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A graph’s entropy is a functional one, based on both the graph itself and the distribution of probability on its vertex set. In the
theory of information, graph entropy has its origins. Dominating David derived networks have a variety of important applications
in medication store, hardware, and system administration. In this study, we discuss dominating David derived network of type 1,
2, and 3 written as D, (n), D, (n), and D; (n), respectively of order n. We also compute some degree-based entropies such as
Randi¢, ABC, and GA entropy of D, (n), D, (n), and D5 (n).

1. Introduction and Preliminary Results

A graph Gisatuple G = (V, E), where V is the set of vertices
and E is the set of edges. A graph can be represented by a
numerical quantity which is known as topological index.
These indices have a vast number of application in various
fields biology, computer science, information technology,
and chemistry. Topological indices are used in QSAR/QSPR
studies.

To comprehend the properties and data contained in the
network example of graphs, there are a number of mathe-
matical values, known as structure invariants, topological
indices, or topological descriptors, which have been deter-
mined and concentrated in the course of recent many years.
The topological indices have tremendous number of uses in
the chemical graph which is the uncommon part of nu-
merical science.

The combination of mathematics, information tech-
nology, and chemistry is a new division known as chem-
informatics. It deals with QSAR and QSPR studies which
predict the bio and physical chemical activities of

compounds. The theory of topological indices was started by
Wiener [17], when he was working on the boiling point of
paraffins. The Wiener index is stated as

WG = Y dww). ()

(u,v)V (G)

A number of problems that occur in discrete mathe-
matics, statistics, biology, computer science, chemistry, in-
formation theory, etc., investigate the entropy of structures
to deal with them. Shannon, in 1948, gave the concept of
entropy [12]. The entropy of a graph G is defined as follows.

Let G be a graph and V (G) = {1,2,...,n} be the vertex
set of G. Let P = (py, py> - - -» P,) be the probability density
of V(G) and VP (G) be the vertex packing polytope of G.
Then, entropy of G with respect to P is

X 1
H(G,P)= min ; pilog<a—i). (2)

Graph entropy has been utilized broadly to portray the
structure of graph-based frameworks in numerical science
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[6]. Trucco gave the idea of graph entropy in 1955 [15]. He
said, the graph entropy is dependent on order of vertices.
The construction of dominating David derived networks
is the same as the David derived networks. The David de-
rived network is obtained from Star of David network SD (n)
by splitting each edge of it into two by installing another
vertex. In the same way, dominating David derived network,
DDD (n), is obtained from honeycomb network HC (n). For
the detailed construction, the reader can refer to [8, 9].

1.1. Degree-Based Topological Indices. 'The first degree-based
topological index was presented by Milan Randic [11] and
generalised by Bollabas and Erdos [2] and Amic et al. [1], in

1998:
R(G)= )
e=uveE (G)

(d,xd,)", 3)

where a = 1,-1, (1/2), - (1/2).
ABC index was introduced in 1998, by Estrada et al. [7].
It has the formula

i d(u

ENT,(G) =
P

=—=ENT, (G) = log Z d(uj)
=1

p
=ENT, (G) = log Z d(u]-)
=

by using the Hand Shaking Lemma, and we have

Zf;l d(u;) = 24. So,

P
ENT, (G) = log(29) % Y [log (@) ] @

i=1

1.3. Edge Weight-Based Entropy of Graph. The edge weight

entropy of a graph G was introduced in 2014 by Chen et al.
[5]:

i=1 Zle d( ]

Complexity

Z d,+d, - 2. @)

ABC(G) =
e=uveE(G) d”‘ x dV

Vukicevic and Furtula studied this index for the first
time [16]. It is written as the GA index:

24/d, xd,

e=uveE (G)

1.2. Degree-Based Entropy of Graph. The entropy of a graph
G is defined as
Eod(w) d(u;)
ENT, (G) =-) iZ__log | (6)
v
Fad(u;) TIEE d(w))

i=1 =1

where d,, is the degree or vertex u;.

