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In this work, our aim is to investigate the impact of a non-Kolmogorov predator-prey-subsidymodel incorporating nonlinear prey
refuge and the effect of fear with Holling type II functional response. )e model arises from the study of a biological system
involving arctic foxes (predator), lemmings (prey), and seal carcasses (subsidy). )e positivity and asymptotically uniform
boundedness of the solutions of the system have been derived. Analytically, we have studied the criteria for the feasibility and
stability of different equilibrium points. In addition, we have derived sufficient conditions for the existence of local bifurcations of
codimension 1 (transcritical and Hopf bifurcation). It is also observed that there is some time lag between the time of perceiving
predator signals through vocal cues and the reduction of prey’s birth rate. So, we have analyzed the dynamical behaviour of the
delayed predator-prey-subsidy model. Numerical computations have been performed usingMATLAB to validate all the analytical
findings. Numerically, it has been observed that the predator, prey, and subsidy can always exist at a nonzero subsidy input rate.
But, at a high subsidy input rate, the prey population cannot persist and the predator population has a huge growth due to the
availability of food sources.

1. Introduction

In the ecological system, the predator-prey interaction is one
of the most significant tools which is comparatively easy to
observe in the field. But fear of the predator felt by the prey
(indirect effect) also plays a vital role since its effect is
stronger than direct predation [1, 2]. )e cost of fear can
reduce the reproduction rate of prey because it affects the
physiological condition of prey population. As a result, the
prey species may get a long-term loss. In support of this, it is
mentioned that, in the Greater Yellowstone Ecosystem,
wolves (Canis lupus) affect the reproductive physiology of
elk (Cervus elaphus) [3].When the prey species recognize the
predator signal (chemical/vocal), they spend more time to
become keenly watchful to detect danger rather than in
foraging. So, the birth rate of the scared prey reduces and

adopts some survival mechanisms like starvation [1, 2]. For
examples, some birds react to the sound of predator with
antipredator defenses [1, 2] and they flee from their nests at
the first sign of danger [2]. )is antipredator behaviour may
affect survival and reproduction of the birds [2]. It has been
experimentally investigated that, in the absence of direct
killing, the reproduction of the offspring of song sparrows
(Melospiza melodia) could be reduced by 40% as a result of
impact of feeling fear created by the predator [4]. So, this
reduction caused by the antipredator behaviour affects the
birth rate and survival of offspring. )us, the cost of fear
(apart from direct predation) should be introduced in a
predator-prey interaction. Mathematical formulation of the
impact of fear on the two species prey-predator system has
been initiated by Wang et al. [5] in 2016 introducing fear
factor: f(k, y) � (1/(1 + ky)). It involves a parameter k
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denoting the level of fear to represent the antipredator
behaviour of the prey. Some research works have already
been done on the ecological system under the influence of
predation fear felt by prey species [6–17]. Moreover, the
impact of fear in a two-species predator-prey model with
prey refuge was analyzed by many researchers [11, 18, 19].

In evolutionary biology, prey refuge is a concept which
helps an organism to protect themselves from predation by
hiding in an area inaccessible to the predator, for example, in
a wolf-ungulate system, ungulates may seek refuge by mi-
grating to areas outside the core territories of wolves. Also, it
has many significant roles on the dynamics of predator-prey
interactions: prey refuge may decrease the chance of ex-
tinction of prey. Researchers have mainly used the dynamic
nature of predator-prey model with linear prey refuge (that
is, mx amounts of prey are unavailable to the predator,
where m ∈ (0, 1) is the coefficient of refuge and x is the
biomass of prey species) with Volterra response [20–22].
Recently, Mondal and Samanta have studied the dynamics of
the predator-prey system with prey refuge dependent on
both species (that is, mxy amounts of prey are free from the
predator risk, where 0< 1 − my< 1, m is prey refuge coef-
ficient, x is the biomass of prey population, and y is the
biomass of predator population) in the presence of addi-
tional food (for details, see [23]). In 2020, Mondal and
Samanta [11] have also analyzed the dynamics of predator-
prey interaction having nonlinear prey refuge function
Φ(x, y) � (mxy/(a + y)) which is the amount of prey that
are free from predation, where a is half saturation constant
and y is the biomass of predator population.

Many experimental studies suspect that the introduction
of resource subsidies may disrupt otherwise stable food web
linkages [24–26]. Such concept is significant for resource
management purposes. It is learnt that reintroduced wolves
in Yellowstone Park switch to bison when their preferred
ungulate prey, namely, elk, are rare in the concerned eco-
system [27]. Mathematically, the influence of resource
subsidy on the predator-prey model has been initiated in the
work of Nevai and Van Gorder [28]. )ey have discussed
how different subsidy input rate may affect the prey and
predator population to persist in the ecosystem.

Generalist predator can consume more than one food
source: either multiple prey population or a combination of
prey population and resource subsidy. )ere are many rich
theoretical research on ecological systems involving gen-
eralist predator [29–31]. Also, there are a variety of real-life
applications for such systems [32–34]. From literature

surveys, it has been shown that generalist predator can
persist in an ecosystem even if one particular prey species is
going towards extinction [29–31].

In 2012, Nevai and Van Gorder [28] first extended the
Kolmogorov model to a non-Kolmogorov predator-prey-
subsidy model. It has been observed that the predator-prey-
subsidy model occurs in the arctic foxes (predator), lemmings
(prey), and seal carcasses (subsidy). Motivated by the works of
Das and Samanta [35], Nevai and Van Gorder [28], and Xu
et al. [36], we have analyzed the dynamical behaviour of a
mathematical model of non-Kolmogorov form that includes
the three components (predator, prey, and subsidy) with the
impacts of nonlinear prey refuge function and the fear effect felt
by the prey in the presence of the predator. To the best of our
knowledge, there does not exist any mathematical model to
explore the impact of fear effect incorporating nonlinear prey
refuge function in predator-prey-subsidy interaction.

)e organization of this work is structured as follows: in
Section 2, a mathematical model has been formulated with
the influences of nonlinear prey refuge and fear effect.
Section 3 shows that the proposed model is well-behaved. In
Section 4, feasibility criteria and stability of all the equilibria
of the proposed system (in absence of delay) have been
studied. )e equilibria can change their stability nature
through transcritical and Hopf bifurcation which are also
analyzed in this section. Generally, the reduction of prey’s
birth rate due to the effect of fear will not be an instanta-
neous biological process but deviated through some time lag,
so the study of time-delay τ is very meaningful to obtain the
more realistic dynamics. So, Section 5 deals with the dy-
namic behaviour of the delayed system for two equilibrium
points E3 (subsidy free) and E∗ (interior), respectively.
Section 6 provides the numerical computations which
support the analytical calculations. Section 7 provides a brief
conclusion about the system dynamics.

2. Model Formulation

In 2020, Mondal and Samanta [11] analyzed the dynamics of
a delayed predator-prey interaction incorporating nonlinear
prey refuge function under the influence of fear effect and
additional food. Motivated by the work of Mondal and
Samanta [11], we have first considered a predator-prey-
subsidy model with nonlinear prey refuge function where
the prey and subsidy occur in the same habitat and they are
both consumed by a single generalist predator according to
the following differential equations:

dx

dt
� rx − d1x − a1x

2
−

a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
, x(0)> 0,

dw

dt
� A − d2w −

a3wy

b1 + w +(1 − (my/(a + y)))x
, w(0)> 0,

dy

dt
�

c1a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
+

c2a3wy

b1 + w +(1 − (my/(a + y)))x
− d3y, y(0)> 0,

(1)
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where x is prey population, w denotes the population of the
subsidy, and y is the generalist predator which exploits both
the prey and subsidy. For example, wolves (predator)
consume both deer (prey) and salmon carcasses (subsidy)
[37].

)e term (1 − (my/(a + y)))x represents the quantity of
prey available to the predator, i.e., (mxy/(a + y)) amounts
of prey are free from predation risk where (mxy/(a + y)) is
designated as nonlinear prey refuge function. Also, we have
modeled the dynamics of a generalist predator with Holling
type II [38–41] response function in the presence of non-
linear prey refuge function.

All parameters are positive (except A≥ 0) and biologi-
cally meaningful. Parameters are described in Table 1.

Apart from direct consumption, feeling of fear among
the individuals of the prey species in presence of predator is
very common in predator-prey interaction which changes
life-history, behavioural responses, and reproduction ca-
pability of prey species. In ecology, effect of fear is a common
factor, but there does not exist any considerable attention to
introduce the impact of fear in the mathematical modeling.

Experimental studies indicate that the feeling of fear among
the individuals of the prey species in presence of predator
reduces the prey’s birth rate. So, birth rate of prey species r is
multiplied by a monotone decreasing function
f(k, y) � (1/(1 + ky)), where k(≥ 0) is a level of fear [5].
)e fear function f(k, y) satisfies the following conditions:

(1) f(0, y) � 1: when there is no fear effect on the prey
species, the birth rate of the prey is not reduced

(2) f(k, 0) � 1: when there is no predator, the birth rate
of the prey species is not reduced in the presence of
fear effect

(3) (zf(k, y)/zk)< 0: when fear effect increases, the
birth rate of the prey reduces

(4) (zf(k, y)/zy)< 0: when predator species increases,
prey population reduces

Our main focus is to analyze the dynamic nature of the
predator-prey-subsidymodel with the influence of nonlinear
prey refuge and fear effect. So, system (1) can be modified in
the following aspects:

dx

dt
�

rx

1 + ky
− d1x − a1x

2
−

a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
,

dw

dt
� A − d2w −

a3wy

b1 + w +(1 − (my/(a + y)))x
,

dy

dt
�

c1a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
+

c2a3wy

b1 + w +(1 − (my/(a + y)))x
− d3y,

(2)

with initial conditions:

x(0)> 0,

w(0)> 0,

y(0)> 0.

(3)

)roughout the analysis of this work, we have taken
c1 > c2 which is biologically meaningful.

3. Positivity and Uniform Boundedness

Theorem 1. Every solution of system (2) with (3) uniquely
exists and is positive for all t≥ 0.

Proof. Solution (x(t), w(t), y(t)) of (2) with (3) exists and is
unique on [0, ξ), where (0< ξ ≤ +∞) [42].

From (2) with (3),

x(t) � x(0)exp 
t

0

r

1 + ky(θ)
− d1 − a1x(θ) −

a2(1 − (my(θ)/(a + y(θ))))y(θ)

b1 + w(θ) +(1 − (my(θ)/(a + y(θ))))x(θ)
 dθ > 0,

y(t) � y(0)exp 
t

0

c1a2(1 − (my(θ)/(a + y(θ))))x(θ)

b1 + w(θ) +(1 − (my(θ)/(a + y(θ))))x(θ)
+

c2a3w(θ)

b1 + w(θ) +(1 − (my(θ)/(a + y(θ))))x(θ)
− d3 dθ > 0.

