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Objective. Systemmodeling is an important method to study the workingmechanisms of the brain.,is study attempted to build a
model of the brain from the perspective of thermodynamics at the system level, which brought a new perspective to brain
modeling. Approach. Regarding brain regions as systems, voxels as particles, and intensity of signals as energy of particles, the
thermodynamic model of the brain was built based on the canonical ensemble theory. Two pairs of activated regions and two pairs
of inactivated brain regions were selected for comparison in this study, and the thermodynamic properties based on the proposed
model were analyzed. In addition, the thermodynamic properties were extracted as input features for the detection of Alzheimer’s
disease. Main Results. ,e experimental results verified the assumption that the brain follows thermodynamic laws. ,is
demonstrated the feasibility and rationality of the proposed brain thermodynamic modeling method, indicating that ther-
modynamic parameters drawn from our model can be applied to describe the state of the neural system. Meanwhile, the brain
thermodynamic model achieved good accuracy in the detection of Alzheimer’s disease, suggesting the potential application of
thermodynamic models in auxiliary diagnosis. Significance. (1) In the previous studies, only some thermodynamic parameters in
physics were analogized and applied to brain image analysis, while, in this study, a complete system model of the brain was
proposed through the principles of thermodynamics. And, based on the neural system models proposed, thermodynamic
parameters were obtained to describe the observation and evolution of the neural system. (2) Based on the proposed ther-
modynamic models, we found and confirmed that the neural system also follows the laws of thermodynamics: the activation of
system always leads to increased internal energy, increased free energy, and decreased entropy as what is discovered in many other
systems besides classic thermodynamic system. (3) ,e detection of neural disease was demonstrated to benefit from the
thermodynamic model, which confirmed that the thermodynamic model proposed can indeed describe the evolution of the neural
system diseases. And it further implied the immense potential of thermodynamics in auxiliary diagnosis.

1. Introduction

,e human brain is the most complex organ with unlimited
potential. To further understand the physiological principle
and working mechanism of the brain, scientists have tried to
build models of the brain from different perspectives and
then observe and study system states and characteristics.
,erefore, dynamics applied in modeling neural systems,
called neurodynamics, is an important theory. It attempts to

build neural system models based on dynamics at different
levels, from microscopicion channels to macroscopic con-
nections of the cerebral cortex. ,en, system states and
dynamic characteristics can be observed to explore the
working mechanism of the brain. Deco and Rolls [1] studied
the spiking mechanisms of synapses and neurons under
biased competition using dynamic analysis. Based on neu-
rodynamics, Quyen [2] developed, a comprehensive
framework to analyze the spatiotemporal characteristics of
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the brain on a large scale. Heller and Casey [3] studied the
temporal development of adolescents in emotion by building
a corresponding model with neurodynamics and explored
the relationship between temporal dynamic changes in
adolescents with emotional and mood/anxiety disorders.
Amari and Maginu [4] built an autocorrelation associative
memory model based on statistical neurodynamics to an-
alyze nonequilibrium dynamical behaviors in the recall
process. By simplifying the KIII model, Harter and Kozma
[5] built a KA model of aperiodic dynamics observed in
cortical systems to understand intelligent behavior in bio-
logical agents.

,e brain network is also significant in modeling neural
systems, which are based on function integration and dif-
ferentiation mechanisms in neurophysiology. ,e brain
network includes the structural brain network and the
functional brain network. ,e structural brain network
describes the anatomical links between units, such as the
white matter fiber tracts [6]. ,e functional brain network
focuses on describing the interactions between units, for
example, the functional correlation [7] or the autocoherent
oscillations of inhibitory neurons [8]. Brain network
modeling has also been applied to research on pathologic
mechanisms of various neural diseases. Xiang et al. [9]
explored the changes in the shortest paths and clustering
coefficients of functional brain networks in Alzheimer’s
disease. Dubbelink et al. [10] studied the changes in brain
network topology in Parkinson’s disease using magneto-
encephalography. Jeong et al. [11] studied the difference in
functional brain networks between the epileptic and control
groups using global mutual information and global effi-
ciency of different bands with whole-brain magneto-
encephalography. ,e brain network allowed people to
diversify out of previous research focusing on one specific
independent object, with a view to understand the physi-
ological principle and working mechanism of the neural
system at different levels from the perspective of the col-
laborative working mechanism of the brain.

As mentioned above, the existing works in brain
modeling generally focused on the neurodynamics or brain
network. While the brain is a multilayered and multidi-
mensional complex system, it is risky to study the brain only
from a single level or perspective. In fact, the character-
ization and understanding of the brain remain inadequate.
We still need to try new ways to model and analyze the brain.