)[log d(u;) logj_id(uj)],

ST i) SléCos 4 o

i=1

7 .)i[l"gd ']

i=1

ENT, (G) = -

du'v Io [ du'v' ]
W'V €E(G) ZuveE(G)d(uv) 8 ZuveE(G)d(uV) ’
9)

1.3.1. Randicl Entropy. Using equation (3), equation (9)
reduced to

ENT,_(G) =log(Ra)—Ri Z Z [(d (1) x d ()] 0" (10
@ i=1 uveE,; (G)

1.3.2. Atom Bond Connectivity Entropy. Using equation (4),
equation (9) reduced to
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1 m
ENT 43¢ (G) = log (ABC) — e >y

lo
i=1 uveE; (G)

1.3.3. The Geometric Arithmetic Entropy. Using equation
(5), equation (9) reduced to

1 m
ENTG, (G) =log(GA) - ) ) log

i=1 uveE; (G)

2. Main Results

Simonraj and George [13] computed the metric dimension
of David network and Imran et al. [8] computed the degree-
based topological indices of dominating David derived
networks; also, Song et al. [14] computed the entropy-based
indices of Hex derived networks. Here, we discuss the
dominating David derived networks in this work and cal-
culate the exact results for entropies based on edges.

2.1. Results on Dominating David Derived Network of Type 1.

V (d(w)+d (v)-2)/ (d (u)xd (v))
d(u) +d(v) -2 (11)
S\ dw xd(v) '

(12)

2+/d (u) x d(v) (2+/d@xd (1) (@d (w)+d ()

Here, we calculate certain degree-based entropies of dom-
inating David derived network of type 1. D, (n) is shown in
Figure 1. The edge partition of D, (n) is shown in Table 1. We
compute Randic entropy, ABC entropy, and GA entropy for
D, (n).

2.2. Randic Entropy of D, (n). If H = D, (n), then, by using
Table 1 and equation (3), we have

R, (H) = 4nx (4)" + (4n — 4) x (6)" + (28n — 16) x (8)" +(9n° — 13n + 5) x (9)

(13)

+ (36n2 —56m+ 24) x (12)* +(36n2 —5n+ 20) x (16)",

for o = 1. Randic index is

=R, (H) = 1089 — 1357n + 501. (14)
For o« = -1,
25 , 151 41
—R ,(H) ==—#n"-—n+— (15)
4 36 46

For a = (1/2),

=Ry (H) = 295.707658n" — 343.995772n + 123.085646.

(16)
For a = —(1/2),
:’R—(l/z) (H) = 22.392305n1% — 19.966653n + 6.305022.
(17)

Using equation (10) and Table 1, the Randic entropy is

ENT () (H) =log(R,) _RL,X [411 x log (4)* + (4n—4) x log (6%)*

+(28n - 16) xlog (8°)" +(9n” — 131+ 5) xlog (9°)"

(18)

+ (361" - 561 +24) x log (12%)"*

+(36n” - 521+ 20) x log (16%)'“].

For a =1,



F1GURE 1: Dominating David derived network of type 1 (D, (2)).

TaBLE 1: Edge partition of D, (n).

Complexity

(d(u),d(v)), where uv € E(D, (n))

Cardinality of edges

(2,3) 4n—4
(2,4) 28n-16
(3,3) 9n? —13n+5
(3,4) 36m2 — 56m + 24
(4,4) 36m% — 52n + 20
1
ENT ;) (H) = log(Ry) - = [4n x log (4)* + (4n—4) x log (6)°
1
+(28n - 16) x log (8)® +(9n2 - 13n+ 5) x log 9)°
(19)
+(36n" - 56n+24) x log (12)"* +(36n” - 52n+20) x log (16)'°],
1
==ENT () (H) = log(R;) - = (1237.073052,42 —1608.08325n1 + 604.792358).
1
For a = (1/2),
1
ENT(RM)) (H) = log(R(l/z)) TR [471 x log (\/Z)\/I + (4n —4) x log (\/8)\/6_
(1/2)
+(28n-16) x log (V8)"F +(9n” — 13n+5) x log (V9)"”
+(36n2 —56m + 24) x log (V12)'2 (20)

For a = -1,

+(36n° - 52+ 20) x log (\/E)m],

1
—ENT (g,,,,) (H) = log(Rq11) - Ry

(166.869996712 —206.5302997 + 75.935599).