(4)
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Now, we claim that w(t)> 0 for all t ∈ [0, ξ). If it does
not hold then there exists t1 ∈ [0, ξ) such that w(t1) � 0,
_w(t)≤ 0, and w(t)> 0 on [0, t1). From the second equation
of (2),

w t1(  � w(0)exp − 
t1

0
d2 +

a3y(θ)

b1 + w(θ) +(1 − (my(θ)/(a + y(θ))))x(θ)
 d(θ) 

+ 
t1

0
A exp 

u

t1

d2 +
a3y(θ)

b1 + w(θ) +(1 − (my(θ)/(a + y(θ))))x(θ)
 d(θ)  du> 0,

(5)

a contradiction with w(t1) � 0. So, w(t)> 0,∀t ∈ [0, ξ).
Hence, solutions of (2) stay positive for all t≥ 0. □

Theorem 2. All solutions of system (2) which start in R3
+ are

asymptotically uniformly bounded.

Proof. Case 1: if r> d1, from the first equation of (2),

dx

dt
≤

rx

1 + ky
− d1x − a1x

2

≤ rx − d1x − a1x
2 since

rx

1 + ky
≤ rx 

� r − d1( x 1 −
x

r − d1( /a1
 ,

∴ lim sup
t⟶+∞

x(t)≤
r − d1

a1
, since r>d1.

(6)

Let us take P � x + w + (y/c1).
Differentiating both sides with respect to t, we obtain

Table 1: Description of biologically meaningful parameters.

Parameters Descriptions
r Birth rate of the prey
d1 Natural death rate of the prey
d2 )e subsidy decay rate
a1 Mortality rate due to intraspecific competition among the individuals of the prey population
a2 Consumption rate of the predator
a3 Maximum rate at which the predator consumes the subsidy
b1 Handling time assumed to be uniform over all food sources
c1 Conversion rate of the energy that the predator obtains from the target prey
c2 Conversion rate of the energy that the predator obtains from the subsidy
A Subsidy input rate
m Coefficient of prey refuge (m ∈ (0, 1))
d3 Mortality rate of the predator
a Half saturation constant for refuge function
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dP

dt
�
dx

dt
+
dw

dt
+
1
c1

dy

dt

�
rx

1 + ky
− d1x − a1x

2
+ A − d2w −

a3wy(a + y)

b1 + w( (a + y) +(a +(1 − m)y)x

+
c2/c1( a3wy(a + y)

b1 + w( (a + y) +(a +(1 − m)y)x
−

d3y

c1

≤ rx − d1x − a1x
2

+ A − d2w − d3
y

c1
−

a3wy(a + y)

b1 + w( (a + y) +(a +(1 − m)y)x
1 −

c2

c1
 

≤ 2 r − d1( x − a1x
2

+ A − r − d1( x − d2w − d3
y

c1
since c1 > c2 

� − a1 x −
r − d1

a1
 

2

+
r − d1( 

2

a1
+ A − r − d1( x + d2w + d3

y

c1
 

≤
r − d1( 

2

a1
+ A − r − d1( x + d2w + d3

y

c1
 ,

∴
dP

dt
≤

r − d1( 
2

a1
+ A − r − d1( x + d2w + d3

y

c1
 .

(7)

Let

η � min r − d1, d2, d3 , when r>d1. (8)

)en,

dP

dt
+ ηP≤

r − d1( 
2

a1
+ A. (9)

Using the Gronwall inequality, we obtain

0<P(x(t), w(t), y(t))≤
r − d1( 

2/a1  + A

η
1 − e

− ηt
  + e

− ηt
P(x(0), w(0), y(0)),

∴ 0<P(x(t), w(t), y(t))≤
r − d1( 

2/a1  + A

η
, as t⟶∞.

(10)

)us, all solutions of system (2) enter into the region:

Ω � (x, w, y) ∈ R3
+: 0<x(t)≤

r − d1

a1
; 0<P(x(t), w(t), y(t))≤

r − d1( 
2/a1  + A

η
⎧⎨

⎩

⎫⎬

⎭. (11)

Case 2: if r<d1, from the first equation of (2) we obtain
limt⟶∞x(t) � 0.

Now, from the second and third equations of (2), we
have

dw

dt
+
1
c2

dy

dt
� A − d2w +

c1/c2( a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
− d3

y

c2
. (12)

For large t,
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dw

dt
+
1
c2

dy

dt
� A − d2w − d3

y

c2
∵ lim

t⟶∞
x(t) � 0 . (13)

Let

η′ � min d2, d3 . (14)

)en,

d
dt

w +
y

c2
  + η′ w +

y

c2
 ≤A. (15)

Using Gronwall inequality, we obtain

0<w(t) +
y(t)

c2
≤

A

η′
1 − e

− η′t
  + e

− η′t
w(0) +

y(0)

c2
 ,

∴ 0<w(t) +
y(t)

c2
≤

A

η′
, as t⟶∞.

(16)

Hence, the theorem. □

4. Equilibrium Points and Stability Analysis

4.1. Equilibria

4.1.1. Trivial Equilibrium Point. Extinction: E0(0, 0, 0).

4.1.2. Axial Equilibrium Points

(i) Subsidy only: E1(0, (A/d2), 0)

(ii) Prey only: E2((r − d1)/a1, 0, 0) exists if r>d1 and
A � 0

4.1.3. Planer Equilibrium Points

(i) Subsidy free: E3(x, 0, y) exists if A � 0, x> 0, and
y> 0 where x and y can be obtained by solving the
equations:

r

1 + ky
− d1 − a1x −

a2(1 − (my/(a + y)))y

b1 +(1 − (my/(a + y)))x
� 0,

c1a2(1 − (my/(a + y)))x

b1 +(1 − (my/(a + y)))x
− d3 � 0,

(17)

and we get

y �
a d3b1 − x c1a2 − d3(  

(1 − m) c1a2 − d3( x − d3b1
, m≠ 1, (18)

where x is a positive root of the equation:

B0x
4

+ B1x
3

+ B2x
2

+ B3x + B4 � 0. (19)

Here,

B0 � a1(1 − m)(1 − m − ak) c1a2 − d3( 
2
,

B1 � a1b1d3(1 − m)(ak − 1) c1a2 − d3(  − a1b1d3(1 − m − ak) c1a2 − d3(  + d1(1 − m)(1 − m − ak) c1a2 − d3( 
2

− r(1 − m)
2

c1a2 − d3( 
2
,

B2 � b1d1d3(1 − m)(ak − 1) c1a2 − d3(  − a1b
2
1d

2
3(ak − 1) − b1d1d3(1 − m − ak) c1a2 − d3( 

−
d3

c1
(1 − m − ak) c1a2 − d3( 

2
+ 2b1d3r(1 − m) c1a2 − d3( ,

B3 � − b
2
1d

2
3r +

b1d
2
3

c1
(1 − m − ak) c1a2 − d3(  −

b1d
2
3

c1
(ak − 1) c1a2 − d3(  − b

2
1d1d

2
3(ak − 1),

B4 �
b
2
1d

3
3

c1
(ak − 1),

(20)

and y � (a d3b1 − x(c1a2 − d3) /((1 − m)(c1
a2 − d3)x − d3d1)) exists if (1 − m)(c1a2 −

d3)x< d3b1 < (c1a2 − d3)x and c1a2 > d3.
(ii) Prey free: E4(0, w � (d3b1/(c2a3 − d3)), y � ((A −

d2 w)(b1 + w)/a3)) exists if c2a3 >d3 and y> 0.

(iii) Predator free: E5((r − d1)/a1, (A/d2), 0) exists if
r> d1.

4.1.4. Interior (Coexistence) Equilibrium Point. Solving the
following system of equations,
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r

1 + ky
− d1 − a1x −

a2(1 − (my/(a + y)))y

b1 + w +(1 − (my/(a + y)))x
� 0,

A − d2w −
a3wy

b1 + w +(1 − (my/(a + y)))x
� 0,

c1a2(1 − (my/(a + y)))x

b1 + w +(1 − (my/(a + y)))x
+

c2a3w

b1 + w +(1 − (my/(a + y)))x
− d3 � 0,

(21)

we can obtain E∗(x∗, w∗, y∗) using the software MATH-
EMATICA with the following existence conditions:

(1) d3 <min c1a2, c2a3 

(2) 0<w∗ <min (A/d2), d3b1/(c2a3 − d3) 

(3) r> d1 + a1x
∗ + ( b1d3 − (c2a3 − d3)w

∗ (A −

d2w
∗)/a3x

∗w∗(c1a2 − d3)) (otherwise, predator pop-
ulation goes into extinction)

4.2. Stability Analysis. Now, we will study the stability
conditions of all equilibria for the proposed system (2).

)e Jacobian matrix J0(0, 0, 0) at E0(0, 0, 0) is given by

J0(0, 0, 0) �

r − d1 0 0

0 − d2 0

0 0 − d3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (22)

)e eigenvalues of J0(0, 0, 0) are r − d1, − d2(<0), and
− d3(< 0). )en. we have stated the following theorem.

Theorem 3. Trivial equilibrium point E0(0, 0, 0) is locally
asymptotically stable (LAS) if r<d1 and unstable if r> d1.

)e Jacobian matrix J1(0, (A/d2), 0) at E1(0, (A/d2), 0)

is as follows:

J1 0,
A

d2
, 0  �

r − d1 0 0

0 − d2 −
a3 A/d2( 

b1 + A/d2( 

0 0 − d3 +
c2a3 A/d2( 

b1 + A/d2( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

We see that

r − d1,

− d2(< 0),

− d3 +
c2a3 A/d2( 

b1 + A/d2( 
,

(24)

are the eigenvalues of the matrix J1(0, (A/d2), 0). )us, we
have the following theorem.

Theorem 4. Axial equilibrium point (subsidy only)
E1(0, (A/d2), 0) is locally asymptotically stable if r< d1 and
(c2a3(A/d2)/b1 + (A/d2))< d3 and unstable if either
r>d1, (c2a3(A/d2)/b1 + (A/d2))<d3  or r< d1, (c2a3

(A/d2)/b1 + (A/d2))> d3} or r> d1, (c2a3(A/d2)/b1+

(A/d2))> d3}.

