)_f$ represents thermal diffusivity, λ is the velocity parameter, $\lambda > 0$ corresponds to the downstream motion of the plate from the origin, and $\lambda < 0$ corresponds to the upstream motion.

The appropriate extreme values are

$$y = 0: \quad v = 0, u = \lambda U, T = T_w, C = C_w,$$

$$y \to \infty: U_w \to U, T \to T_{\infty}, C \to C_{\infty}. \quad (5)$$

Utilizing the Rosseland diffusion approximation [35], thermal flux is defined as

$$q_r = \frac{-4\sigma^* \partial T^4}{3K_s \partial y}, \quad (6)$$

where σ^* is the Stefan–Boltzman constant and K_s is the Rosseland mean absorption coefficient. The difference in the nanofluid temperature within the fluid is sufficiently small such that T^4 can be written as a linear function of temperature:

$$T^4 \equiv 4T_{\infty}^3 - 3T_{\infty}^4. \quad (7)$$

Substituting (6) and (7) in (3), we attained

$$\frac{\partial q_r}{\partial y} = \frac{-16\sigma^* T_{\infty}^3 \partial^2 T}{3K_s \partial y^2}. \quad (8)$$

Introduce the similarity transformations:

Complexity
The governing variables appearing in (11)–(13) are defined as follows.

\[R = (4a\delta T_{\infty}/kk), \quad Pr = (\nu/\alpha), \quad Le = (\nu/D_B), \quad \text{Ha} = (2xB_0/(UBf)), \quad \text{Nb} = ((pc)_{\text{q}}D_B(\varphi_w - \varphi_{\infty}))/\nu/(pc)^{1/2}, \quad \text{Nt} = ((pc)_{\text{q}}D_B(T_w - T_{\infty})/\nu/(pc), \quad \text{C}_f = (\tau_w/\mu^2), \quad \text{Nu}_\lambda = (\varphi_w/(T_w - T_{\infty})), \quad \text{Sh}_\lambda = (\varphi_{\infty}/D_B(C_w - C_{\infty})), \]

label the radiation constraint, Prandtl number, Lewis number, Hartmann number, Brownian parameter, thermophoretic force, drag force, and Nusselt and Sherwood numbers.

The local Reynolds number is given by the equation \(\text{Re}_\lambda = Ux/\nu \).

Using similarity variables in \(C_f, \text{Nu}_\lambda, \text{and Sh}_\lambda \), we get the dimensionless form as

\[(2Re)^{0.5} f''(0), \quad \left(\frac{Re_x}{2} \right)^{-1} 2\text{Nu}_\lambda = -\theta'(0), \quad \left(\frac{Re_x}{2} \right)^{-1} 2\text{Nu}_\lambda = -\varphi'(0). \]

3. Numerical Solution and Convergence Analysis

The nonlinear flow expressions (ODEs) in (11)–(13) subject to boundary conditions in (14) are first transformed into 1st-order ODEs and then tackled numerically by employing a built-in computational algorithm BVPh2 in Mathematica software. The routine flow numerical code is demonstrated in Figure 2. Step size \(\Delta \eta = 0.001 \), and relative tolerance error \(10^{-6} \) is set; in addition, the choice of \(n_{\infty} = 7 \) confirms that all numerical approximations approach correctly to asymptotic values.

Let us introduce the transformation variables as \(f(\eta) = w_1, f'(\eta) = w_2, f''(\eta) = w_3, \theta(\eta) = w_4, \theta'(\eta) = w_5, \phi(\eta) = w_6, \text{and } \phi'(\eta) = w_7 \); hence, the following system of 1st-order seven differential equations are generated:

\[w_1' = w_2, \]
\[w_2' = w_3, \]
\[w_3 + w_1 - (\text{Ha})w_2 = 0, \]
\[w_4' = w_5, \]
\[w_5' + w_1w_3 - (\text{Ha})w_2 = 0, \]
\[w_6' = w_7, \]
\[w_7' + (\text{Le})w_1w_7 + (\text{Nt}/\text{Nb})w_5 = 0. \]

The transfer conditions are
\begin{equation}
\begin{aligned}
\psi_1 (0) &= 0, \\
\psi_2 (0) &= \lambda, \\
\psi_4 (0) &= 1, \\
\psi_6 (0) &= 1, \\
\psi_2 (\infty) &= 1, \\
x_4 (\infty) &= 0, \\
x_6 (\infty) &= 0.
\end{aligned}
\end{equation}

For authentication purpose, the computational results are further tested by the use of an analytical scheme (HAM), and a reasonable agreement has been obtained in two solutions. The attributes of two solutions via graphs are shown in Figures 3–5, and the tabularized data for velocity and thermal and solutal fields are presented in Tables 1–3. Finally, the residual error analysis has been evaluated and shown in Figure 6. A decrease in error is perceived for higher-order deformations.