Complexity 5
1 1\ (174 1\ (1/6)
ENT  )(H) =log(R_;) - R, [411 x log (Z) +(4n—4) x log <g)
1\ (178) 5 1\ (179
+ (28n - 16) x log <§> +(9n - 13n+ 5) x log <§>
(1/12)
+(36n" - 56n + 24) x log (—) (21)
12
R (1/16)
36n” —52n+20) x1 <—> >
« (361 = 5201+ 20) x log ]
1
==ENT (5 ) (H) =log(R_,) - -— (~6.901056n" + 6.046277n — 1.8687 ).
-1
For a = —(1/2),

1 (V) (1/V6)
ENT (x ..) (H) = log(R_(l/z)) "R |:4n x log (\/Z) + (4n — 4) x log (\/5>

~(1/2)

)(1/\/9_)

(1/V8)
+ (28n - 16) x log (W) +(9n2 - 13n+ 5) x log (ﬁ

(1/V12)
) (22)

+ (3»6712 - 56n + 24) x log (W

(1/V16)
+ (36n” - 52n+20) x log (%) ]

1 2
—ENT () (H) = log(R_(5) - R (~12.457494n% + 12.909738n — 4.354213),

where R, for a = 1,-1, (1/2), —(1/2) is written in equations 2.3. The Atom Bond Entropy of D, (n). If H = D, (n), then,
(14)-(17), respectively. by using equation (4) and Table 1, the ABC index is

2+2-2 2+3-2
ABC(H) = (4n) X \|[———= + (4n — 4) x w/i
2%2 2%3
2+4-2 3+3-2
+(28n - 16) x \,7+<9n2 —13n+5) X \/7
5 3+4-2 5 4+4-2
+(36n —56n+24)>< 7+(36n —52n+2o)x - =
3x4 4x4

= ABC (H) = 51.283308n" — 51.202034n + 16.93058.

Using equation (11) and Table 1, the ABC entropy is
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(2+2-2)/ (2x2)
1 2+2-2
ENT = S w/—
NT 450 (H) = log (ABC) BC |:(4n) x log ( %2 )

A/ (2+3-2)/(2x3)
2+3-2
+ (4n - 4) x log (\7)
2x%x3
D) A/ (2+4-2)/ (2x4)
+ (28n - 16) x log (\ 7>
2x4
(343-2)/(3%3)
3+43-2
+(9n2—13n+5)><log<\3x3> (24)

3+4-2

+ (361" — 56n + 24) x log <\j3+4‘2)\’ 3x4

3x4

(4+4-2)/4%x4
s 4+4-2\V
+ (36n” — 52+ 20) x log (\/W) ]

1
=—ENT 43¢ (H) = log(ABC) - e (~10.16953n” + 11.348686n — 4.011986),

where ABC index of D, (n) is written in equation (23). 24. The Geometric Arithmetic Entropy of D,(n). If
H = D, (n), then, by using equation (5) and Table 1, the GA
index is
22 %2 22 %3
GA(H) = (4n) x + (4n — 4) x
2+2 2+3
22 x4 243 %3
+(28n—16) x +(9n® — 13n+5) x
2+4 3+3
(25)
23 x4 24 x4
+(36n” — 56n + 24) x +(36n” = 52n+20) x ————,
3+4 4+4

—GA (H) = 80.630759" — 86.107789n + 29.749711.

Using equation (12) and Table 1, we have
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1 242 X2 (2V2x2)/ (2+2)
ENTg, (H) =log(GA) - GA [(411) x log (2+2>

2 _\/m ) (2v2x3)/(2+3)

(2V2x4)/ (2+4)
2+3 )

2V2 x4
+(28n— 16)><10g< X

4n—4) x1 _
+ (4n )xog( 7+

2\/m (24/3x3)/(3+3)
3+3

+(9n2 -13n+ 5) x log (

(26)
(2V/3x4)/ (3+4)
23 x4
+(36n2 - 56n + 24) x log <7)
3+4
(2V4x4)/ (4+4)
2vV4 x4
+(36n" - 521+ 20) x log (7> ]
4+4
1
—ENTg, (H) = log(GA) - — (~0.159534n" — 0.461756n + 0.314202),
where GA index of D, (n) is written in equation (25). We compute Randic entropy, ABC entropy and GA entropy

for D, (n).