)e Jacobian matrix J2((r − d1)/a1, 0, 0) at
E2((r − d1)/a1, 0, 0) is given by

J2
r − d1

a1
, 0, 0  �

− r + d1 0
r − d1

a1
− rk −

a2

b1 + r − d1( /a1( 
 

0 − d2 0

0 0 − d3 +
c1a2 r − d1( /a1( 

b1 + r − d1( /a1( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)
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)e eigenvalues of J2((r − d1)/a1, 0, 0) are − r + d1(< 0),
− d2(< 0) or − d3 + (c1a2((r − d1)/a1)/b1 + ((r − d1)/a1)).
)us. we have stated the following theorem.

Theorem 5. Axial equilibrium point (prey only) E2((r −

d1)/a1, 0, 0) is locally asymptotically stable if

c1a2 r − d1( /a1( 

b1 + r − d1( /a1( 
< d3⟹ 0< r< d1 + a1

b1d3

c1a2 − d3
 with c1a2 > d3. (26)

If r>d1 + a1(b1d3/(c1a2 − d3)) with c1a2 >d3, then
E2((r − d1)/a1, 0, 0) is unstable.

)e Jacobian matrix J3(x, 0, y) at E3(x, 0, y) is as
follows:

J3(x, 0, y) �

b11 b12 b13

b21 b22 b23

b31 b32 b33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (27)

where

b11 � x − a1 +
a2y(a +(1 − m)y)

2

b1(a + y) +[a +(1 − m)y]x 
2

⎧⎨

⎩

⎫⎬

⎭,

b12 �
a2xy[a +(1 − m)y](a + y)

b1(a + y) +[a +(1 − m)y]x 
2,

b13 � x −
rk

(1 + ky)
2 −

a2[a + 2(1 − m)y]

b1(a + y) +[a +(1 − m)y]x
+

a2y[a +(1 − m)y] b1 +(1 − m)x 

b1(a + y) +[a +(1 − m)y]x 
2

⎧⎨

⎩

⎫⎬

⎭,

b21 � 0,

b22 � − d2 −
a3y

b1 +(1 − (my/(a + y)))x
,

b23 � 0,

b31 � y
c1a2[a +(1 − m)y]

b1(a + y) +[a +(1 − m)y]x
−

c1a2[a +(1 − m)y]
2
x

b1(a + y) +[a +(1 − m)y]x 
2

⎧⎨

⎩

⎫⎬

⎭,

b32 �
c2a3y(a + y)

b1 a + y
∗

(  +[a +(1 − m)y]x
,

b33 � y
c1a2(1 − m)x

b1(a + y) +[a +(1 − m)y]x
−

c1a2[a +(1 − m)y]x b1 +(1 − m)x 

b1(a + y) +[a +(1 − m)y]x 
2

⎧⎨

⎩

⎫⎬

⎭.

(28)

)e characteristic equation corresponding to J3(x, 0, y)

is expressed as

λ3 + B1λ
2

+ B2λ + B3 � 0, (29)

where B1 � − (b11 + b22 + b33), B2 � b22b33 + b11b33 −

b13b31 + b11b22, and B3 � − b22(b11b33 − b13b31).

Theorem 6. Subsidy-free equilibrium point E3(x, 0, y) is
locally asymptotically stable if b11 < 0, b33 < 0, and b13 < 0.

)e Jacobian matrix J4(0, w, y) corresponding to
E4(0, w, y) is given by

J4(0, w, y) �

c11 c12 c13

c21 c22 c23

c31 c32 c33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (30)

where
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c11 �
r

1 + ky
− d1 −

a2[a +(1 − m)y]y

b1 + w( (a + y)
,

c12 � 0,

c13 � 0,

c21 �
a3(1 − m)(a + y)wy

2

b1 + w( (a + y) 
2 ,

c22 � − d2 −
a3y(a + y)

b1 + w( (a + y)
,

c23 � −
a3 w(a + 2y)

b1 + w( (a + y)
+

a3yw(a + y) b1 + w( 

b1 + w( (a + y) 
2 ,

c31 �
c1a2y[a +(1 − m)y]

b1 + w( (a + y)
,

c32 �
c2a3y(a + y)

b1 + w( (a + y)
−

c2a3 wy(a + y)
2

b1 + w( (a + y) 
2 �

c2a3yb1

b1 + w( (a + y) 
2,

c33 �
c2a3 wy

b1 + w( (a + y)
−

c2a3 wy(a + y) b1 + w( 

b1 + w( (a + y) 
2 � 0.

(31)

)e characteristic equation corresponding to J4(0, w, y)

is expressed as

λ3 + C1λ
2

+ C2λ + C3 � 0, (32)

where

C1 � − c11 + c22( ,

C2 � − c23c32 + c11c22,

C3 � + c11c23c32.

(33)

Theorem 7. Prey-free equilibrium point E4(0, w, y) is locally
asymptotically stable if c11 < 0 and c23 < 0.

)e Jacobian matrix J5((r − d1)/a1, (A/d2), 0) corre-
sponding to E5((r − d1)/a1, (A/d2), 0) is given by

J5
r − d1

a1
,

A

d2
, 0  �

d11 d12 d13

d21 d22 d23

d31 d32 d33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (34)

where

d11 � − r + d1,

d12 � 0,

d13 �
r − d1

a1
− rk −

a2

b1 + A/d2(  + r − d1( /a1( 
 ,

d21 � 0,

d22 � − d2,

d23 � −
a3 A/d2( 

b1 + A/d2(  + r − d1( /a1( 
,

d31 � d32 � 0,

d33 �
c1a2 r − d1( /a1( 

b1 + A/d2(  + r − d1( /a1( 
+

c2a3 A/d2( 

b1 + A/d2(  + r − d1( /a1( 
− d3.

(35)

)e characteristic equation corresponding to
J5((r − d1)/a1, (A/d2), 0) is expressed as

λ3 + D1λ
2

+ D2λ + D3 � 0, (36)

where

D1 � − d11 + d22 + d33( ,

D2 � d22d33 + d11d33 + d11d22,

D3 � − d11d22d33.

(37)
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Theorem 8. Predator free equilibrium point E5((r − d1)/
a1, (A/d2), 0) is locally asymptotically stable if

c1a2 r − d1( /a1( 

b1 + A/d2(  + r − d1( /a1( 
+

c2a3 A/d2( 

b1 + A/d2(  + r − d1( /a1( 
< d3⟹ 0< r< d1 + a1

b1d3 − c2a3 − d3(  A/d2( 

c1a2 − d3
 , (38)

provided d3 <min c1a2, c2a3  and 0< (A/d2)< (b1d3
/(c2a3 − d3)).

)e Jacobian matrix J∗(x∗, w∗, y∗) corresponding to
E∗(x∗, w∗, y∗) is as follows:

J
∗

x
∗
, w
∗
, y
∗

(  �

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (39)

where

a11 � x
∗

− a1 +
a2 a +(1 − m)y

∗
( 

2
y
∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2

⎡⎣ ⎤⎦,

a12 �
a2 a +(1 − m)y

∗
(  a + y

∗
( x

∗
y
∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2,

a13 � −
rkx
∗

1 + ky
∗

( 
2 −

a2 a + 2(1 − m)y
∗

( x
∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗ +

a2 a +(1 − m)y
∗

( x
∗
y
∗

b1 + w
∗

+(1 − m)x
∗

( 

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2

⎡⎣ ⎤⎦,

a21 �
a3 a + y

∗
(  a +(1 − m)y

∗
( w

∗
y
∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2,

a22 � − d2 −
a3 a + y

∗
( y

∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗ +

a3 a + y
∗

( 
2
w
∗
y
∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2,

a23 � −
a3 a + 2y

∗
( w

∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗ +

a3 a + y
∗

(  b1 + w
∗

+(1 − m)x
∗

( 

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2,

a31 �
c1a2 a +(1 − m)y

∗
( y

∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗ −

c1a2 a +(1 − m)y
∗

( 
2
x
∗
y
∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2

−
c2a3w

∗
y
∗

a + y
∗

(  a +(1 − m)y
∗

( 

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2,

a32 � −
c1a2 a +(1 − m)y

∗
( x

∗
y
∗

a + y
∗

( 

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2 +

c2a3 a + y
∗

( y
∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

−
c2a3w

∗
y
∗

a + y
∗

( 
2

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2,

a33 �
c1a2(1 − m)x

∗
y
∗

+ c2a3w
∗
y
∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗ −

c1a2 a +(1 − m)y
∗

( x
∗
y
∗

+ c2a3w
∗
y
∗

a + y
∗

(   b1 + w
∗

+(1 − m)x
∗

( 

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2 .

(40)

)e characteristic equation corresponding to
J∗(x∗, w∗, y∗) is expressed as

λ3 + A1λ
2

+ A2λ + A3 � 0, (41)

where
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A1 � − a11 + a22 + a33( ,

A2 � a22a33 − a23a32 + a11a33 − a13a31 + a11a22 − a12a21,

A3 � − a11 a22a33 − a23a32(  + a12 a23a31 − a21a33(  + a13 a21a32 − a22a31(  .

(42)

Theorem 9. :e coexistence equilibrium E∗(x∗, w∗, y∗) is
locally asymptotically stable if A1 > 0, A3 > 0, and A1A2 >A3,
where A1, A2, andA3 are stated in (41).

4.3. Local Bifurcations of Codimension 1

4.3.1. Transcritical Bifurcation

Theorem 10. System (2) undergoes a transcritical bifurca-
tion around E1(0, (A/d2), 0) if d

[TC]
1 � r and

(c2a3(A/d2)/(b1 + (A/d2)))< d3 ([TC] stands for tran-
scritical bifurcation).

Proof. We apply Sotomayor’s theorem [43] to prove the
occurrence of a transcritical bifurcation around E1 with d1 as
bifurcation parameter. For applicability of Sotomayor’s
theorem, exactly one of the eigenvalues of the Jacobian
matrix at E1 must be zero and other eigenvalues must have
negative real parts. So, we need to fulfill the condition
(c2a3(A/d2)/(b1 + (A/d2)))< d3.

)e eigenvectors of J(E1) � [vij] and (J(E1))
T corre-

sponding to the zero eigenvalue of E1(0, (A/d2), 0) are
obtained as V � (v1, v2, v3)

T and W � (1, 0, 0)T, respec-
tively, where v1 � 1, v2 � v3 � 0, v11 � 0, v12 � 0, v13 � 0,
v21 � 0, v22 � − d2, v23 � 0, v31 � 0, v32 � 0,
v33 � − d3 + (c2a3(A/d2)/(b1 + (A/d2))).