,ermodynamics is one of the most important aspects of
physics. It focuses on the laws and physical properties of
thermal motion and the evolution process of macroscopic
matter systems consisting of microscopic particles. Scientists
have tried to extend some concepts or theories of ther-
modynamics into other research fields for general physical
state analysis at the system level. In mechanical engineering,
Zhang [12] established a theory of nonequilibrium ther-
modynamics for studying the ,ermoPoro mechanical
modeling of saturated clays. Albertin et al. [13] used com-
putational thermodynamics to optimize the hardness and
wear resistance of high-chromium cast iron. Based on sta-
tistical thermodynamics, Kamiyama et al. [14] proposed a
“Hakoniwa” method to predict the properties of materials

composed of different types of atoms by calculating the
atomic energy. In astronomy, Setare and Sheykhi [15]
studied the interaction between viscous dark energy and
dark matter in the RSII brane world with thermodynamics.
Whitehouse and Bate [16] extended thermodynamics to
research the collapse of molecular cloud cores and proposed
a three-dimensional algorithm to explore the thermody-
namic properties during star formation. In biology, from a
statistical thermodynamic point of view, Guo and Brooks
[17] proposed a method that made it possible to calculate all
thermodynamic properties of a protein model with a specific
structure and the free energy surface and compaction
processes of the protein model proposed were characterized.
Based on the thermodynamics, Fischer et al. [18] generated a
distribution of the mixed-canonical ensemble correspond-
ing to different temperatures, and the crossing of energy
barriers of RNA was observed by sampling from this dis-
tribution. ,ese studies suggest that thermodynamic theory
is fundamental and universal to some extent. In other words,
its ideas and methods not only allow for research on tra-
ditional thermodynamic systems, but are also suitable for
system modeling in other fields. Furthermore, thermody-
namics can often bring new analytical perspectives for
understanding and interpreting systems in other subject
areas.

Because of many meaningful results of the researches
with thermodynamics applied to those areas, some scientists
have tried to evaluate or describe the properties of the brain
by defining or using parameters derived from thermody-
namics. Zhang et al. [19] used Tsallis entropy from discrete
wavelet packet transforming the analysis of brain images and
identified glioma, meningioma, and other neural diseases.
Wang et al. [20] explored the influence of occupational
factors on brain complexity by calculating the brain entropy
of seafarers and nonseafarers. Lebedev et al. [21] evaluated
the impact of lysergic acid diethylamide on personality using
a mixed-effects model based on changes in brain entropy
and observed personality during follow-up. Coopting the
concept of free energy in informatics, Friston [22] proposed
the free energy principle, holding that each biological self-
organizing system in equilibrium will minimize the free
energy to avoid the “surprise.” Friston and Buzsaki [23]
attempted to explain the optimization and control mecha-
nisms as well as the functional differentiation of the brain
with the proposed free energy principle theoretically.
Freeman and Vitiello [24] defined the square of EEG am-
plitudes as the rate of free energy dissipation to measure the
amount of work performed. ,ese studies showed that it is
feasible to observe or analyze the brain with specific
properties derived from thermodynamics, such as infor-
mation entropy and free energy in information theory.
However, these studies are limited to borrowing concepts
from thermodynamics for signal analysis.

Different form the previous studies mentioned above
which only defined some parameters learned from the
thermodynamic theory to analyze the brain image, this
article attempted to construct a thermodynamic model of
the brain at the system level based on the canonical ensemble
theory. Based on the proposed model, the thermodynamic
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parameters were obtained to describe the observation and
evolution of the neural system from the perspective of
thermodynamics. ,rough experiments, we verified the
rationality and feasibility of the model proposed. ,e benefit
of thermodynamic model towards the detection of neural
disease was found, which implied the immense potential of
thermodynamics in auxiliary diagnosis. ,is research tried
to explore and characterize the working mechanism of the
neural system from a new perspective in order to shed new
light on the understanding of the brain.

2. Materials and Methods

2.1. Data Acquisition. ,e data used in this study were
obtained from Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (https://adni.loni.usc.edu/).,eADNI was
launched in 2003 as a public-private partnership led by
principal investigator Michael W.Weiner, MD.,e primary
goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography,
other biological markers, and clinical and neuro-
psychological assessments can be combined to measure the
progression of mild cognitive impairment and early Alz-
heimer’s disease (AD). For up-to-date information, see
https://www.adni-info.org. One hundred and sixteen pa-
tients with AD (age: 74.6± 7.5) and 174 healthy subjects
(age: 75.5± 6.1) were recruited from ADNI as the AD group
and NC (normal control) group, respectively. Demographic
information of the subjects is shown in Table 1.,ere was no
significant difference between the two groups in terms of age
or sex.

2.2. Data Preprocessing. ,e resting state functional MRI
(rs-fMRI) images used in this study were scanned using 3T
Philips scanners. ,e specific operation parameters were as
follows: slice thickness, 3.3mm; number of slices, 48; TR/TE,
3000ms/30ms; flip angle, 80°; and imaging matrix, 64× 64.
Each series contained 140 volumes. Data preprocessing was
performed using SPM8 and DPARSF [25]. ,e process was
as follows: first, the first ten frames were discarded for
magnetization equilibrium. Slicing timing and realigning
were performed on the time series. Subjects with head ro-
tation exceeding 2°or head translation exceeding 2mm were
excluded. ,e Montreal Neurological Institute standard
human brain template was used to normalize all the cor-
rected image data. ,en, the images were smoothed using a
4× 4× 4 Gaussian kernel to decrease spatial noise.,e global
mean signal was removed to reduce nonneuronal signal
fluctuations. ,e whole brain was divided into 90 regions
using an automated anatomical labeling (AAL) template.