4. Discussion

The current computational results accomplished by a numerical algorithm BVP2 unveil the influence of pertinent governing constraints on velocity, thermal field, and concentration profile. The impact of various emerging parameters in flow equations (11)–(13) is plotted through Figures 7–19. The numerical values of these flow factors are regarded as $\text{Ha} = 0.5, \lambda = 0.3, \text{Nt} = 0.5, \text{Nb} = 0.5, \text{Le} = 1.0, \text{Pr} = 2.0,$ and $R = 0.4$.

Figure 7 describes the Hartmann number Ha effect on the nanofluid velocity profile $f' (\eta)$. As anticipated, $f' (\eta)$ dwindles when subject to upsurge in Ha. In reality, this figure revealed that augmentation in Ha boosts Lorentz force. In consequence, velocity $f' (\eta)$ diminishes. The
Figure 5: Graphical comparison for two solutions in case of the concentration profile.

Table 1: Numerical solution via the analytical solution for the velocity $f'(\eta)$ profile.

<table>
<thead>
<tr>
<th>η</th>
<th>Numerical solution</th>
<th>HAM solution</th>
<th>Absolute error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.000000</td>
<td>1.260600 x 10^{-11}</td>
<td>1.260600 x 10^{-11}</td>
</tr>
<tr>
<td>1.0</td>
<td>0.304039</td>
<td>0.306972</td>
<td>0.002933</td>
</tr>
<tr>
<td>2.0</td>
<td>0.987469</td>
<td>0.995322</td>
<td>0.007853</td>
</tr>
<tr>
<td>3.0</td>
<td>1.904260</td>
<td>1.913580</td>
<td>0.009316</td>
</tr>
<tr>
<td>4.0</td>
<td>2.893680</td>
<td>2.902320</td>
<td>0.008634</td>
</tr>
<tr>
<td>5.0</td>
<td>3.893100</td>
<td>3.900560</td>
<td>0.007458</td>
</tr>
<tr>
<td>6.0</td>
<td>4.893080</td>
<td>4.899550</td>
<td>0.006471</td>
</tr>
<tr>
<td>7.0</td>
<td>5.893080</td>
<td>5.898930</td>
<td>0.005845</td>
</tr>
</tbody>
</table>

Table 2: Numerical solution via the analytical solution for the temperature $\theta(\eta)$ profile.

<table>
<thead>
<tr>
<th>η</th>
<th>Numerical solution</th>
<th>HAM solution</th>
<th>Absolute error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.000000</td>
<td>1.000000</td>
<td>7.586150 x 10^{-13}</td>
</tr>
<tr>
<td>1.0</td>
<td>0.840974</td>
<td>0.840241</td>
<td>0.000733</td>
</tr>
<tr>
<td>2.0</td>
<td>0.682654</td>
<td>0.681360</td>
<td>0.001294</td>
</tr>
<tr>
<td>3.0</td>
<td>0.527582</td>
<td>0.526044</td>
<td>0.001539</td>
</tr>
<tr>
<td>4.0</td>
<td>0.379004</td>
<td>0.377623</td>
<td>0.001381</td>
</tr>
<tr>
<td>5.0</td>
<td>0.240021</td>
<td>0.239184</td>
<td>0.000837</td>
</tr>
<tr>
<td>6.0</td>
<td>0.113119</td>
<td>0.113103</td>
<td>0.000016</td>
</tr>
<tr>
<td>7.0</td>
<td>7.995770 x 10^{-10}</td>
<td>0.000912</td>
<td>0.000912</td>
</tr>
</tbody>
</table>

Table 3: Numerical solution via the analytical solution for the nanoparticle concentration $\phi(\eta)$ profile.

<table>
<thead>
<tr>
<th>η</th>
<th>Numerical solution</th>
<th>HAM solution</th>
<th>Absolute error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.000000</td>
<td>1.000000</td>
<td>2.065240 x 10^{-12}</td>
</tr>
<tr>
<td>1.0</td>
<td>0.703260</td>
<td>0.707816</td>
<td>0.004557</td>
</tr>
<tr>
<td>2.0</td>
<td>0.433740</td>
<td>0.441075</td>
<td>0.007335</td>
</tr>
<tr>
<td>3.0</td>
<td>0.229562</td>
<td>0.236590</td>
<td>0.007028</td>
</tr>
<tr>
<td>4.0</td>
<td>0.106379</td>
<td>0.110674</td>
<td>0.004295</td>
</tr>
<tr>
<td>5.0</td>
<td>0.045187</td>
<td>0.047072</td>
<td>0.001885</td>
</tr>
<tr>
<td>6.0</td>
<td>0.016303</td>
<td>0.017325</td>
<td>0.001021</td>
</tr>
<tr>
<td>7.0</td>
<td>-2.066080 x 10^{-8}</td>
<td>0.000912</td>
<td>0.000912</td>
</tr>
</tbody>
</table>
Figure 9: Influence of the temperature $\theta(\eta)$ profile via Ha.