Compute Δ1, Δ2, and Δ3 as follows:

Δ1 � W
T

· Fd1
0,

A

d2
, 0; d

[TC]
1  � (1, 0, 0) ·

zF1

zd1

zF2

zd1

zF3

zd1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E1

� (1, 0, 0) ·

− x

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E1

� 0, (43)

where F � (F1, F2, F3)
T and F1, F2, and F3 are given by

F1 �
rx

1 + ky
− d1x − a1x

2
−

a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
,

F2 � A − d2w −
a3wy

b1 + w +(1 − (my/(a + y)))x
,

F3 �
c1a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
+

c2a3wy

b1 + w +(1 − (my/(a + y)))x
− d3y,

Δ2 � W
T

· DFd1
0,

A

d2
, 0; d

[TC]
1 V  � (1, 0, 0) ·

z2F1

zx zd1

z2F1

zw zd1

z2F1

zy zd1

z2F2

zx zd1

z2F2

zw zd1

z2F2

zy zd1

z2F3

zx zd1

z2F3

zw zd1

z2F3

zy zd1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E1

·

1

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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� (1, 0, 0) ·

− 1 0 0
0 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E1

·

1
0
0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ � − 1≠ 0,

Δ3 � W
T

· D
2
F 0,

A

d2
, 0; d

[TC]
1 (V, V)  � (1, 0, 0) · D

zF1

zx
v1 +

zF1

zw
v2 +

zF1

zy
v3

zF2

zx
v1 +

zF2

zw
v2 +

zF2

zy
v3

zF3

zx
v1 +

zF3

zw
v2 +

zF3

zy
v3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E1

·

v1

v2

v3

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

� (1, 0, 0) ·

z2F1

zx2 v
2
1 +

z2F1

zw2 v
2
2 +

z2F1

zy2 v
2
3 + 2

z2F1

zx zw
v1v2 + 2

z2F1

zx zy
v1v3 + 2

z2F1

zw zy
v2v3

z2F2

zx2 v
2
1 +

z2F2

zw2 v
2
2 +

z2F2

zy2 v
2
3 + 2

z2F2

zx zw
v1v2 + 2

z2F2

zx zy
v1v3 + 2

z2F2

zw zy
v2v3

z2F3

zx2 v
2
1 +

z2F3

zw2 v
2
2 +

z2F3

zy2 v
2
3 + 2

z2F3

zx zw
v1v2 + 2

z2F3

zx zy
v1v3 + 2

z2F3

zw zy
v2v3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E1

� − 2a1 ≠ 0.

(44)

)erefore, by Sotomayor’s theorem [43], system (2)
undergoes a transcritical bifurcation at d1 � d

[TC]
1 around

the axial equilibrium point E1. □

Theorem 11. System (2) exhibits a transcritical bifurcation
around E2((r − d1)/a1, 0, 0) if

d
[TC]
3 �

c1a2 r − d1( /a1( 

b1 + r − d1( /a1( 
. (45)

Proof. Let us apply Sotomayor’s theorem [43] to prove the
occurrence of a transcritical bifurcation around E2 with d3 as

bifurcation parameter. For applicability of Sotomayor’s
theorem, exactly one of the eigenvalues of the Jacobian
matrix at E2 must be zero and other eigenvalues must have
negative real parts.

)e eigenvectors of J(E2) � [tij] and (J(E2))
T corre-

sponding to the zero eigenvalue of E2((r − d1)/a1, 0, 0) are
obtained as V � (v1, v2, v3)

T and W � (0, 0, 1)T, respec-
tively, where v1 � (1/a1)[− rk − (a2/(b1 + ((r −

d1)/a1)))]< 0, v2 � 0, v3 � 1, t11 � − r + d1, t12 � 0,
t13 � ((r − d1)/a1)[− rk − (a2/(b1 + ((r − d1)/a1)))], t21 �

0, t22 � − d2, t23 � 0, t31 � 0, t32 � 0, t33 � 0.
Compute Δ1, Δ2, and Δ3 as follows:

Δ1 � W
T

· Fd1

r − d1

a1
, 0, 0; d

[TC]
3  � (0, 0, 1) ·

zF1

zd3

zF2

zd3

zF3

zd3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E2

� (0, 0, 1) ·

0

0

− y

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E2

� 0, (46)

where F � (F1, F2, F3)
T and F1, F2, and F3 are given by
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F1 �
rx

1 + ky
− d1x − a1x

2
−

a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
,

F2 � A − d2w −
a3wy

b1 + w +(1 − (my/(a + y)))x
,

F3 �
c1a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
+

c2a3wy

b1 + w +(1 − (my/(a + y)))x
− d3y,

Δ2 � W
T

· DFd3

r − d1

a1
, 0, 0; d

[TC]
3 V  � (0, 0, 1) ·

z2F1

zx zd3

z2F1

zw zd3

z2F1

zy zd3

z2F2

zx zd3

z2F2

zw zd3

z2F2

zy zd3

z2F3

zx zd3

z2F3

zw zd3

z2F3

zw zd3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E2

·

v1

v2

v3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (0, 0, 1) ·

0 0 0

0 0 0

0 0 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E2

·

v1

v2

v3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� − v3 � − 1≠ 0,

Δ3 � W
T

· D
2
F

r − d1

a1
, 0, 0; d

[TC]
3 (V, V)  � (0, 0, 1) · D

zF1

zx
v1 +

zF1

zw
v2 +

zF1

zy
v3

zF2

zx
v1 +

zF2

zw
v2 +

zF2

zy
v3

zF3

zx
v1 +

zF3

zw
v2 +

zF3

zy
v3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E2

·

v1

v2

v3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (0, 0, 1) ·

z2F1

zx2 v
2
1 +

z2F1

zw2 v
2
2 +

z2F1

zy2 v
2
3 + 2

z2F1

zx zw
v1v2 + 2

z2F1

zx zy
v1v3 + 2

z2F1

zw zy
v2v3

z2F2

zx2 v
2
1 +

z2F2

zw2 v
2
2 +

z2F2

zy2 v
2
3 + 2

z2F2

zx zw
v1v2 + 2

z2F2

zx zy
v1v3 + 2

z2F2

zw zy
v2v3

z2F3

zx2 v
2
1 +

z2F3

zw2 v
2
2 +

z2F3

zy2 v
2
3 + 2

z2F3

zx zw
v1v2 + 2

z2F3

zx zy
v1v3 + 2

z2F3

zw zy
v2v3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E2

�
2a2b1c1 v1 − (m/a)( 

b1 + r − d1( /a1( ( 
2 ≠ 0.

(47)

)erefore, by Sotomayor’s theorem [43], system (2)
exhibits a transcritical bifurcation at d3 � d

[TC]
3 around the

axial equilibrium point E2. □

Theorem 12. System (2) undergoes a transcritical bifurca-
tion around E4(0, w, y) if

d
[TC]
1 �

r

1 + ky
−

a2[a +(1 − m)y]y

b1 + y( (a + y)
,

c2a3 wy

b1 + w( (a + y)
<

c2a3 wy(a + y) b1 + w( 

b1 + w( (a + y) 
2 .

(48)
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Proof. Proof is the same as in )eorem 10. □ Theorem 13. System (2) undergoes a transcritical bifurca-
tion around E5((r − d1)/a1, (A/d2), 0) if

d
[TC]
3 �

c1a2 r − d1( /a1( 

b1 + A/d2(  + r − d1( /a1( 
+

c2a3 A/d2( 

b1 + A/d2(  + r − d1( /a1( 
. (49)

Proof. Proof is the same as in )eorem 11. □

4.3.2. Hopf Bifurcation around E∗(x∗, w∗, y∗). Let us
consider k as a bifurcation parameter of system (2) where the
characteristic equation at E∗ is

λ3 + A1(k)λ2 + A2(k)λ + A3(k) � 0. (50)

)en, Hopf bifurcation theorem is stated as follows.

Theorem 14 (Hopf bifurcation theorem [44]). If A1(k),
A2(k), and A3(k) are the smooth functions of k in Nε(k[H]),
(ε> 0), k[H] ∈ R for which the characteristic equation (50)
has the following:

(i) A pair of imaginary eigenvalues λ � q1(k) ± iq2(k)

with q1(k) and q2(k) ∈ R so that they become purely
complex at k � k[H] and (dq1/dk)|k�k[H] ≠ 0

(ii) :e other eigenvalue is negative at k � k[H]; then, a
Hopf bifurcation appears around E∗ at k � k[H]

Theorem 15. If E∗(x∗, w∗, y∗) is locally asymptotically
stable, then a Hopf bifurcation is exhibited around
E∗(x∗, w∗, y∗) when k passes through its critical value k[H]

provided A1(k[H])> 0, A3(k[H])> 0, and
A1(k[H])A2(k[H]) � A3(k[H]) (k[H] is a positive root of
equation A1(k)A2(k) − A3(k) � 0).

Proof. At k � k[H], we can write equation (50) as

λ2 + A2  λ + A1(  � 0. (51)

)e roots of equation (51) are λ1 � i
���
A2


, λ2 � − i

���
A2


,

and λ3 � − A1. Also A1, A2, and A3 are the smooth functions
of k. So, the roots of equation (59) have the form
λ1 � p1(k) + ip2(k), λ2 � p1(k) − ip2(k), and λ3 � p3(k)

where pi(k) are real functions of k in an open neighborhood
of k[H] for i � 1, 2, 3. Next, we verify the transversality
condition:

d
dk

Reλi(k)( |k�k[H] ≠ 0, i � 1, 2. (52)

Putting λ(k) � p1(k) + ip2(k) in (59), we get

p1(k) + ip2(k)
3

+ A1(k)p1(k) + ip2(k)
2

+ A2(k) p1(k) + ip2(k)(  + A3(k) � 0. (53)

Differentiating both sides with respect to k, we have

3 p1(k) + ip2(k)( 
2 _p1(k) + i _p2(k)(  + 2A1(k) p1(k) + ip2(k)(  _p1(k) + i _p2(k)( 

+ _A1(k) p1(k) + ip2(k)( 
2

+ A2 _p1(k) + i _p2(k)(  + _A2(k) p1(k) + ip2(k)(  + _A3(k) � 0.
(54)

Comparing real and imaginary parts from both sides, we
obtain

X1 _p1 − X2 _p2 + X3 � 0, (55)

X2 _p1 + X1 _p2 + X4 � 0, (56)

where

X1 � 3 p
2
1 − p

2
2  + 2A1p1 + A2,

X2 � 6p1p2 + 2A1p2,

X3 � _A1 p
2
1 − p

2
2  + _A2p1 + _A3 ≠ _A1 p

2
1 − p

2
2  + _A2p1 + A1

_A2 + A2
_A1,

sinceA3 ≠A1A2 in a deleted neighbour hood of k
[H]

 ,

(57)
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and X4 � 2 _A1p1p2 + _A2p2.
Multiplying (55) by X1 and (56) by X2 and then adding,

we get

X
2
1 + X

2
2  _p1 + X1X3 + X2X4 � 0⟹ _p1 � −

X1X3 + X2X4

X
2
1 + X

2
2

 .