2.3. Denoising with Point Process Method. ,e blood oxygen
level-dependent (BOLD) signal has been demonstrated to be
a description of the hemodynamic response to neural
stimulation [26]. ,erefore, scientists attempted to search
for extreme points of the BOLD signal corresponding to
neural stimulation and applied these points to simulate a
clear BOLD signal combined with a standard hemodynamic

equation [27]. Point process analysis holds that there are
some significant feature points in the time series of a
complex event and the noise can be decreased to highlight
the essential nature by extracting these feature points [28].
,erefore, this study used the point process method to
remove noise in the BOLD signal for a high signal-to-noise
ratio.

,e BOLD signal was standardized first. In the time
series, the maximum and minimum points were recorded,
and the subsequent extreme points were selected as a pair in
chronological order. ,en, an impulse sequence was ob-
tained by calculating the amplitude increment of every point
pair per unit time. Subsequently, we convolved this impulse
sequence with the hemodynamic response function pro-
posed by Cohen [29], and a clear BOLD signal was
reconstructed.

2.4. Statistical 2ermodynamic Modeling Method. ,e ca-
nonical ensemble is an important concept in statistical
thermodynamics. In statistical thermodynamics, as the
system has many different microscopic states under given
macroscopic conditions, the measurement of a system is the
average of multiple measurements of the system over time.
To obtain the measurement at one point, we can measure
many identical systems that are under the same macroscopic
state at that point and replace the time-average measure-
ment with the average of a large number of identical systems
at the same point. ,e set of a large number of identical
systems that are under the same macroscopic state is called
an ensemble. Under this premise, the average measurement
over time can be replaced by the ensemble average. For an
isolated system in equilibrium, in which the energy, volume,
and number of particles have all been given, as the prob-
ability of possible microscopic states of the system follows
the microcanonical distribution, we can analyze the system
using the microcanonical ensemble theory. However, it is
difficult for most systems to ensure the energy necessary for
the microcanonical ensemble analysis. ,erefore, re-
searchers generally study a closed system with a given
temperature, volume, and number of particles, in which the
probability of possible microscopic states of the system
follows the canonical distribution. ,en, we applied a ca-
nonical ensemble to analyze the thermodynamic properties
of the system.

Some scientists extended the canonical ensemble or its
related theory to the research field of electrochemistry [30],
black holes [31–33], biology [18, 34], and so on [35, 36], and
the achievements in these fields indicated that the canonical
ensemble is universal, but not limited to traditional ther-
modynamic systems. ,us, we attempted to introduce it to
the study of neuroscience. Research has shown that the
temperature of the human brain is generally maintained at

Table 1: Demographic characteristics of subjects.

Group Number Sex (male/female) Age (year)
AD 116 55/61 74.6± 7.5
NC 174 97/77 75.5± 6.1
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36.9± 0.4°C [37]. In addition, the volumes and voxels of
different brain functional regions are certain for each subject in
neuroimaging. If we consider the voxels as particles inside the
brain region, the number of particles can be determined.
Meanwhile, brain regions do not exchange voxels with the
outside; in other words, there is no “matter” exchange in the
brain region. ,en, the brain region basically meets the re-
quirements of a closed system. ,erefore, we believe that the
brain region can be regarded as a thermodynamic system
whose microscopic states conform to the canonical distribu-
tion. ,en, we can build a brain thermodynamic model based
on the theoretical framework of the canonical ensemble.

Based on the analysis above, this study proposes a
brain thermodynamic model. We regarded the brain
functional region as a system consisting of nearly inde-
pendent particles. Each voxel in neuroimaging corre-
sponds to one nearly independent particle. ,e BOLD
signal intensity of fMRI reflects the metabolic intensity,
and a higher BOLD signal indicates a higher metabolic
level, leading to an increase in oxygen consumption and
an increase in energy consumption. ,erefore, the energy
E of the voxel was defined as the amplitude of the cor-
responding reconstructed BOLD signal in this study, and
the physiologically activated intensity of each voxel can
be evaluated by energy E. Because the relevant compu-
tational data had been standardized, all calculated results
were dimensionless.

Each frame of voxel is considered to be a microscopic
state of it, and Zi is the partition function of the microscopic
state of the voxel at the i-th frame, which can be calculated as

Zi � exp −βEi( , (1)

where Ei is the energy of the voxel at the i-th frame and the
specific expression of β is as follows:

β �
1

kT
, (2)

where k is the Boltzmann constant in thermodynamics, which
is equal to 1 to simplify the calculation in this study. ,e
thermodynamic temperatureT is 310K, which is equal to 37°C,
the theoretical temperature of the human brain. ,e whole
brain can represent the environment of brain regions.

