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In this article, an unsteady free convection flow of MHD viscous fluid over a vertical rotating plate with Newtonian heating and
heat generation is analyzed. (e dimensionless governing equations for temperature and velocity fields are solved using the
Laplace transform technique. Analytical solutions are obtained for the temperature and components of velocity fields. (e
obtained solutions satisfy the initial and boundary conditions. Some physical aspects of flow parameters on the fluid motion are
presented graphically.

1. Introduction

Free convection flow of Newtonian and non-Newtonian
fluids has many applicable usages in processing industry
and heat transfer processes. A number of such investi-
gations have been contributed by many researchers of the
respective subject. Uddin et al. [1] discussed the free
convection flow of fluid over the moving plate. Mahapart
et al. [2] considered the effect of magnetic field over the
natural convection flow past a horizonal plate. Babaelahi
et al. [3] established analytical results for mixed con-
vection flow. Farhad et al. [4] considered MHD rotating
flow by imposing slip condition and Hall current through
a porous medium. Jana et al. [5] analyzed flow of viscous
fluid through a porous medium in a rotating system.
Mohammad et al. [6] investigated the results for flow of
nanofluid over rotating plates. Hussain et al. [7] discussed
heat and mass transfers at the boundary of flow domain
for free convection flow of viscous fluid. Islam et al. [8]
discussed free convection flow with variable properties in
steady-state situation. Alam et al. [9] analyzed the free
convection flow by considering Joule heating and heat
generation. Mohamed et al. [10] discussed the unsteady
free convection flow of second-grade fluid in rotating
frame with ramped wall temperature. Krishna and Reddy

[11] considered the chemical reaction and Hall current
effect for the free convection flow and established ana-
lytical results for concentration, temperature, and velocity
fields.

Rotational flow is an essential aspect in several
physical flow phenomena and has useful applications in
many fields of engineering. Raghunath et al. [12] inves-
tigated the free convection flow over the rotating sur-
face. Sharma et al. [13] discussed the effect of chemical
reaction and magnetic field on the rotating fluid flow.
Vasu et al. [14] explained heat and mass transfer flow
by imposing the constant thermal and chemical condi-
tions on boundary. Muthucumarasway et al. [15] dis-
cussed the free convection flow of fluid with isothermal
conditions. Some other studies regarding rotating fluid
flow with heat and mass transfers flow are presented in
[16–19]. In the present article, it is assumed that heat
transfer from the surface is proportional to the local
surface temperature; formally this concept is known as
Newtonian heating and was intimated by Merkin [20].
Some more investigations regarding Newtonian heating
are found in [21–26].

Our focal intension of present study is to construct a
flow model of rotating viscous fluid over a moving flat
plate in the presence of magnetic field with the effect of
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heat generation subject to Newtonian heating. (e pre-
scribed rotating flow model is described by the set of
partial differential equations as the governing equations.
(e nondimensional governing equations are solved by
the Laplace transform method, and transformed explicit
expressions for temperature and velocity components are
established. Moreover, the influence of parameters of
interest is highlighted in the graphical form. Heat transfer
at boundary is quantified in terms of Nusselt number and
presented in the tabular form.

2. Mathematical Formulation of Problem

Consider an incompressible viscous fluid lying near the
vertical rotating plate. (e plate is situated in the xy-plane
and z-axis is normal to the plane of plate. Initially, plate and
fluid both are at rest with the constant temperature T∞. A
magnetic field of constant magnitude β0 is applied normally
to the xy-plane as shown in Figure 1. And the fluid and the
plate rotate with a constant angular velocity Ωk about z-axis
taken normal to the plate. Initially, the plate and the fluid are
at rest with constant temperature. After passing some time,
plate starts to move with time depending on velocity and
temperature is raised directly proportional to the temper-
ature at the wall. Heat transfer takes place from plate to fluid
according to the Newtonian heating. Under the usual
Boussinesq approximation, the governing equations of flow
model take the following form [19]:
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where Ω is the angular velocity of the fluid, ] is the ki-
nematic viscosity, u(z, t) is the velocity component along
x-axis and v(z, t) is the velocity component along y-axis, ρ
is the density of the fluid, T is the temperature of the fluid,
β is the coefficient of volume expansion, g is the gravi-
tational acceleration, T∞ is the temperature at infinity, Q0
is the heat generation parameter, k is the thermal

conductivity, β0 is the external magnetic field, and σ is the
current density.