(58)

At k � k[H],

Case 1: p1 � 0, p2 �
���
A2


. )en, X1 � − 2A2,

X2 � 2A1
���
A2


, X3 ≠A1

_A2, and X4 � _A2
���
A2


.

∴X1X3 + X2X4 ≠ 0.
Case 2: p1 � 0, p2 � −

���
A2


. )en, X1 � − 2A2,

X2 � − 2A1
���
A2


, X3 ≠A1

_A2, and X4 � − _A2
���
A2


.

∴X1X3 + X2X4 ≠ 0.

Also, λ3 � − A1(k[H])< 0.
Hence, this theorem is proved by virtue of )eorem

14. □

4.3.3. Hopf Bifurcation around E3(x, 0, y). Let us consider k

as a bifurcation parameter of system (2) where the char-
acteristic equation of E3 is

λ3 + B1(k)λ2 + B2(k)λ + B3(k) � 0, (59)

and then Hopf bifurcation theorem is stated as follows.

Theorem 16 (Hopf bifurcation theorem [44]). If B1(k),
B2(k), and B3(k) are the smooth functions of k in Nε(k∗),
(ε> 0), k∗ ∈ R for which the characteristic equation (59) has
the following:

(i) A pair of imaginary eigenvalues λ � p1′(k) ± ip2′(k)

with p1′(k) and p2′(k) ∈ R so that they become purely
imaginary at k � k∗ and (dp1′/dk)|k�k∗ ≠ 0

(ii) :e other eigenvalue is negative at k � k∗; then aHopf
bifurcation occurs around E3(x, 0, y) at k � k∗

Theorem 17. If E3(x, 0, y) is locally asymptotically stable,
then a Hopf bifurcation appears around subsidy-free equi-
librium E3(x, 0, y) when k passes through its critical value k∗

provided B1(k∗)> 0, B3(k∗)> 0, and
B1(k∗)B2(k∗) � B3(k∗) (k∗ is a positive root of equation
B1(k)B2(k) − B3(k) � 0).

Proof. Proof is the same as in )eorem 15. □

5. Delayed Dynamical System

In biological point of view, many processes, both natural and
man-made, include time-delay. )e study of delay factor
makes our system much more realistic than non-delayed
system. Also, a delay differential equation reveals much
more complicated dynamics than an ordinary differential
equation (for details, see [10–13, 23, 45–49]).

In reality, after sensing the vocal cue, individuals of prey
species take some time for assessing the predation risk. So,
the effect of fear (felt by prey) of predator does not respond
spontaneously on the birth rate of prey population; some
time lag must be needed. In view of this fact, the predator-
prey-subsidy interactions (2) can be modified as follows:

dx

dt
�

rx

1 + ky(t − τ)
− d1x − a1x

2
−

a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
,

dw

dt
� A − d2w −

a3wy

b1 + w +(1 − (my/(a + y)))x
,

dy

dt
�

c1a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
+

c2a3wy

b1 + w +(1 − (my/(a + y)))x
− d3y.

(60)

)e initial conditions are assumed as (i � 1, 2, 3)

ψi(ϕ)> 0,ϕ ∈ [− τ, 0], where x(ϕ) � ψ1(ϕ), w(ϕ) � ψ2(ϕ), y(ϕ) � ψ3(ϕ),

For biological feasibility: ψ1(0)> 0, ψ2(0)> 0,ψ3(0)> 0.
(60a)

Let us linearize (60) using the following transformations:

X � x − x,

W � w − 0,

Y � y − y.

(61)

It leads to

dU

dt
� B1′U(t) + B2′U(t − τ), (62)

where U � [X, W, Y]T,

Complexity 15



B1′ �

b11 b12 b13′

b21 b22 b23

b31 b32 b33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B2′ �

0 0 b
′′
13

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b11 � x − a1 +
a2y(a +(1 − m)y)

2

b1(a + y) +[a +(1 − m)y]x 
2

⎧⎨

⎩

⎫⎬

⎭,

b12 �
a2xy[a +(1 − m)y](a + y)

b1(a + y) +[a +(1 − m)y]x 
2,

b13′ � x −
a2[a + 2(1 − m)y]

b1(a + y) +[a +(1 − m)y]x
+

a2y[a +(1 − m)y] b1 +(1 − m)x 

b1(a + y) +[a +(1 − m)y]x 
2

⎧⎨

⎩

⎫⎬

⎭,

b21 � 0,

b22 � − d2 −
a3y

b1 +(1 − (my/(a + y)))x
,

b23 � 0,

b31 � y
c1a2[a +(1 − m)y]

b1(a + y) +[a +(1 − m)y]x
−

c1a2[a +(1 − m)y]
2
x

b1(a + y) +[a +(1 − m)y]x 
2

⎧⎨

⎩

⎫⎬

⎭,

b32 �
c2a3y(a + y)

b1 a + y
∗

(  +[a +(1 − m)y]x
,

b33 � y
c1a2(1 − m)x

b1(a + y) +[a +(1 − m)y]x
−

c1a2[a +(1 − m)y]x b1 +(1 − m)x 

b1(a + y) +[a +(1 − m)y]x 
2

⎧⎨

⎩

⎫⎬

⎭,

b13″ � −
rkx

(1 + ky)
2.

(63)

)e characteristic equation corresponding to (62) is

λ3 + L1λ
2

+ L2λ + L3 + M1λ + M2( e
− λτ

� 0, (64)

where

L1 � − b11 + b22 + b33( ,

L2 � b22b33 + b11b33 − b13′ b31 + b11b22,

L3 � − b11b22b33 − b13′ b22b31 ,

M1 � − b13″ b31,

M2 � b13″ b31b22.

(65)

If τ ≠ 0, E3 of system (60) is LAS provided equation (64)
has no purely imaginary roots and it is also LAS for τ � 0.
Further, it has been shown that stability nature of E3
switches at τ � τ′∗. Already, it has been derived that E3 is
LAS provided B1 > 0, B3 > 0, and B1B2 >B3 for τ � 0 (non-
delayed system). Let us discuss if the real part of the roots of
equation (64) gradually increases to reach zero and even-
tually turns to a positive value when τ increases.

Substituting λ � q1′ + iq2′ in equation (64), we have

q1′ + iq2′( 
3

+ L1 q1′ + iq2′( 
2

+ L2 q1′ + iq2′(  + L3

+ M1 q1′ + iq2′(  + M2( e
− q1′τ cos q2′τ(  − i sin q2′τ( (  � 0.

(66)
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Equating respective real and complex parts from both
sides, we obtain

q′
3
1 − 3q1′q

′2
2 + L1 q′

2
1 − q′

2
2  + L2q1′ + L3 + M1q1′e

− q1′τ cos q2′τ(  + M2e
− q1′τ cos q2′τ(  + M1q2′e

− q1′τ sin q2′τ(  � 0, (67)

3q′
2
1 q2′ − q′

3
2 + 2L1q1′q2′ + L2q2′ + M1q2′e

− q1′τ cos q2′τ(  − M1q1′e
− q1′τ sin q2′τ(  − M2e

− q1′τ sin q2′τ(  � 0. (68)

Now, let us examine whether equation (64) has purely
imaginary roots or not. For this purpose, let us take q1′ � 0.
)en, equations (67) and (68) become

M1q2′ sin q2′τ(  + M2 cos q2′τ(  � L1q
′2
2 − L3, (69)

M1q2′ cos q2′τ(  − M2 sin q2′τ(  � q
′3
2 − L2q2′. (70)

Eliminating τ from (69) and (70) (squaring and adding),
we get

q
′6
2 + q
′4
2 L

2
1 − 2L2  + q

′2
2 L

2
2 − 2L1L3 − M

2
1  + L

2
3 − M

2
2  � 0.

(71)

Putting q′22 � β, we have

L(β) ≡ β3 + L
2
1 − 2L2 β2 + L

2
2 − 2L1L3 − M

2
1 β + L

2
3 − M

2
2  � 0. (72)

)is is a cubic equation of β. It is noticed that
L(∞) �∞. So, equation (72) has exactly one positive real
root if L(0)< 0, i.e., if L2

3 <M2
2.

Let β � β+ be a positive root of (77); then, q2′ �
��
β+


.

Lemma 1 (see [50]). Consider the exponential polynomial:

P(λ) ≡ P λ, τ1, τ2, . . . , τm(  ≡ λn
+ p

(0)
1 λn− 1

+ · · · + p
(0)
n− 1λ + p

(0)
n + p

(1)
1 λn− 1

+ · · · + p
(1)
n− 1λ + p

(1)
n e

− λτ1 + · · ·

+ p
(m)
1 λn− 1

+ · · · + p
(m)
n− 1λ + p

(m)
n e

− λτm ,
(73)

where τi ≥ 0(i � 1, 2, . . . , m) and p
(i)
j (i � 0, 1, . . . , m; j �

1, 2, . . . , n) are constants. As (τ1, τ2, . . . , τm) vary, the sum of
the orders of zero of P(λ) in the open half plane can change
only if a zero appears on or crosses the imaginary axis.

Now, let us discuss the existence of Hopf bifurcation
around E3 with τ as a bifurcation parameter.

Theorem 18. Suppose E3 exists and is locally asymptotically
stable for system (2) when τ � 0. If L2

3 <M2
2, then there exists a

critical value τ′∗ such that E3 of system (60) is LAS when
τ ∈ [0, τ′∗) and unstable when τ > τ′∗, where

τ′(j)
+ �

cos− 1
M2 L1β+ − L3(  + M1 β2+ − L2β+  / M

2
2 + M

2
1β+  

��
β+

 +
2πj

��
β+

 , j � 0, 1, 2, 3, . . . , (74)

and τ′∗ � τ′(0)
+ (minimum value). Also, system (60) exhibits

Hopf bifurcation around E3 at τ � τ′∗ provided
K′M′ − L′N′ ≠ 0, where

Complexity 17



K′ � − 3β+ + L2 + M1 cos
��

β+



τ′∗  − M2τ′
∗ cos

��

β+



τ′∗  − M1

��

β+



τ′∗ sin
��

β+



τ′∗  ,

L′ � − 2L1

��

β+



+ M1 sin
��

β+



τ′∗  − M2τ′
∗ sin

��

β+



τ′∗  + M1

��

β+



τ′∗ cos
��

β+



τ′∗  ,

M′ � M2

��

β+



sin
��

β+



τ′∗  − M1β+cos
��

β+



τ′∗  ,

N′ � M2

��

β+



cos
��

β+



τ′∗  + M1β+sin
��

β+



τ′∗  .