If we consider each time point of the BOLD time series to
one voxel as a microscopic state, the partition function of the
voxel can be calculated by summing all microscopic states,
and the computational formula is described as

Zr � 
i

Zi � 
i

exp −βEi( , (3)

whereZr is the partition function of the voxel andiZi is the
sum of its microscopic states at all points in the BOLD time
series. Owing to the indistinguishability of identical particles
and ignoring the weak interactions among particles, we
regard a voxel as a subensemble of the brain region.
,erefore, the partition function of the brain region is a
combination of all voxels inside. ,e partition function of
the brain region, Zbr, can be derived from Zr:

Zbr �
1

N!


r

Zr, (4)

where rZr is the quadrature of the partition function of all
voxels in the brain region and N is the number of voxels.

Based on the theoretical framework of the canonical
ensemble, we constructed a brain thermodynamic model
regarding brain regions as systems, voxels as particles, the
intensity of reconstructed BOLD signals as the energy of
particles, and the points of fMRI time series as different
microscopic states. We referred to this model as the brain
thermodynamic model (BrainTDM). ,is model attempted
to describe the working mechanism of the neural system
from a thermodynamic point of view.

Based on the BrainTDM proposed in this paper, the
internal energy, free energy, and entropy of the neural
system can be defined to evaluate the thermodynamic
characteristics of brain regions.

,e internal energy, U, of the brain region can be cal-
culated as

U � 
r

Ur � 
r

i Ei exp −Ei/kT(  

Zr

. (5)

,e free energy, F, of the brain region can be calculated
as

F � U − TS � −kT ln Zbr � −
kT log10Zbr

log10 e
, (6)

where e is the Euler number, approximately equal to 2.71828.
,e entropy, S, of the brain region can be calculated as

S � k ln Zbr − kβ
z

zβ
ln Zbr,

U � −
z

zβ
lnZbr,

F � −kT ln Zbr,

S � k ln Zbr − kβ
z

zβ
ln Zbr � −

F

T
+

U

T
�

U − F

T
.

(7)

For a specific brain region, internal energy represents the
statistical average energy of all microscopic states in the
system, free energy represents the energy of the brain region
that could be used to perform external work, and entropy
represents chaos of the brain region after being affected by
the external environment. Based on thermodynamics, we
supposed that when the brain region was activated and
consumed external energy to do work, the energy it con-
tained and the energy to do work would both increase and its
internal state could be more orderly compared with inac-
tivated brain regions.

2.5. Experimental Design. In this experiment, the fMRI of
the brain was processed using SPM8 and divided into 90
brain regions with the AAL template. ,e point process
method was applied to reconstruct clear BOLD signals as
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inputs for the following model. In modeling, brain regions
were regarded as systems, voxels were regarded as particles,
and the intensity of BOLD signals was regarded as the energy
of the particles. ,en, a brain thermodynamic model was
built based on the ensemble theory. ,e related thermo-
dynamic parameters were calculated, including the partition
function Z, internal energy U, free energy F, and entropy S.
More analyses were performed to explore the potential
applications of this model.

2.5.1. Experimental Paradigm I. In thermal physics, once the
thermodynamic system consumes external energy to per-
form work, the entropy decreases, and the internal energy as
well as the free energy increases. We assume that the brain
system also follows this rule. ,at is, when the brain regions
are activated with neurons that consume external energy to
fire synchronously and sequentially, the thermodynamic
parameters of brain regions will change in the same way. In
experiment paradigm I, we evaluated the proposedmodeling
method by analyzing the thermodynamic parameter features
of activated and inactivated cerebral regions. Because the
default mode network (DMN) is most commonly shown to
be activated when a person is not focused on the outside
world and the brain is at wakeful rest [38, 39], we selected the
medial prefrontal cortex (mPFC), which is a key brain region
of the default network as the object of the study. Meanwhile,
considering the constant sound stimulation during fMRI
scanning, we also selected the Heschl gyrus (HES), which is
mainly located in the primary auditory cortex, as the object
of the study [40]. Furthermore, we selected the precentral
gyrus (PreCG), which is also referred to as the primary
motor region or primary motor cortex that belongs to the
task-positive network, and the olfactory cortex (OLF), which
is a key component of the limbic system, as the controls [39].
,e brain regions selected for the analysis are listed in
Table 2.

By considering brain regions as systems, voxels as
particles, and the intensity of reconstructed BOLD signals as
the energy of particles, we constructed the brain thermo-
dynamic models of the selected regions.,e thermodynamic
parameters of different brain regions were calculated based
on the constructed models, including the partition function,
internal energy, free energy, and entropy. By analyzing the
differences between the thermodynamic parameters of the
activated and inactivated brain regions, we attempted to
determine whether the neural system also follows the laws of
thermodynamics.