Now, introducing the following nondimensional vari-
ables and parameters:
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into equations (1)–(4) after dropping dot notation, we obtain
the following dimensionless model:
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with nondimensional initial and boundary conditions
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are Ekman number, Prandtl number, heat absorption pa-
rameter, magnetic field parameter, Grashof number, and
Newtonian heating parameter, respectively.

Introduce the complex velocity field F(z, t) � u + ıv,
where the function F(z, t) is the solution of the following
problem:
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(11)

F(z, 0) � 0, F(0, t) � f(t), F(∞, t) � 0. (12)

3. Solution of Problem

We solve the dimensionless model of equations (6)–(12) by
Laplace transform.

3.1.CalculationofTemperature. Applying Laplace transform
to equation (8) and keeping in mind the conditions of
equation (9), we get
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Equation (13) satisfies the following transformed
conditions:
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Solution of equation (13) subject to the boundary
conditions (14) is obtained as follows:

T(z, q) �
hs

q(
���������
Pr(q − Q)


− hs)

e
− z

������
Pr(q− Q)

√

. (15)

In order to invert the Laplace transform, equation (15)
can be written in suitable form as
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Applying the inverse Laplace transform to equation (16),
we obtain the following velocity in t-domain:
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Figure 1: Coordinate system and flow geometry.
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3.2. Nusselt Number. (e local coefficient of the rate of heat
transfer is defined in terms of Nusselt number and defined
by the following relation:
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3.3. Velocity Calculation. Applying Laplace transform to
equation (11) and keeping in mind the condition of equation
(12), we get
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Equation (19) satisfies the following transformed
conditions:

F(0, q) � f(q), F(∞, q) � 0. (20)
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Figure 2: Inversion of real and imaginary components of velocity.

4

Te
m

pe
ra

tu
re

 d
ist

rib
ut

io
n

2

3

1

0
0 1 2

z
3 4

Pr = 2.0
Pr = 2.5

Pr = 3.0
Pr = 3.5

(a)

4

3

Te
m

pe
ra

tu
re

 d
ist

rib
ut

io
n

2

1

0
0 3 6

z
9 12

Q = 0.2
Q = 0.4

Q = 0.6
Q = 0.8

(b)

Figure 3: Temperature profiles versus z subject to variation of Pr and Q.
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Solution of equation (19) subject to transformed con-
ditions (20) is
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Figure 4: Temperature profiles versus z subject to variation of hs and t.
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Figure 5: Velocity profiles versus z subject to variation of Pr.
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Real and imaginary parts are follows:
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Figure 6: Velocity profiles versus z subject to variation of Gr.
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Figure 7: Velocity profiles versus z subject to variation of Ek.
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Figure 8: Velocity profiles versus z subject to variation of M.
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Equations (22) and (23) are complex relations and cannot
be inverted by ordinary inverse relation of Laplace transform.
Stehfest’s and Tzou’s algorithms are utilized for detransfor-
mation of velocity components and presented in Figure 2.

4. Results and Discussion

In this paper, the rotational flow of viscous fluid over a flat
plate with the Newtonian heating is discussed. Analytical
results for temperature and components of velocity fields are
established with the help of Laplace transform. Some graphs

of velocity against special variable z are sketched to see the
physical effect of involved parameters. Figure 3 is plotted to
see the effect of Pr and Q over the thermal profile, and it is
noted that with the increasing values of Pr, fluid cools down
and consequently thermal profile lowers down while it is
raised with increasing value of Q. (e effect of Newtonian
heating and time over the temperature profile is presented in
Figure 4. From the figure, it is clear that temperature profiles
rise with increasing value of Newtonian heating parameter
hs and time t.(e effect of Pr over the velocity components is
discussed in Figure 5, and it is observed that with the
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Figure 10: Velocity profiles versus z subject to variation of t.