(75)

Proof. If L2
3 <M2

2, then (72) has exactly one positive root β+,
i.e., from (69) and (70), τ′(j)

+ , j � 0, 1, 2, . . ., are obtained as
functions of β+:

τ′(j)
+ �

cos− 1
M2 L1β+ − L3(  + M1 β2+ − L2β+  / M

2
2 + M

2
1β+  

��
β+

 +
2πj

��
β+

 , j � 0, 1, 2, 3, . . . . (76)

If E3 is locally asymptotically stable, the stability be-
haviour of E3 will remain unaltered for τ < τ′∗ (using Butler’s
Lemma [51]).

To check the transversality condition,
[(d/dτ)Re λ(τ)]

τ�τ′
∗ ≠ 0, let us differentiate (67) and (68)

with respect to τ and set q1′ � 0 and τ � τ′∗. )e following
equations are obtained:

K′
d
dτ

[Re λ(τ){ }] 
τ�τ′
∗

+ L′
d
dτ

[Im λ(τ){ }] 
τ�τ′
∗

� M′,

(77)

− L′
d
dτ

[Re λ(τ){ }] 
τ�τ′
∗

+ K′
d
dτ

[Im λ(τ){ }] 
τ�τ′
∗

� N′,

(78)

where

K′ � − 3β+ + L2 + M1 cos
��

β+



τ′∗  − M2τ′
∗ cos

��

β+



τ′∗  − M1

��

β+



τ′∗ sin
��

β+



τ′∗  ,

L′ � − 2L1

��

β+



+ M1 sin
��

β+



τ′∗  − M2τ′
∗ sin

��

β+



τ′∗  + M1

��

β+



τ′∗ cos
��

β+



τ′∗  ,

M′ � M2

��

β+



sin
��

β+



τ′∗  − M1β+cos
��

β+



τ′∗  ,

N′ � M2

��

β+



cos
��

β+



τ′∗  + M1β+sin
��

β+



τ′∗  .

(79)

Solving (77) and (78),

d[Re λ(τ){ }]

dτ
 

τ�τ′
∗

�
K′M′ − L′N′

K′
2

+ L′
2 . (80)

Now, we have d[Re λ(τ){ }]/dττ�τ′
∗ ≠ 0, if

K′M′ − L′N′ ≠ 0. Hence, the transversality condition is

satisfied and a Hopf bifurcation occurs around E∗ when τ
passes through its critical value τ′∗. □

Now, linearize system (60) using the transformations
X � x − x∗, W � w − w∗, and Y � y − y∗:

dU

dt
� A1′U(t) + A2′U(t − τ), (81)
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where U � [X, W, Y]T,

A1′ �

a11 a12 a13′

a21 a22 a23

a31 a32 a33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A2′ �

0 0 a13″

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

a11 � x
∗

− a1 +
a2 a +(1 − m)y

∗
( 

2
y
∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2

⎡⎣ ⎤⎦,

a12 �
a2 a +(1 − m)y

∗
(  a + y

∗
( x

∗
y
∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2,

a13′ � −
a2 a + 2(1 − m)y

∗
( x

∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗ +

a2 a +(1 − m)y
∗

( x
∗
y
∗

b1 + w
∗

+(1 − m)x
∗

( 

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2

⎡⎣ ⎤⎦,

a21 �
a3 a + y

∗
(  a +(1 − m)y

∗
( w

∗
y
∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2,

a22 � − d2 −
a3 a + y

∗
( y

∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗ +

a3 a + y
∗

( 
2
w
∗
y
∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2,

a23 � −
a3 a + 2y

∗
( w

∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗ +

a3 a + y
∗

(  b1 + w
∗

+(1 − m)x
∗

( 

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2,

a31 �
c1a2 a +(1 − m)y

∗
( y

∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗ −

c1a2 a +(1 − m)y
∗

( 
2
x
∗
y
∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2

−
c2a3w

∗
y
∗

a + y
∗

(  a +(1 − m)y
∗

( 

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2

a32 � −
c1a2 a +(1 − m)y

∗
( x

∗
y
∗

a + y
∗

( 

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2 +

c2a3 a + y
∗

( y
∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

−
c2a3w

∗
y
∗

a + y
∗

( 
2

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2,

a33 �
c1a2(1 − m)x

∗
y
∗

+ c2a3w
∗
y
∗

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗ −

c1a2 a +(1 − m)y
∗

( x
∗
y
∗

+ c2a3w
∗
y
∗

a + y
∗

(   b1 + w
∗

+(1 − m)x
∗

( 

b1 + w
∗

(  a + y
∗

(  + a +(1 − m)y
∗

( x
∗

 
2 ,

a
′′
13 � −

rkx
∗

1 + ky
∗

( 
2.

(82)
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)e characteristic equation corresponding to (81) is

λ3 + R1λ
2

+ R2λ + R3 + S1λ + S2( e
− λτ

� 0, (83)

where

R1 � − a11 + a22 + a33( ,

R2 � a22a33 − a23a32 + a11a33 − a13′a31 + a11a22 − a12a21,

R3 � − a11 a22a33 − a23a32(  + a12 a23a31 − a21a33(  + a13′ a21a32 − a22a31(  ,

S1 � − a13″ a31,

S2 � − a13″ a21a32 − a31a22( .

(84)

If τ ≠ 0, E∗ of system (60) is LAS provided equation (83)
has no purely imaginary roots and it is LAS for τ � 0.
Furthermore, it has to be noted that changes of stability
occur at τ � τ∗. Already, it has been discussed that E∗ is LAS
when τ � 0 provided A1 > 0, A3 > 0, and A1A2 >A3. Here,
equation (83) is a transcendental equation, so it contains

infinitely many eigenvalues. In this situation, we cannot
apply the Routh–Hurwitz criteria to determine the stability
of system (60). To understand the stability behaviour, our
necessity is to check the sign of the real parts of the ei-
genvalues of equation (83).

Now, putting λ � q1 + iq2 in equation (83), we have

q1 + iq2( 
3

+ R1 q1 + iq2( 
2

+ R2 q1 + iq2(  + R3 + S1 q1 + iq2(  + S2( e
− q1τ cos q2τ(  − i sin q2τ( (  � 0. (85)

Equating respective real and complex parts from both
sides, we get

q
3
1 − 3q1q

2
2 + R1 q

2
1 − q

2
2  + R2q1 + R3 + S1q1e

− q1τ cos q2τ(  + S2e
− q1τ cos q2τ(  + S1q2e

− q1τ sin q2τ(  � 0, (86)

3q
2
1q2 − q

3
2 + 2R1q1q2 + R2q2 + S1q2e

− q1τ cos q2τ(  − S1q1e
− q1τ sin q2τ(  − S2e

− q1τ sin q2τ(  � 0. (87)

To check whether (83) has purely imaginary roots or not,
set q1 � 0; then, (86) and (87) become

S1q2 sin q2τ(  + S2 cos q2τ(  � R1q
2
2 − R3, (88)

S1q2 cos q2τ(  − S2 sin q2τ(  � q
3
2 − R2q2. (89)

Eliminating τ from (88) and (89) (squaring and adding),
we get

q
6
2 + q

4
2 R

2
1 − 2R2  + q

2
2 R

2
2 − 2R1R3 − S

2
1  + R

2
3 − S

2
2  � 0.

(90)

Putting q22 � σ, we have

R′(σ) ≡ σ3 + R
2
1 − 2R2 σ2 + R

2
2 − 2R1R3 − S

2
1 σ + R

2
3 − S

2
2  � 0.

(91)

)is is a cubic equation of σ. It is noted that R′(∞) �∞.
So, equation (91) has exactly one positive root if R′(0)< 0,
i.e., if R2

3 < S22.
Let σ � σ+ be a positive root of (91); then, q2 �

��σ+

√ .
Let us study the existence of Hopf bifurcation around E∗

with τ as bifurcation parameter.

Theorem 19. Suppose E∗ exists and is locally asymptotically
stable for system (2) when τ � 0. If R2

3 < S22, then there exists a
critical value τ∗ such that E∗ of system (60) is LAS when
τ ∈ [0, τ∗) and unstable when τ > τ∗, where

τ(j)
+ �

cos− 1
S2 R1σ+ − R3(  + S1 σ2+ − R2σ+  / S

2
2 + S

2
1σ+  

��σ+

√ +
2πj

��σ+

√ , j � 0, 1, 2, 3, . . . , (92)

and τ∗ � τ(0)
+ (minimum value). Also, a supercritical Hopf

bifurcation is exhibited around E∗ at τ � τ∗ provided
K″M″ − L″N″ ≠ 0, where
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Figure 1: Stable behaviour of E0(0, 0, 0) with respect to time t corresponding to the data set {r � 5.5, d1 � 6.5, d2 � 4, k � 0.2, d3 � 5, a1 � 2,
a2 � 0.3, a3 � 0.25, b1 � 1.5, c1 � 0.7, c2 � 0.5, A � 0, a � 1.2, m � 0.01}.
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Figure 2: Stable behaviour of E1(0, 0.5, 0) with respect to time t taking the parameters as {r � 5.5, d1 � 6.5, d2 � 4, k � 0.2, d3 � 5, a1 � 2,
a2 � 0.3, a3 � 0.25, b1 � 1.5, c1 � 0.7, c2 � 0.5, A � 2, a � 1.2, m � 0.01}.
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Figure 3: Stable nature of E2(8, 0, 0) with respect to time t regarding the parameters as {r � 5.5, d1 � 1.5, d2 � 0.52, k � 1.9, d3 � 2, a1 � 0.5,
a2 � 0.3, a3 � 0.25, b1 � 1.5, c1 � 0.7, c2 � 0.5, A � 0, a � 1.2, m � 0.01}.