2.5.2. Experimental Paradigm II. Experiment paradigm II
aimed to explore the potential applications of the brain
thermodynamic model proposed in computer-aided diag-
nosis (CAD) or other realistic scenarios. For this purpose, we
tried to recognize subjects with AD, taking parameters
derived from the brain thermodynamic model as input
features. We performed the same classification task with
parameters based on the traditional brain network model as
a comparison. ,e specific experiments were performed as
follows:

(a) ,ermodynamic Parameters—Kendall (TP-Ken-
dall): this experiment constructed the brain ther-
modynamic model by considering brain regions as
systems and voxels as particles. ,en, four ther-
modynamic parameters can be obtained based on
this model, namely, the partition function, internal
energy, free energy, and entropy. Because 90 brain
regions were divided from the cerebral cortex in the
AAL template, 360 thermodynamic parameters
could be derived as alternative features. According to
the cross-validation scheme, 72 parameters with the
largest Kendall tau rank correlation coefficients of
the training set were chosen and then the same set of
features as the test set was used as the input features
of the classifiers.

(b) ,ermodynamic Parameters—Expert (TP-Expert):
the modeling process of this experiment was the
same as that of TP-Kendall, except that we merely
chose the thermodynamic parameters from 18 brain
regions highly associated with AD based on expertise
as features for classification. We also obtained 72
features, as each region had four thermodynamic
parameters.

(c) Brain Network—Kendall (BN-Kendall): this exper-
iment built the functional brain network model
traditionally using Pearson’s correlation coefficient
to obtain link intensities between 90 brain regions,
and 4005 link strengths between brain regions were
calculated. ,en, according to the cross-validation
scheme, 72 link strengths with the largest Kendall tau
rank correlation coefficient over the 4005 link
strengths of the training set were chosen and the
same set of features was used in the test set, which
were the input features of the classifiers.

All three experiments selected 72 features for AD
detection with the KNN classifier.

3. Results

Based on the brain thermodynamic model proposed in this
paper, we built models of neural systems in experimental
paradigms I and II, and the results are shown. To avoid the
influence of accidental factors, a tenfold cross-validation
strategy was applied to all classification tasks.

3.1. Experimental Paradigm I. Based on the modeling
method proposed in this paper, we built a brain thermo-
dynamic model of selected brain regions and obtained the
energy of activated and inactivated brain regions for each

Table 2: Selected brain regions. Activated/inactivated indicates
that the brain regions were activated/inactivated during fMRI
scanning.

Activated brain regions Inactivated brain regions
Left/right medial prefrontal cortex Left/right precentral gyrus
Left/right Heschl gyrus Left/right olfactory cortex
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subject. In the NC group, we calculated the average energy of
each brain region separately and then obtained the corre-
sponding time series trajectory, as shown in Figure 1. ,e
average energy of activated brain regions, mPFC/HES, was
significantly higher than that of inactivated brain regions,
PreCG/OLF.

Based on the model built, the thermodynamic param-
eters of each brain region were calculated, including the
partition function, internal energy, free energy, and entropy.
As the value of the partition function was too large, we took
the logarithm in the calculation of this parameter. We
calculated the mean of the thermodynamic parameters of
different brain regions separately over the NC group, and the
results are shown in Figure 2. ,ere were no significant
differences between activated brain regions, mPFC, and HES
in these thermodynamic parameters. We observed the same
phenomenon between inactivated brain regions, PreCG, and
OLF. However, there was a significant difference between the
activated and inactivated brain regions. ,e mean values of
partition function and entropy in activated brain regions
were significantly lower than those in inactivated brain
regions, and the internal energy and free energy were the
exact opposite.

A t-test was applied to the thermodynamic parameters of
different brain regions, and the results are shown in
Tables 3–6. ,ere were significant differences between the
activated and inactivated brain regions in all four thermo-
dynamic parameters: partition function, internal energy, free
energy, and entropy. ,ere were no significant differences
almost in all four thermodynamic parameters among the
four activated brain regions; the same result was observed
among the four inactivated brain regions.

Furthermore, we attempted to classify brain regions into
activated and inactivated regions using thermodynamic
parameters as input features with the KNN classifier. ,ree
types of distance measurements were taken in the KNN:
correlation distance, cosine distance, and Euclidean dis-
tance. ,e results are presented in Table 7. ,e classification
accuracy fluctuated around 88%, reaching the highest value
of 88.66% (cosine distance).