4

Te
m

pe
ra

tu
re

 d
ist

rib
ut

io
n

1

2

3

0
0 2

Present temperature with [Q = 0]
Imran et al. [21] [α → 1]

4
z

6 8

(a)

2.5

Te
m

pe
ra

tu
re

 d
ist

rib
ut

io
n

1

1.5

0.5

2

0
0 2

Present temperature with [Q = 0]
Ahmad et al. [22] [α → 1]

4
z

6 8

(b)

Figure 11: Comparison of temperature.

8 Complexity



increasing value of Pr, the fluid’s velocity components de-
creased. (e influence of Gr over the fluid’s motion is
highlighted in Figure 6, and profiles of velocity increased with
the increasing value of Gr. Larger value of Gr is referred to the
more bouncy effect that is why more fluid currents are
generated for increasing values of Gr. (e effect of Ekman
number Ek over the velocity components is explained in
Figure 7, and it is observed that both real and imaginary
velocity components speed up with the increasing value of Ek.
(e subjectivity of magnetic parameter M can be seen in
Figure 8, and it is noted that fluid slows down with the
enhancing value of M. In the presence of magnetic field, there
is some retarding force which creates some hindrance to fluid
motion and consequently fluid slows down. (e effect of heat
generation parameter Q is studied in Figure 9, and it is
concluded that fluid speeds up with the increasing value of Q,
due to heat generation, there is more heat transfer; therefore,
fluid velocity components are increased with the increasing
value of Q of Q. (e effect of the time over the velocity
components is discussed in Figure 10, and it is clear that with

the elapsed time, fluid increases, and it is a natural aspect of
velocity with the elapsed time. Figure 11 presents a com-
parison of present temperature for Q � 0 with the temper-
ature obtained by Imran et al. [21] and Ahmad et al. [22], and
overlapping profile shows the validity of our result for
temperature. (e real and imaginary components of present
velocity are also compared with the velocities obtained in
[22, 23], and its overlapping profiles are presented in Fig-
ure 12. (e heat transfer at boundary is discussed in terms of
Nusselt number; moreover the effect of Pr and Q over the
Nusselt number is presented in Table 1. Q, heat transfer is
presented in Table 1, and from the tabular data, it is clear that
Nusselt number increases with the increasing time, but it is
reduced with the increasing value of Pr and Q.

5. Conclusion

In this article, rotational flow of viscous fluid over a flat plate
with Newtonian heating is discussed for analytical result of
temperature field and transformed result for velocity field is

Table 1: Subjectivity of Nusselt number due to α for different values of Pr and S.

t Pr� 1.5 Pr� 2 Pr� 2.5 Q � 0.3 Q � 0.5 Q � 0.7
0.1 1.45893971 1.36332825 1.29323441 1.28798185 1.21272314 1.17518651
0.2 1.46973354 1.37659053 1.30680985 1.28874896 1.21304572 1.17537098
0.3 1.48081222 1.38991945 1.32027242 1.28957462 1.21339402 1.17557059
0.4 1.49221241 1.40339890 1.33369919 1.29044904 1.21376360 1.17578257
0.5 1.50398704 1.41712090 1.34716076 1.29136149 1.21414937 1.17600370
0.6 1.51620697 1.43118859 1.36072051 1.29229999 1.21454580 1.17623089
0.7 1.52897061 1.44571909 1.37443112 1.29325166 1.21494653 1.17646033
0.8 1.54241361 1.46084228 1.38832548 1.29420241 1.21534522 1.17668814
0.9 1.55673282 1.47669347 1.40240685 1.29513598 1.21573466 1.17691038
1.0 1.57222017 1.49339487 1.41663477 1.29603494 1.21610801 1.17712268
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established with the help of Laplace transform. Some key
findings of this study are listed below.

(i) Temperature lowers down with the increasing
values of Pr while it is raised with increasing values
of hs, Q, and time t. Heat transfer coefficient is
enhanced with increasing time while it is reduced
with increasing values of Pr and Q.

(ii) Velocity components decrease with increasing Pr
and M, while they increase with the increasing value
of Gr, Ek, Q, and time t.

(iii) (ermal boundary layer declines with greater values
of Pr and enhances with increasing values Q, hs, and
t, respectively.

(iv) Momentum boundary layer is reduced with in-
creasing values of Pr, Ek, andM while it is enhanced
with the increasing values of Gr, Q, and t.

(v) Our obtained results for temperature and velocity
have a good agreement with the corresponding
results of existing literature.
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