Complexity 21



w
x

y

0

1

2

3

4

5

6

7

Po
pu

la
tio

n

20 40 60 80 1000
Time t

(a)

3.5

4

4.5

5

5.5

6

6.5

7

y-
ax

is

1 1.5 2 2.5 3 3.50.5
x-axis

(b)

Figure 4: (a) Stable nature of E3(1.20053, 0, 6.49267) with t and (b) stable phase portrait of E3(1.20053, 0, 6.49267) when k � 0.2> k∗

(threshold value) � 0.019 and other are taken as {r � 5.5, d1 � 0.4, d2 � 0.3, d3 � 0.2, a1 � 0.6, a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85,
c2 � 0.7, A � 0, a � 1.1, m � 0.4}.
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Figure 5: (a) Oscillatory behaviour of E3 with time t and (b) phase diagram (isolated closed orbit) when k � 0.01< k∗ � 0.019 and all other
parameters are fixed as in Figure 4.
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Figure 6: Bifurcation diagrams for the Hopf bifurcation around E3(1.20053, 0, 6.49267) regarding k as bifurcation parameter and others are
the same as in Figure 4. (a) Bifurcation diagram of x. (b) Bifurcation diagram of y.
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Figure 7: Stability nature of E4(0, 1.3889, 5.5417) with time t regarding the parameters as {r � 5.5, d1 � 6.5, d2 � 0.3, k � 0.2, d3 � 0.2,
a1 � 0.6, a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85, c2 � 0.7, A � 2, a � 1.1, m � 0.01}.
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Figure 8: Stability nature of E5(8.3333, 6.6667, 0) with time t regarding the parameters as {r � 5.5, d1 � 0.5, d2 � 0.3, k � 0.2, d3 � 2.2,
a1 � 0.6, a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85, c2 � 0.7, A � 2, a � 1.1, m � 0.01}.
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Figure 9: (a) Stable nature of E∗(0.385717, 0.950363, 8.34509) with time t and (b) stable phase diagram of E∗(0.385717, 0.950363, 8.34509)

when k � 0.2> k[H] � 0.025 and others are chosen as {r � 5.5, d1 � 0.4, d2 � 0.3, d3 � 0.2, a1 � 0.6, a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85,
c2 � 0.7, A � 2, a � 1.1, m � 0.4}.
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Proof. Proof is similar to that in )eorem 18. □
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Figure 10: Nature of steady state E∗ when subsidy input rate A varies from 1 to 10 and other parameters are fixed as in Figure 9.
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Figure 11: (a), (b) Oscillatory behaviour of E∗ with time and (c) isolated closed orbit around E∗ when k � 0.02< k[H] � 0.025 and all others
are fixed as in Figure 9.
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Figure 12: Bifurcation diagrams for the Hopf bifurcation around E∗(0.385717, 0.950363, 8.34509) regarding k as bifurcation parameter and
others are the same as in Figure 9. (a) Bifurcation diagram of x. (b) Bifurcation diagram of w. (c) Bifurcation diagram of y.
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Theorem 20. Suppose interior (coexistence) equilibrium
point E∗ exists and is locally asymptotically stable for system
(2) when τ � 0. Let equation (91) have exactly two positive

roots σi, i � 1, 2(σ1 > σ2) when R2
3 > S22 and

R2
2 − 2R1R3 − S21 < 0 irrespective of sign of R2

1 − 2R2. More-
over, let

τi
j �

cos− 1
S2 R1σi − R3(  + S1 σ2i − R2σi  / S

2
2 + S

2
1σi  

��σi

√ +
2πj
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√ , i � 1, 2; j � 0, 1, 2, 3 . . . ,
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k � min τi
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k � max τi

k: i � 1, 2 , k � 0, 1, 2, 3 . . . ,

(94)
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k , (95)

and there are k switches from stability to instability to sta-
bility; that is, when
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2( , . . . , τ−

k− 1, τ
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k( , (96)

then E∗ is locally asymptotically stable and when
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0( , τ+
1 , τ−

1( , τ+
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−
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(97)
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Figure 14: Impact of m on the nature of steady states E3 and E∗ when other parameters are fixed as in Figure 9. (a) Nature of steady state E3
(A� 0). (b) Nature of steady state E∗ (A ≠ 0).
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Figure 16: Bifurcation diagram around E3 with respect to coefficient of refuge parameter m when k � 0 and the remaining parameters are
fixed as in Figure 4. (a) Bifurcation diagram of x. (b) Bifurcation diagram of y.
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Figure 17: Bifurcation diagram around E∗ when k � 0 and the remaining parameters are fixed as in Figure 9. (a) Bifurcation diagram of x.
(b) Bifurcation diagram of w. (c) Bifurcation diagram of y.
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then E∗ is unstable. Further, at τ � τ ±k , k � 0, 1, 2, . . ., system
(60) experiences Hopf bifurcation provided
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k ≠ 0, for k � 0, 1, 2, . . . ,

(98)
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Proof. Proof is similar to that in )eorem 18. □

x

Unstable StableBP

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450.05
d3

7

7.5

8

8.5

9

9.5

10

Figure 18: Transcritical bifurcation diagram around E2(8.0, 0, 0) considering d3 as bifurcation parameter and others parameters are the
same as in Figure 3. Here d[TC]

3 � 0.1768.

y

Stable

BP

Unstable

5

5.5

6

6.5

7

1 1.5 20.5
d1

Figure 19: Bifurcation diagram for the transcritical bifurcation around E4(0, 1.9889, 5.5417) considering d1 as the independent variable and
others parameters are the same as in Figure 7. Here, d

[TC]
1 � 1.2238.

28 Complexity



x

StableBPUnstable

6

6.5

7

7.5

8

8.5

9

9.5

10

0.5 0.6 0.7 0.8 0.9 10.4
d3

Figure 20: Transcritical bifurcation diagram around E5(8.3333, 6.6667, 0) considering d3 as independent variable and others are the same as
in Figure 8. Here, d[TC]

3 � 0.61.

w (t)
x (t)

y (t)

0

2

4

6

8

Po
pu

la
tio

n

200 400 600 800 10000
Time t

(a)

4

5

6

7

8
y-

ax
is

0.5 1 1.5 2 2.5 3 3.50
x-axis

(b)

Figure 21: (a) Stable nature with time and (b) stable spiral of E3(1.20053, 0, 6.49267) when τ � 2< τ′∗ � 2.9272 corresponding to the data
set of Figure 4.
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Figure 22: (a, b) Oscillatory nature of x, y, respectively, and (c) stable limit cycle around E3(1.20053, 0, 6.49267) when τ � 3.5> τ′∗ �

2.9272 corresponding to the data set of Figure 4. (a) Time series of prey. (b) Time series of predator. (c) Phase diagram.
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6. Numerical Computations

Here, we have illustrated numerical simulations to verify the
analytical findings of the proposed system (2). We select a
parameter set: {r � 5.5, d1 � 6.5, d2 � 4, k � 0.2, d3 � 5,
a1 � 2, a2 � 0.3, a3 � 0.25, b1 � 1.5, c1 � 0.7, c2 � 0.5, A � 0,
a � 1.2, m � 0.01}. Under this set of parametric values, the
stable nature of E0(0, 0, 0) is shown in Figure 1. If we take
subsidy input rate A � 2 and other parametric values are
chosen from the data set of Figure 1, then the subsidy only

equilibrium E1(0, (A/d2), 0) ≡ E1(0, 0.5, 0) exists and stable
nature of E1(0, 0.5, 0) with time t is depicted in Figure 2.
Now, we choose another parameter set: {r � 5.5, d1 � 1.5,
d2 � 0.52, k � 1.9, d3 � 2, a1 � 0.5, a2 � 0.3, a3 � 0.25,
b1 � 1.5, c1 � 0.7, c2 � 0.5, A � 0, a � 1.2, m � 0.01}. Under
this set of parametric values, the prey only equilibrium
E2((r − d1)/a1, 0, 0) ≡ E2(8, 0, 0) exists and stable behaviour
of E2(8, 0, 0) is presented in Figure 3. Let us choose the
parameters as follows:

r � 5.5, d1 � 0.4, d2 � 0.3, k � 0.2, d3 � 0.2, a1 � 0.6, a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85, c2 � 0.7, a � 1.1, m � 0.4 .

(100)

If we take subsidy input rate A � 0 and other parameters
are taken from set (100), then subsidy-free equilibrium point
E3(x, 0, y) ≡ E3(1.20053, 0, 6.49267) exists and is locally
asymptotically stable. Stable time series and stable phase
diagram are represented in Figure 4. In the same manner, if
we change the value of the parameter k(� 0.01) and others
are the same as in the data set of Figure 4, then it is observed
that E3(1.20053, 0, 6.49267) is unstable accompanied with a
limit cycle (see Figure 5). From Figures 4 and 5, it can be
easily noted that there must exist a threshold value of k, say
k∗ � 0.019 for which unstable behaviour of E3 changes to
stable spiral. Since the vector fields for k< k∗ and k> k∗ are
qualitatively different, a Hopf bifurcation is created around
E3 taking k as bifurcation parameter (see Figure 6). For the
set of parameter values {r � 5.5, d1 � 6.5, d2 � 0.3, k � 0.2,
d3 � 0.2, a1 � 0.6, a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85,
c2 � 0.7, A � 2, a � 1.1, m � 0.01}, prey free equilibrium
point E4(0, w, y) ≡ E4(0, 1.3889, 5.5417) exists and is stable
(see Figure 7). Next, let us take a different set of parameters
of system (2): {r � 5.5, d1 � 0.5, d2 � 0.3, k � 0.2, d3 � 2.2,

a1 � 0.6, a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85, c2 � 0.7,
A � 2, a � 1.1, m � 0.01}. )en, predator free equilibrium
point E5((r − d1)/a1, (A/d2), 0) ≡ E5(8.3333, 6.6667, 0) is
locally asymptotically stable. )e stable behaviour with time
t is shown in Figure 8.

If we take subsidy input rate A � 2 and others are fixed as
in the data set of Figure 4, then
E∗(x∗, w∗, y∗) ≡ E∗(0.385717, 0.950363, 8.34509) exists
and is locally asymptotically stable. Figure 9 depicts the
stable behaviour of E∗. Comparing Figures 4 and 9, it is
observed that subsidy input rate A enhances the value of y

component of E∗ and decreases the value of x component of
E∗. Also, from Figure 10, it is noticed that the prey pop-
ulation is leading towards extinction and the predator
population has enormous growth (due to huge supply of
food source) at high subsidy input rate (when A ∈ (2, 10]) in
the presence of fear felt by prey population. So, it can be
concluded that it is not possible to control prey population
from extinction in presence of nonlinear prey refuge because
they cannot get enough time to protect themselves from
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Figure 23: Supercritical Hopf bifurcation diagram around E3(1.20053, 0, 6.49267) considering τ as bifurcation parameter and other
parameters are chosen from the data set of Figure 4. (a) Bifurcation diagram of prey. (b) Bifurcation diagram of predator.

30 Complexity



y (t)

w (t)
x (t)

0

2

4

6

8

10
Po

pu
la

tio
n

200 400 600 800 10000
Time t

(a)

0
0.5

1
0.6

0.8
1

1.2

7

8

9

10

x-axis
w-axis

y-
ax

is

(b)

Figure 24: (a) Stable behaviour with time and (b) stable trajectory of E∗(0.385717, 0.950363, 8.34509) when τ � 2.5 ∈ [0, τ+
0 � 4.0652)

corresponding to the data set of Figure 9.
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Figure 25: (a) Stable nature with time and (b) stable phase portrait of E∗(0.385717, 0.950363, 8.34509) when τ � 14.5 ∈ (τ−
0 � 10.3836, τ+

1 �

22.7845) corresponding to the data set of Figure 9.
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Figure 26: (a) Stable behaviour with time and (b) stable trajectory of E∗(0.385717, 0.950363, 8.34509) when τ � 39 ∈ (τ−
1 � 37.7710, τ+

2 �

41.5037) corresponding to the data set of Figure 9.
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predation risk. After extinction of prey species, predator can
easily survive with the help of resource subsidy. )us, the
parameter A has great importance in the proposed pop-
ulation dynamics.