Figure 10: Influence of the temperature $\theta(\eta)$ profile via R.

Figure 11: Influence of the temperature $\theta(\eta)$ profile via Nt.

Figure 12: Influence of the $\theta(\eta)$ profile via Nb.

Figure 13: Influence of the $\theta(\eta)$ profile via Pr.

Figure 14: Influence of the temperature $\phi(\eta)$ profile via Nt.
contribution of velocity parameter λ on nanofluid velocity profile $f' (\eta)$ is evaluated through Figure 8. As perceived, in this figure, fluid velocity enhances when λ upsurges. Hence, $f' (\eta)$ upsurges. The attributes of thermal field $\theta(\eta)$ curves for Ha magnetic field are disclosed in Figure 9. One can perceive that $\theta(\eta)$ is a growing function of Ha. In reality, the heat transfer rate of nanofluid particles boosts up through larger Ha. Consequently, $\theta(\eta)$ escalates. Such a scenario is perceived because higher Ha implies larger Lorentz force provides more resistance which makes increases the fluid flow. In consequence, $\theta(\eta)$ augments. Figure 10 explains variations in thermal field $\theta(\eta)$ subjected to radiation parameter R. This figure unveils $\theta(\eta)$ enhancement for higher values of (R). In fact, working nanofluid acquires extra heat subject to the radiation factor. In consequence, $\theta(\eta)$ upsurges.;Figure 11 reveals variations in $\theta(\eta)$ subject to thermophoresis parameter Nt. Here, thermal field increases with increasing Nt. Physically, the thermophoretic force rises as Nt parameter is escalated. Such force is responsible to move small size particles by hotter towards colder region. Consequently, $\theta(\eta)$ escalates. Figure 12 explains the Brownian motion parameter Nb effect on $\theta(\eta)$. As
anticipated, thermal field $\theta(\eta)$ enhances through larger Nb parameter. In nanofluids, Brownian motion ascends due to small-size nanoparticles, and at this point, nanoparticle motion rate and its effect against the fluid have a vital vibrant role regarding heat transport. In consequence, upsurges in Nb produce active nanoparticles within the base fluid. The result of disordered nanoparticle motion develops kinetic energy of the nanoparticles, and eventually, thermal behavior $\theta(\eta)$ of the fluid augments. The contribution of Prandtl number Pr on $\theta(\eta)$ is evaluated through Figure 13. Here, thermal field diminishes against larger Prandtl number estimations. Attributes of Nt on solutal field $\phi(\eta)$ are interpreted in Figure 14. We perceived an increase in $\phi(\eta)$ subjected to higher thermophoresis parameter estimations. In reality, an upsurge in thermophoresis force is viewed through greater Nt parameter which is responsible for moving the fluid particles from higher temperature to lower temperature. In consequence, $\phi(\eta)$ profile boosts. Solutal field $\phi(\eta)$ curves for Hartmann number Ha are unveiled in Figure 15. Clearly, the solutal field is the augmenting function of the Hartmann number. Mass transfer augments when Ha is enhanced. Accordingly, $\phi(\eta)$ increases. The attributes of Lewis number parameter Le on solutal field $\phi(\eta)$ are interpreted in Figure 16. Clearly, $\phi(\eta)$ diminishes when Le is increased. Physically, Lewis number Le signifies the influence of thermal diffusion on mass diffusion in the boundary layer region. Such a scenario is noticed because higher Le implies lessening in the solutal field and boundary layer.

Effects of pertinent variables against physical quantities $(f''(0), -\theta'(0), \text{and} -\phi'(0))$ are described in Figures 17–19. These figures highlight decay in $f''(0)$, $-\theta'(0)$, and $-\phi'(0)$ for larger R and Ha estimations.

5. Closing Remarks

The aim of this research is to analyze two-dimensional incompressible viscoelastic magnetonanofluid flow with the Buongiorno model. This investigation further includes results of heat generation/absorption with convective conditions. Current investigation enables us to explain the following key outcomes:

(i) Velocity field $f'(\eta)$ lessens when subject to increment in the Hartmann number Ha, and thermal field $\theta(\eta)$ develops with magnetic strength

(ii) Velocity profile augmented with larger velocity parameter λ

(iii) Thermal field $\theta(\eta)$ upsurges when radiation parameter R and Hartmann number Ha are improved

(iv) A similar feature is viewed qualitatively for higher thermophoretic parameter Nt and Brownian motion variable Nb

(v) Solutal field $\phi(\eta)$ boosts through larger Hartmann number Ha, and $\phi(\eta)$ field dwindles while Lewis number Le augments

(vi) Larger values of radiation parameter R and Hartmann number Ha diminish $f''(0)$ skin friction (drag force), Nusselt number $-\theta'(0)$, and Sherwood number $-\phi'(0)$

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at Majmaah University for funding this work under the project number (RGP-2019-6).

References

Complexity