3.2. Experiment Paradigm II. In experiment paradigm II, we
tried to apply the brain thermodynamic model proposed to
the CAD of AD. For comparison, we designed three ex-
periments, namely, TP-Kendall, TP-Expert, and BN-Ken-
dall. ,ese experiments also used KNN as a classifier based
on the correlation distance, cosine distance, and Euclidean
distance. ,e results are presented in Table 8. ,e accuracy
of TP-Kendall ranged from 77.14% to 80.47%, with an av-
erage of 79.32% and a maximum of 80.47%; the accuracy of
TP-Expert ranged from 70.16% to 72.36%, with an average of
71.02% and a maximum of 72.36%, while that of BN-Kendall
ranged from 70.51% to 73.28%, with an average of 71.79%
and a maximum of 73.28%. ,erefore, regardless of whether
the Kendall coefficient or expertise was used for feature
selection, the recognition accuracies of the proposed brain
thermodynamic model were not inferior to those of the
brain network model. In particular, with the same feature

selection method, the accuracy of AD recognition based on
the thermodynamic model (TP-Kendall) was 7.53% higher
than that of the brain network model (BN-Kendall). More
specifically, the specificity and sensitivity of TP-Kendall were
also 7.60% and 7.43% higher than those of BN-Kendall,
respectively, which meant that the thermodynamic model
was better for identifying both healthy subjects and patients
with AD. In addition, this study focused on thermodynamic
modeling, rather than the relationship between specific brain
regions and AD, so the brain regions to which the selected
thermodynamic parameters belonged would not be
discussed.

In this study, both TP-Kendall and BN-Kendall exper-
iments used Kendall for feature selection. Based on these two
experiments, we analyzed the impact of different input
features on AD recognition using the KNN classifier as
described above. ,e results are presented in Figure 3.
Regardless of the number of input features, the accuracy of
AD recognition with thermodynamic parameters from the
proposed model was always higher than that with link
strengths from the brain network model. Furthermore, the
accuracy of AD recognition based on the brain thermody-
namic model reached 86.34% with only 360 input features in
the correlation distance. However, the classification accu-
racy based on the brain network model peaked only at
85.82% with 4005 input features in the correlation distance.

4. Discussion

,e brain is the most complex system in the world. Brain
modeling is an effective way to explore the work mech-
anism of the brain and is one of the hottest research topics
all the time. Some scientists have attempted to model the
brain based on neurodynamic principles and methods,
from the microscopic ion channel layer to the macro-
scopic neural network layer [41]. Most initial studies have
focused on the basic working mechanism of neurons or
neural connectivity [1, 2, 42]. Later, scientists began to use

activated brain regions
inactivated brain regions

0

50

100

150

200

E

13 26 39 52 65 78 91 104 117 1300
TimePoint

Figure 1: Average energy trajectories of activated and inactivated
brain regions. ,e red curves represent the average energy E of
activated brain regions mPFC.L/mPFC.R/HES.L/HES.R, and the
blue curves represent the average energy E of inactivated brain
regions PreCG.L/PreCG.R/OLF.L/OLF.R.
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Figure 2: ,ermodynamic parameters of activated and inactivated brain regions. Left and right represent left brain regions and right brain
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Table 3: T test for lgZ.

Brain region mPFC.L mPFC.R HES.L HES.R PreCG.L PreCG.R OLF.L OLF.R
mPFC.L 1
mPFC.R 0.25 1
HES.L 0.05 0.01 1
HES.R 0.58 0.96 0.07 1
PreCG.L 0.00 0.00 0.00 0.00 1
PreCG.R 0.00 0.00 0.00 0.00 0.13 1
OLF.L 0.00 0.00 0.00 0.00 0.09 0.54 1
OLF.R 0.00 0.00 0.00 0.00 0.96 0.22 0.13 1
L and R represent left and right brain regions, respectively. P value< 0.05 indicates a significant difference.

Table 4: T test for U.

Brain region mPFC.L mPFC.R HES.L HES.R PreCG.L PreCG.R OLF.L OLF.R
mPFC.L 1
mPFC.R 0.67 1
HES.L 0.01 0.01 1
HES.R 0.26 0.15 0.23 1
PreCG.L 0.00 0.00 0.00 0.00 1
PreCG.R 0.00 0.00 0.00 0.00 0.15 1
OLF.L 0.00 0.00 0.00 0.00 0.00 0.03 1
OLF.R 0.00 0.00 0.00 0.00 0.12 0.70 0.10 1
L and R represent left and right brain regions, respectively. P value< 0.05 indicates a significant difference.
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neurodynamic methods to explain some complicated
brain functions, such as emotion, language acquisition,
and language comprehension [3, 43, 44], and then de-
veloped a method to analyze the pathological mechanisms
of epilepsy, AD, and other neural system diseases [45, 46].
In addition, from another perspective, in brain differ-
entiation and integration, scientists have proposed
modeling methods for brain networks. Early research has
mainly focused on exploring how to construct brain
networks from the neuron layer to the functional cortex

layer. ,e structure equation, causality, correlation, and
consistency were applied to the definition of the structure
or functional connectivity of the brain [6, 47]. Moreover,
scientists have used brain networks to explore the impact
of brain lesions on coupling brain regions [48] and the
pathological mechanism of neural system diseases, such as
brachial plexus injury and AD [49, 50]. Some studies have
attempted to extract the characteristics of the brain
network for the identification, prediction, and prognosis
of diseases and obtained very good results [51–53].

Table 5: T test for F.