Moreover, Figure 11 represents the unstable nature of E∗

when k � 0.02 and other parametric values are the same as in
Figure 9. So, the parameter k has an interesting nature
because there exists a threshold value k[H] � 0.025 of k for
which unstable nature (limit cycle) of E∗ switches to stable
behaviour (stable spiral) when k passes through its critical
value k[H]; i.e., the vector fields for k> k[H] and k< k[H] are
topologically different. Hence, a Hopf bifurcation occurs
around E∗ and Figure 12 depicts the corresponding bifur-
cation diagram taking k as bifurcation parameter. Also, it has
to be noted from Figure 13 that, in the absence of fear effect,
the oscillatory behaviour of E∗ changes to stable nature
when subsidy input rate A crosses its critical value A∗ � 7.9
(approximately) and since predator population has huge
growth rate at very large value of subsidy input rate A, the
prey population cannot persist in ecosystem in presence
nonlinear prey refuge. )is phenomenon is very interesting
because the prey refuge cannot control the prey population

from extinction due to enormous growth of predator when
subsidy input rate is very high. In this manner, system (2) is
not persistent.

Further, Figure 14 depicts that the nature of steady states
E3 and E∗ when m ∈ (0, 1). Here, the predator population
cannot go extinct for large value of coefficient of prey refuge
parameter. Also, Figure 15 shows the changes of predator’s
growth at the steady states E3 and E∗ for three different fear
levels k when m varies from 0 to 1. Here, also the predator
can persist for large m. From here, it may be concluded that
system (2) is always persistent for small subsidy input rate in
the presence of nonlinear prey refuge function. Again,
Figures 16 and 17, respectively, show that, in the absence of
fear effect (k � 0), the equilibria E3 and E∗ are approaching
towards stable state by excluding the existence of oscillatory
behaviour taking m as the bifurcating parameter. In this
manner, predator population also survives in ecosystem for
large coefficient of prey refuge parameter m.

A “transcritical bifurcation” (BP) occurs at d
[TC]
1 � 5.5

around E1. At this point, exactly one eigenvalue of the Ja-
cobian matrix is zero and others have negative real parts.
Bifurcation diagram 32 depicts that when d1 <d

[TC]
1 , then E1
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Figure 27: (a, b, c) Oscillatory nature of prey, subsidy, and predator, respectively, with time and (d) stable limit cycle around
E∗(0.385717, 0.950363, 8.34509) when τ � 5 ∈ (τ+

0 � 4.0652, τ−
0 � 10.3836) corresponding to the data set of Figure 9. (a) Oscillation of prey.

(b). Oscillation of subsidy. (c) Oscillation of predator. (d) Phase portrait (closed orbit).
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is unstable, and when d1 > d
[TC]
1 , then E1 is stable. Also,

Figure 18 exhibits that when d3 <d
[TC]
3 � 0.1768, then E2 is

unstable, and when d3 >d[TC]
3 � 0.1768, then E2 is stable. So,

a transcritical bifurcation is exhibited at d[TC]
3 � 0.1768

around E2. Similarly, Figures 19 and 20 depict the tran-
scritical bifurcation diagrams around equilibrium E4 and E5
taking d1(d

[TC]
1 � 1.2238) and d3(d

[TC]
3 � 0.61) as bifurca-

tion parameter, respectively.

6.1. Effect of Time-Delay on Population Dynamics. Now, let
us perform the numerical computations to validate the
analytical results of the delayed model (60). For the pa-
rameter set {r � 5.5, d1 � 0.4, d2 � 0.3, d3 � 0.2, a1 � 0.6,
a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85, c2 � 0.7, A � 0,
a � 1.1, m � 0.4}, equation (72) has exactly one positive root
0.2246 (correct up to four decimal places). So, from)eorem
18, the planer equilibrium point E3(1.20053, 0, 6.49267) is
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Figure 28: (a–c) oscillatory nature of prey, subsidy, and predator, respectively, with time and (d) stable limit cycle around
E∗(0.385717, 0.950363, 8.34509) when τ � 25 ∈ (τ+

1 � 22.7845, τ−
1 � 37.7710) corresponding to the data set of Figure 9. (a) Oscillation of

prey. (b). Oscillation of subsidy. (c) Oscillation of predator. (d) Phase portrait (closed orbit).
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Figure 29: (a–c) Oscillatory nature of prey, subsidy, and predator, respectively, with time around E∗(0.385717, 0.950363, 8.34509) when
τ � 50> τ+

2 � 41.5037 corresponding to the data set of Figure 9. (a) Oscillation of prey. (b). Oscillation of subsidy. (c) Oscillation of predator.
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Figure 30: Bifurcation diagram around E∗ considering τ as independent variable and the remaining parameters are fixed as in dataset of
Figure 9. Here, τ runs from 0 to 30. (a) Bifurcation diagram of x. (b) Bifurcation diagram of w. (c) Bifurcation diagram of y.
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Figure 31: Continued.
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stable when τ ∈ [0, τ′∗ � 2.9272) and unstable when
τ > τ′∗ � 2.9272. Stable time series and stable phase trajec-
tory of E3(1.20053, 0, 6.49267) are shown in Figure 21 when
τ � 2< τ′∗ � 2.9272. Also, Figure 22 depicts the corre-
sponding unstable behaviour of E3 when
τ � 3.5> τ′∗ � 2.9272. Moreover, Figure 23 presents the
supercritical Hopf bifurcation diagram around E3 taking τ as
bifurcation parameter.

For the parameter set {r � 5.5, d1 � 0.4, d2 � 0.3,
d3 � 0.2, a1 � 0.6, a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85,
c2 � 0.7, A � 2, a � 1.1, m � 0.4}, equation (91) has exactly
two positive roots, 0.1127 and 0.0526 (correct up to four
decimal places). )en from )eorem 20, we have calculated
τ+
0 � 4.0652, τ−

0 � 10.3836, τ+
1 � 22.7845, τ−

1 � 37.7710, and
τ+
2 � 41.5037. )e interior equilibrium E∗(0.385717,

0.950363, 8.34509) is locally asymptotically stable when
τ ∈ [0, 4.0652), (10.3836, 22.7845), (37.7710, 41.5037) and
unstable when τ ∈ (4.0652, 10.3836), (22.7845, 37.7710) and
τ > 41.5037. At τ � τ ±k , k � 0, 1 and τ+

2 , Hopf bifurcation

appears around E∗. Figures 24–26 depict the stable nature of
E∗ for τ ∈ [0, 4.0652), (10.3836, 22.7845), (37.7710, 41.50
37) respectively. Also, unstable behaviour of E∗ is presented
in Figures 27–29 for τ ∈ (4.0652, 10.3836), (22.7845, 37.77
10) and τ > τ+

2 � 41.5037, respectively. )e corresponding
bifurcation diagrams are depicted in Figures 30 and 31 .

7. Conclusion

Wehave analyzed a system for generalist predator which utilizes
more than one food source: predator-prey-subsidy model of
non-Kolmogorov form introducing nonlinear prey refuge
function and the effect of fear felt by prey population. Ourmain
interest is to find the situations such that dynamical stability and
instability appear so as tomake outmore fully how subsidymay
influence the predator and their prey. It has been shown that the
solutions of system (2) remain positively invariant always and
they are asymptotically uniformly bounded. )ese, in turn,
imply that system (2) is biologically well-behaved. Existence
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Figure 31: Bifurcation diagram around E∗ regarding τ as bifurcation parameter when τ runs from 30 to 70 and parameters are chosen from
the data set of Figure 9. (a) Bifurcation diagram of x. (b) Bifurcation diagram of w. (c) Bifurcation diagram of y.
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criteria and stable behaviour of all the biologically meaningful
equilibria have been discussed. It has to be noted that Hopf
bifurcations are exhibited around E3 (subsidy free) and E∗

(interior) of system (2) considering k as a bifurcating parameter
(see Figures 4–6, 9, 11, and 12). Also, observing Figures 6 and
12, it can be concluded that high levels of fear can stabilize
system (2) by excluding the existence of periodic solutions.
)ese phenomena are biologically significant because prey
species are aware after a certain level of fear; i.e., after a certain
level of fear, they are not affected as they are aware and show
signs of habituation.

Moreover, this work derives transcritical bifurcations
(local bifurcation of codimension 1) at the various equi-
librium points E1, E2, E4, and E5, respectively (see
Figures 18–20 and 32).

Also, we have discussed numerically the influences of
coefficient of prey refuge parameter m on the nature of the
equilibrium points E3 (zero subsidy input rate) and E∗ (fixed
small subsidy input rate) irrespective of fear level k. Noting
Figures 14–17, it is observed that both the prey and predator
species always persist in ecosystem due to continuous incre-
ment of coefficient of prey refuge. But Figures 10 and 13 depict
that, irrespective of fear level, a highly subsidized predator
should indeed drive the prey population towards extinction
regardless of whether the prey and subsidy arise in the same
habitat. )is phenomenon is ecologically meaningful because
the prey population cannot get enough time to protect
themselves from predation risk for enormous growth of
predator at high subsidy input rate. So, the prey population is
leading towards extinction, but the predator species can easily
survive in ecosystem with the help of resource subsidy. )us,
the study of system (2) is ecologically very significant.

In reality, fear effect does not instantaneously reduce the
birth of a prey population, but some time lag should be
needed to create an impact on the birth rate of the prey
population. We have considered that there is a time-delay on
the impact of fear to the birth rate of prey, from the instance it
perceives the fear of predator through any means. So, the
incorporation of time-delay makes system (60) more realistic.
It is noted that delay parameter τ has a significant role because
there exists a threshold value τ′∗ such that stable behaviour of
planer equilibrium point E3 (in the absence of subsidy input
rate) switches to oscillatory nature when τ passes through its
threshold value τ′∗; i.e., the vector fields for τ < τ′∗ and τ > τ′∗

are qualitatively different. So, system (60) exhibits a super-
critical Hopf bifurcation around E3 considering τ as bifur-
cation parameter (see Figures 21–23). Also, a rigorous study
of the stability and bifurcation of interior equilibrium point
E∗ has been performed. Our analysis describes that the delay
within a certain specified range could maintain the stable
behaviour of E∗. On the other hand, the delay could drive the
system into an unstable state. Hence, the study of the time-
delay parameter has a regulatory impact on the whole system.
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