2.5. Results on Dominating David Derived Network of Type 2.
Here, we calculate certain degree-based entropies of
Dominating David Derived network of type 2. The D, (n)
shown in Figure 2, and edge partition is shown in Table 2.

2.6. Randic Entropy of D, (n). If H = D, (n), then, by using
equation (3) and Table 2, we have

R, (H) = (4n) x (4)" +(18n" - 22n+ 6) x (6)* + (28n - 16) x (8)" o
27
+(36n° — 56n + 24) x (12)" +(36n" - 52n + 20) x (16)".

=Ry (H) = 312.798474n" — 368.6825051 + 132.580543.

For a =1,
(30)

=R, (H) = 1116n" — 13961 + 516. (28)
For a = —(1/2),

For a = -1, —R_1)5) (H) = 26.740774n> - 26.247775n + 8.720839.
33, 8 9
=R (H)=2n'-—n+- 29 31
-1 (H) YT (29) (31)
For a = (1/2), Using equation (10) and Table 2, we have

ENT (e (D =log (k) = Ria [(4m) x log (4*)"" +(18n” 221+ 6) x log (6")"

+(28n-16) x log (8")" +(36n> - 56n + 24) x log (12%)'* (32)

+(36n” - 52n+20) x log (16%)'""].

For a =1,
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O TaBLE 2: Edge partition of D, (n).

@ 0'0""' OO d(u),d (v) where uv € E (D, (n)) Cardinality of edges
RIS @:2) "
000,050,090 90 0. 0 L0 00 0.0, (2,3) 1872 - 221+ 6
0060100160%00%00760700% 0060’ > Lo

S 0.0 0,008 9.8 909090 0.%0.%"
. .’ ‘. " ."‘.“.“.“.“"‘ (3,4) 36m2 — 56n + 24
000 00 e 090% %00 % 0% 0% o L
$0.49.40.40.60.$0$9.$0.69.40 (4,4) 3612 — 52 + 20
1010000000010 0000 000000078
o‘oéq%"o‘o0o‘o0'00‘v
5070000060160%6649/60%970 ¢’
S 000008000000 9.50.%9.%",
LXK TKILXILXIKIKX IR
0"00""'..'
50000000000%09%09% 0078 010 0%
4000407060 6060 60 0'0al
BB
OO "‘.Q OOQ
OG0
FIGURE 2: Dominating david derived network of type 2 D, (4).
ENT (1) (H) = log(R;) - Ri [(4n) xlog (4)* +(18n" - 221+ 6) x log (6)°
1
+(28n - 16) x log (8)° +(36n” - 56n + 24) x log (12)"
(33)
+(36n” - 521+ 20) x log (16)"°],
==ENT () (H) =1log(R,) - 1%(1243.819743”2 - 1617.828471n + 608.54052).
1
For a = (1/2),
ENT(RM))(H) = log(R(l,z)) - R; [(4n) x log (\/Z)\/Z +(18n2 -22n+ 6) x log (\/5)\/6_
(1/2)
+(28n - 16) xlog (V8)"® +(36n" - 56n+ 24) x log (V12)"?
(34)
+(36n* - 52n+20) x log (\/E)m],
==ENT () (H) = log(Rqy) - ! (171.142383n" - 212.701526n + 78.309148).
(1/2) R(1/2)
For a = -1,
1 (1/4) ) 1 (1/6)
ENT (p y(H) = log(R_;) - R, [(4;1) x log (Z) +(18n - 22n+ 6) x log (8)
(1/8) (1/12)
+(28n - 16) x log <é) " +(36n” - 56n + 24) x log (1—12> 112 -

(1/16)
+ (36;12 - 52n+ 20) x log (E) ]