Brain region mPFC.L mPFC.R HES.L HES.R PreCG.L PreCG.R OLF.L OLF.R
mPFC.L 1
mPFC.R 0.25 1
HES.L 0.05 0.01 1
HES.R 50.58 0.96 0.07 1
PreCG.L 0.00 0.00 0.00 0.00 1
PreCG.R 0.00 0.00 0.00 0.00 0.13 1
OLF.L 0.00 0.00 0.00 0.00 0.09 0.54 1
OLF.R 0.00 0.00 0.00 0.00 0.96 0.22 0.13 1
L and R represent left and right brain regions, respectively. P value< 0.05 indicates a significant difference.

Table 6: T test for S.

Brain region mPFC.L mPFC.R HES.L HES.R PreCG.L PreCG.R OLF.L OLF.R
mPFC.L 1
mPFC.R 0.11 1
HES.L 0.18 0.03 1
HES.R 0.19 0.53 0.05 1
PreCG.L 0.00 0.00 0.00 0.00 1
PreCG.R 0.00 0.00 0.00 0.00 0.15 1
OLF.L 0.00 0.00 0.00 0.00 0.82 0.25 1
OLF.R 0.00 0.00 0.00 0.00 0.07 0.01 0.22 1
L and R represent left and right brain regions, respectively. P value< 0.05 indicates a significant difference.

Table 7: Accuracy of classification for activated/inactivated brain regions (%).

Distance Correlation Cosine Euclidean
Accuracy 87.30± 0.63 88.66± 0.64 88.57± 0.70
Correlation, cosine, and Euclidean represent correlation distance, cosine distance, and Euclidean distance.

Table 8: Results of the classification for AD/NC (%).

Feature selection Distance Correlation Cosine Euclidean

TP-Kendall
Specificity 84.93± 2.21 85.18± 2.18 79.77± 2.41
Sensitivity 73.48± 2.45 73.41± 2.57 73.20± 2.38
Accuracy 80.35± 1.71 80.47± 1.72 77.14± 1.66

TP-Expert
Specificity 73.32± 1.30 71.81± 1.33 71.73± 1.17
Sensitivity 70.91± 1.91 67.69± 2.03 68.74± 1.94
Accuracy 72.36± 1.00 70.16± 1.02 70.53± 1.01

BN-Kendall
Specificity 73.55± 2.59 77.99± 2.52 75.55± 2.60
Sensitivity 65.96± 3.81 66.22± 3.19 65.62± 3.58
Accuracy 70.51± 2.04 73.28± 1.84 71.58± 1.95

TP-Kendall, TP-Expert, and BN-Kendall represent three different methods of feature selection designed in Section 2.5.2. Correlation, cosine, and Euclidean
represent correlation distance, cosine distance, and Euclidean distance.
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,ese modeling methods for the brain have obtained
many meaningful results. However, the brain is a typical
multidimensional complex system, and the understanding of
the brain is inadequate, especially from the point of view of
the system.

,ermodynamics, a major branch of physics, mainly
studies the thermal properties of an object from the per-
spective of energy conversion at themacrolevel. Based on the
observed phenomenon in the experiment, thermodynamics
applies mathematical modeling methods to draw relevant
conclusions by logical deduction. ,us, it belongs to phe-
nomenological theory, indicating that the conclusions
drawn from this study are highly reliable and universal.
,erefore, researchers have always tried to extend and apply
related mature theories and concepts of thermodynamics to
system modeling and analysis in other research fields, such
as mechanical engineering [12–14], astronomy [15, 16],
biology [17, 18], economics [54, 55], and other nonclassical
physical fields [56–60], in order to realize generalized
physical state analysis of objects at the system level in dif-
ferent areas. In this paper, we assumed that the energy
conversion of the cerebral cortex is the physical foundation
of the brain to implement various complex functionalities.
,us, we assumed that the brain also follows the related
macroscopic laws of energy conversion in thermodynamics.
When neurons are activated, the brain also consumes the
external energy input to work as thermodynamic systems,
which leads to increased internal energy, increased free
energy, and decreased entropy of the system. Based on the
above assumption, we proposed a thermodynamic model of
the brain for the first time. Using brain regions as systems,
voxels as particles, and the intensity of BOLD signals as the
energy of particles, this method built the BrainTDM and
tried to explain the work mechanism of the brain based on
the canonical ensemble theory from the perspective of en-
ergy conversion in thermodynamics.

In experimental paradigm I, we selected two pairs of
activated brain regions and two pairs of inactivated brain
regions in the resting state as objects. ,en, the BrainTDMs
of the regions were built and the thermodynamic parameters
were calculated. ,e descriptive statistics and the t test

results of them were shown in Figure 2 and Tables 3–6,
which demonstrated that the internal energy and free energy
of activated brain regions (mPFC and HES) were all much
higher than those of the inactivated regions (PreCG and
OLF), while the opposite was true for the partition function
and entropy. ,is validates the assumption that the brain
obeys the laws of thermodynamics at the system level. When
activated, the neurons of the specific region burn energy to
generate electrical impulses for information transmission,
which is doing work just as those thermodynamic systems,
leading to the corresponding thermodynamic parameter
change of regions: internal energy and free energy increase
and entropy decrease. In other words, the brain also follows
the laws of energy conversion in thermodynamic systems at
the macroscopic level. ,is was the most important dis-
covery of this study. ,e results demonstrated that the brain
thermodynamic model proposed in this paper is workable
and constructing a brain model based on the canonical
ensemble theory of thermodynamics is feasible.