1
==ENT (g, (H) = log(R_,) - — (~8.281267n” + 8.039915n — 2.635484).
-1
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For a = —(1/2),

1 (1/NE)
ENT(R,“/Z))(H) = log(R_ (1/2)) ir-— l:(4n) x log (\/Z)

R— (1/2)
(1/V8) (1/4/8")
+(18n” - 22n+6) x log (%) +(28n - 16) x log <%)
(1/V12)
+ (361" — 56n + 24) x log <ﬁ> (36)

(1/V/16)
+(36n” - 521+ 20) x log (%) ]

=—ENT (z  y(H) = log(Rp) - ~13.88524n° + 14.972039n — 5.147406),

—(1/2)

where R, for & = 1, -1, (1/2), - (1/2) is written in equations  2.7. The Atom Bond Entropy of D, (n). If H = D, (n), then, by
(28)-(31), respectively. using equation (4) and Table 2, we have

2+2-2 2+3-2
ABC (H) = (4n) x \|=———— +(18n" - 22n + 6) x \/7
2x2 2x3
2+4-2 5 3+4-2
+ (281 - 16) x 7+(36n —56n+24)>< -z
2xX4 3x4 (37)
4+4-2
+(36n2—52n+20)><\/—,
4 x4

— ABC (H) = 58.01123n" — 60.920143n + 20.668314.

Using equation (11) and Table 2, we have

1
ENTABC (H) = log (ABC) - A—BC

) (2+2-2)/(2%x2)
(4n) x log <\/—)
2X2
, T35\ Vo)
+(18n" —22n+6) x | _
(180~ 220+ 6) og(\/ o )
+(28n-16) x 1 \/m e
n— o _—
8\ 2xa
37 4-3 (3+4-2)/(3x4)
+(36n° — 561 + 24) x log \/—
3x4
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A/ (4+4-2)/ (4x4)
) 4+4-2
+(36n" - 521+ 20) x log (xfi) ]
4x4 (38)

1
==ENT 45 (H) = log(ABC) - ——— [-11.028726n" + 12.589746n — 4.489317],

where ABC index of D, (n) is written in equation (37). 2.8. The Geometric Arithmetic Entropy of D,(n). If
H = D, (n), then, by using equation (5) and Table 2, we have

24/2x2 242 %3
GA (H) = (4n) x +(18n* — 221+ 6) x
2+2 2+3
242 x 4 243 x4
+(28n - 16) x +(36n” - 56n + 24) x
244 x4
+ (361" - 52n + 20) x X
4+4
=GA (H) = 89.267086n" — 98.582482n + 34.54767.
Using equation (12) and Table 2, we have
(2V2x2)/ (2+2)
1 242 %2
ENT., (H) = log(GA) - — |(4n) x log | =———=
ca (H) = log(GA) GA[( n) x og( ) )

(2V2X3)/(2+3)
2V2x3
+ (18;12 -22n+ 6) x log <7)

2+3
(2V2x4)/ (2+4)
2V2 x4
+ (28n - 16) x log ()
2+4
(40)
(2V3%4)/ (3+4)
2V3 x4
+ (36;12 - 56mn + 24) xlog | ———
3+4
(2Vax4)/ (4+4)
2V4 x4
+ (36n2 -52n+ 20) x log (—) ],
4+4
1
ENTG, (H) = log(GA) - — (-0.315869n" - 0.235939n + 0.227349),
where the GA index of D, (n) is written in equation (39). Figure 3, and edge partition is shown in Table 3. We compute

Randic entropy, ABC entropy, and GA entropy for D, (n).

2.9. Results on Dominating David Derived Network of Type 3.
Here, we calculate certain degree-based entropies of dom-  2.10. Randic Entropy of D5 (n). If H = D3 (n), then, by using
inating David derived network of type 3. D; (n) is shown in  equation (3) and Table 3, we have
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11
TaBLE 3: Edge partition of D; (n).
(2" d(u),d(v), where uv € E(D3(n)) Cardinality of edges
REXENESR i
(XK ITHITH KD (.9

72n* — 108n + 44

S 5L o)
NSNS
XA

a8 %

FIGURE 3: Dominating David derived network of type 3 D5 (2).

R, (H) = (4n) x (4) +(36n" - 20n) x (8)" +(72n” - 108n + 44) x (16)". (41)

=>R(1,2) (H) = 389.823376n" — 480.568542n + 176.
For a =1,

(44)
=R, (H) = 1440n" — 1872n + 704. (42)
For a = —(1/2),
For o« = -1,

w =Ry (H) = 30.727922n" - 32.071068n + 1. (45)
=R (H)=9n*-=

(43) Using equation (10) and Table 2, we have
For a = (1/2),
ENT (g ) (H) = log(R,) - Ri [(4n) x log (4)* + (361 - 20n) x log (8)*
* (46)
+(72n° — 108n + 44) x log (16%)'".
For a =1,
1 4 2 8
ENT (5 ) (H) = log(R,) = [(4n) xlog (4)* +(36n" - 20n) x log (8)
1
+(72n" - 108n + 44) x log (16)'°], (47)
1
—ENT () (H) = log(R,) - R—(1647.236136n2 — 2215.580768n + 847.700468 ).
1
For a = (1/2),
1 ey 2 V8
ENT(R“,Z))(H) = log(R(m)) TR [(4n) x log (V4) +(36n - 20n) x log (V8)
(1/2)
+ (721" ~ 1081 + 44) x log (\/ﬁ)m], (48)

1
==ENT (r .y (H) = log(R;)) - m

(219.371113;12 —283.224918n + 105.962558).
(1/2)
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For o« = -1,

1 1\ (174 5 1\ (1/8)
ENT(R_I)(H) =log(R,) - R_-1 [(4n) x log (Z) +(36n - 20n) x log <§>
(1/16)
+(72n” - 108n + 44) x log (—) ] (49)
16
1
==ENT (i) (H) =log(R_;) - -— (~9.482445n" + 9.783475n - 3.31133).

-1

For a = —(1/2),

1 1 VT , 1 18
ENT (z_,) (H) = log(R, (1/2)) - m {(471) x log (ﬁ) +(36n - 2071) x log (%)
+ (721 AN (50)
n’ —108n+44) x log <W> }

1 2
—ENT (g, (H) =log(R) - R (~16.584309n” + 18.846465n — 6.62266),

where R, for a = 1,-1, (1/2), —(1/2) is written in equations 2.11. The Atom Bond Entropy of D5 (n). If H = D, (n), then,
(42)-(45), respectively. by using equation (4) and Table 3, we have

2+2-2 2+4-2
ABC (H) = (4n) x \|=————— +(36n" - 20n) x Y el
2X2 2x4
4+4-2 51
+(72n2— 108n+44)>< \/7, 51
4x4

= ABC (H) = 69.546659n" — 77.449932n + 26.944387.

Using equation (11) and Table 3, we have

1 ) A/ (242-2)/(2x2)
ENT 5 (H) = log (ABC) - —— | (4 1 - =
apc (H) = 1og(ABC) =7 = | (4n) x °g<\J 2% 2 )
(2+4-2)/ (2x4)
D+4-2
+(36n° —20m) x 1 Tz
(36r ~20n) °g<\! 2x4 )
G+4-2 (4+4-2)/ (4x4)
+(72n" = 108n + 44) x log \/7 ,
4x4

=ENT 45 (H) = log (ABC) —

(52)

BC [-13.222141n" + 15.788864n - 5.738733],
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TaBLE 4: Comparison table of entropies for D, (n).