We also observed that the energy of activated brain
regions was significantly higher than that of inactivated
brain regions as shown in Figure 1. ,is is consistent with
the common notion that the activation levels of the mPFC
and HES were significantly higher than those of PreCG and
OLF in the resting state. For activated regions, the en-
hancement of DMN activation in the resting state has been
demonstrated in many studies, which is consistent with the
observation of fMRI imaging in experiments. ,e activation
of the auditory related HES was due to the continuous noise
from nuclear magnetic resonance equipment in the exper-
iment. For inactivated regions, PreCG and OLF are related
to the control of movement and olfaction, respectively, and
were considered to be inactivated due to the resting state. In
addition, we tried to classify the brain regions into activated
and inactivated regions using the KNN classifier using
thermodynamic parameters as input features. ,e experi-
mental results in Table 7 showed that the classification
accuracy remained at approximately 88% and reached the
highest 88.66% in three types of distance measurements,
correlation distance, cosine distance, and Euclidean dis-
tance, which indicated that thermodynamic parameters
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Figure 3: Impact of the feature number on accuracy of AD/NC classification.
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could actually reflect the differences in the energy conver-
sion state between activated and inactivated brain regions. In
thermodynamics, the internal energy, free energy, entropy,
and other thermodynamic parameters are regarded as the
common state functions describing the state of the system.
,is study implied that thermodynamic parameters ob-
tained from the proposed model could also be used as state
functions of brain regions to characterize the activated state
of brain regions.

Experimental paradigm II attempted to apply the brain
thermodynamic model proposed to discriminate diseases of
the neural system. With the same feature selection method,
the detection of AD based on thermodynamic parameters
from the proposed model achieved better results than using
link strengths from the traditional brain network model,
which was shown in Table 8. According to Figure 3, the
accuracy of AD recognition based on the brain thermody-
namic model reached 86.34% with only 360 input features.
,is demonstrated that brain thermodynamic parameters
contain some pathological information of neural diseases in
nature. ,is information must be essential and critical in
describing the change of brain with diseases, as Figure 3
showed that we could obtain 68.10% accuracy of AD de-
tection with only 18 thermodynamic parameters as input
features in cosine distance. ,e above results indicate that
the brain thermodynamic model proposed in this paper not
only explains the basic working mechanism of the neural
system from thermodynamics, but also has the potential to
be applied to the recognition and prediction of neural system
diseases. On the other hand, the experimental results also
implied that the detection of neural system diseases may
benefit from the laws of energy conversion in neural systems.

5. Conclusion

In the study of brain modeling, scientists generally focused
on neurodynamics or brain network. While brain is a
multilayered and multidimensional complex system, we
attempted to explore the brain from a new perspective.
Drawing on the application of thermodynamics in other
fields, we proposed a model of the brain on the system level
based on thermodynamics, instead of defining or using some
parameters borrowed from thermodynamic parameters.
Specifically, this study mapped the neural system to the
thermodynamic system by taking brain regions as systems,
voxels as particles, and the intensity of BOLD signals as the
energy of particles. Based on the canonical ensemble theory,
the BrainTDM was built to explore the work mechanism of
the brain. ,e experiment results demonstrated the feasi-
bility and rationality of modeling the neural system from the
perspective of thermodynamics, and, on the other hand, they
verified the hypothesis that the brain also follows the laws of
thermodynamics. In addition, the study also indicated the
positive effects of the laws of energy conversion on the
detection of neural system diseases, implying that the po-
tential of the model can be applied to auxiliary diagnosis.
However, the fMRI only describes the metabolism activities
of brain on a macrolevel (brain regions), and we hope that
there will be possible validation of the proposed

thermodynamicmodel frommicrolevel in the future, such as
the microscopic signals (spikes of neuron) from an im-
plantable brain-computer interface. Furthermore, some
working mechanisms of the brain may be discovered by
combining the thermodynamic properties of macroscopic
and microscopic neural signals.

Data Availability

Data from the ADNI, which was used and analyzed in this
study, can be downloaded from the ADNI online repository
(https://adni.loni.usc.edu/).

Additional Points

(1) ,is study applied thermodynamics to the research of
neural systems at the system level for the first time. Spe-
cifically, thermodynamic models of brain regions were built
using extended canonical ensemble theory. (2) ,e changes
in thermodynamic parameters, including higher internal
energy, higher free energy, and lower entropy in activated
regions, suggested that the neural systems also follow the
laws of thermodynamics. (3),e thermodynamic model was
proven to benefit from the thermodynamic model through
the detection of Alzheimer’s disease, which indicates the
potential of thermodynamics in auxiliary diagnosis.
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