n ENT,, ENTg, ENT ENT, ENT ENT,
1 1.3640 1.3889 1.3935 1.3879 1.3973 1.3977
2 2.2405 2.2563 2.2361 2.2547 2.2617 2.2623
3 2.6849 2.6969 2.6777 2.6956 2.7009 2.7015
4 2.9793 2.9895 2.9723 2.9884 2.9929 2.9934
5 3.1992 3.2084 3.1928 3.2075 3.2115 3.2118
6 3.3747 3.3833 3.3689 3.3824 3.3861 3.3865
7 3.5207 3.5288 3.5154 3.5281 3.5315 3.5318
8 3.6458 3.6535 3.6408 3.6528 3.6560 3.6564
9 3.7550 3.7625 3.7505 3.7619 3.7649 3.7653
10 3.8521 3.8594 3.8478 3.8588 3.8617 3.8620
TaBLE 5: Comparison table of entropies for D, (n).
n ENT,, ENTg,, ENT, ENT, ENT 50 ENT,,
1 1.3791 1.4056 1.3756 1.4051 1.4143 1.4148
2 2.2668 2.2884 2.2574 2.2872 2.2958 2.2966
3 2.7136 2.7328 2.7025 2.7314 2.7394 2.7403
4 3.0090 3.0271 2.9972 3.0255 3.0335 3.0342
5 3.2295 3.2469 3.2174 3.2453 3.2531 3.2537
6 3.4053 3.4223 3.3930 3.4207 3.4284 3.4291
7 3.5516 3.5683 3.5392 3.5666 3.5743 3.5749
8 3.6767 3.6932 3.6643 3.6916 3.6992 3.6998
9 3.7862 3.8025 3.7736 3.8008 3.8083 3.8089
10 3.8834 3.8995 3.8707 3.8978 3.9053 3.9059

where the ABC index of D, (n) is written in equation (51).  2.12. The Geometric Arithmetic Entropy of D;(n). If
H = D, (n), then, by using equation (5) and Table 3, we have

2V2x2 2V2 x4 2\VA x4
GA(H) = (4n) x —=—= +(36n2 - 20n) x === +(72n2 — 1081 + 44) x =
2+2 2+4 4+ 4 (53)

=GA(H) = 105.9411251” — 122.856181n + 44.

Using equation (12) and Table 2, we have

(2V2x2)/(2+2)
1 242 %2
ENTg, (H) = log(GA) - GA [(4n) x log (24—2)
(2V2x4)/ (2+4)
2vV2 x4
+(36n2 - 20n) x log (—)
2+4
(54)
(2V4x4)/ (4+4)
2vV4 x4
+(72n" - 108n + 44) x log (4) ]
4+4

1
ENTg, (H) = log (GA) - - (~0.868087#" + 0.482271n),

where the GA index of D, (n) is written in equation (53).
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TaBLE 6: Comparison table of entropies for Ds (n).

n ENT,, ENTg, ENT ENT, ENT ENT,
1 1.4075 1.4368 1.4042 1.4364 1.4463 1.4469
2 2.3296 2.3502 2.3215 2.3491 2.3568 2.3577
3 2.7842 2.8020 2.7759 2.8010 2.8077 2.8087
4 3.0827 3.0994 3.0748 3.0984 3.1047 3.1057
5 3.3049 3.3209 3.2972 3.3199 3.3261 3.3269
6 3.4819 3.4975 3.4744 3.4965 3.5024 3.5033
7 3.6289 3.6442 3.6215 3.6432 3.6490 3.6499
8 3.7546 3.7697 3.7473 3.7687 3.7745 3.7754
9 3.8645 3.8794 3.8572 3.8784 3.8841 3.8849
10 3.9619 3.9767 3.9547 3.9758 3.9814 3.9823
3. Discussion References

Since entropy plays a vital role in various fields of science
such as software engineering, medication, and pharma-
ceutical, its numerical values and graphical representation is
very much important for researchers. Here, we calculate
some exact values of degree-based entropies of dominating
David derived networks D, (n), D, (n), and D;(n). Fur-
thermore, we construct Tables 4-6 to estimate the degree-
based entropies for various values of n. From Tables 4-6, we
can see that, as n increases, the degree-based entropies of
these networks also increase.

4. Conclusion

In this study, taking into account the definition of Shannon
and Chen entropy, we studied the classifications of DDD (r)
and also computed the entropies of them. We discuss the
degree-based topological indices such as Randic, ABC, and
GA index and find their closed formulae of entropy for
dominating David derived network. We, in like manner,
enlisted the mathematical assessments of these entropies in
Tables 4-6. We gave the relation of these entropies which
help us to know the physio-chemical activity of these net-
works [10, 3, 4].
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