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(e core aim of this study is to propose a novel computational procedure, namely, Elzaki transform iterative method to work out
two-dimensional nonlinear time-fractional Zakharov–Kuznetsov equation numerically. We execute the suggested iterative
procedure on two models and results are presented graphically in the form of surface plot and absolute error is compared with the
VIM and HPM to show that the method is more powerful than VIM and HPM and deduce that the offered numerical pattern is
more efficient in simulating linear and nonlinear fractional order models.

1. Introduction

Applications of fractional calculus are found in various fields
such as social science, viscoelasticity, finance, electro-
chemistry, finance, mathematical physics, signal processing,
and physics. In various prominent areas, numerous im-
portant models are being found using the fractional de-
rivatives in control, signal theory, mechanics, chemical,
acoustics, and fluid and in several other problems which
arise in engineering and applied sciences. In real world, we
cannot think that any model exits physically without frac-
tional derivatives. (ere are numerous nonlinear models in
this world, and particularly, we say it is not possible to find
out the solution analytically of nonlinear fractional models.
So, we solve the numerous nonlinear fractional models
numerically and computationally. Derivatives and integral
order fractional are of important aspects in fractional

calculus. It has already been proved bymany researchers that
fractional order generalizations of integral order models
portray the natural phenomenon in extremely proficient
manner. (e classical derivatives exhibit local nature
whereas the Caputo fractional derivatives exhibit nonlocal
nature. Such that, making use of the local derivative, we can
examine the variation in neighborhood of a point, but ap-
plying Caputo fractional derivative, we can examine changes
in the interval. Because of this differential characteristic of
Caputo fractional derivative, it is appropriate to simulate
more physical phenomenon such as vibration, ocean, dy-
namical system, climate, physics, atmospheric, earthquake,
and polymers. Due to vast applications of fractional dif-
ferential equations, many researchers, such as Senol et al. [1],
Sahoo and Ray [2], Das and Saha [3], Porogo et al. [4], Kuo
[5], HE [6–8], Liu et al. [9], Shang et al. [10], Wang and Liu
[11], Wang et al. [12], Hu and He [13], Wu and Liang [14],
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He [15–22], Liu et al. [23], Adamu and Ogenyi [24], El-Dib
[25], Filobello-Nino et al. [26], Yildrim [27–29], He [30–34],
Ahmad [35], Prakash and Kumar [36], Molliq et al. [37],
Kumar et al. [38,39], Aruna and Ravi Kanth [40], Daftardar-
Gejji et al. [41–44], Jafari et al. [45], Bhalekar and Daftardar-
Gejji [46], Munro and Parkes [47], Sakharov and Kuznetsov
[48], Kumar et al. [49, 50], Pandey and Mishra [51], Zhang
et al. [52], Podlubny [53], Laskin [54], Sun et al. [55], Singh
[56], Kumar et al. [57, 58], Yang et al. [59], Suleman et al.
[60–64], and Ahmad et al. [65, 66], studied different types of
differential equations to understand the physical phenom-
ena. (e key issues in physical sciences, such as mathe-
matical physics, are modeled with the help of nonlinear
partial differential equations. In the investigation of non-
linear physical phenomenon, fractional order plays a vital
role in finding the solution for nonlinear evolution
problems.

In this study, we introduced iterative Elzaki transform
method to study the numerical solution of two-dimensional
nonlinear Zakharov–Kuznetsov equations fractional in time.
(is iterative Elzaki transform method is a combination of
Elzaki transform and projected differential transform
method, which provides the solution in a convergent series
form.

(e Zakharov–Kuznetsov equation is a model describing
the isotropic evolution of a nonlinear ion-acoustic wave;
many phenomena reveal that the wave travels discontinu-
ously in time, and some properties hidden in a nonlinear
wave has to be observed inmultiple time scales. For example,
for a flow in a tube, the main flow property can be described
by the laminar theory, but the vortex near the boundary has
to be described in a more small time scale, and a fractional
model is needed.

In the current study, nonlinear Zakharov–Kuznetsov
equation fractional in time has been studied:
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where φ is a function ofx andy, t and α are parameter
characterizing fractional derivatives 0< α≤ 1, a, b, and c

are real constants, and p, q, and r are natural numbers that
deal with the behavior of ion-acoustic waves. (ese waves
are barely nonlinear in plasma and consist of cold ions and
hot isothermal electrons in the presence of a steady magnetic

field. (is type of nonlinear equation was in three dimen-
sions and was obtained firstly during the studies of steady
magnetized lossless plasma to illustrate weakly ion-acoustic
waves. (e vital inspiration to work on this idea is estab-
lished, a computational procedure to investigate nonlinear
fractional differential equations, which is reliable and effi-
cient. Since, their application is being found in mathematical
modeling of real-world problems.

In this study, we suggest the iterative Elzaki transform
method to numerically solve the nonlinear Zakhar-
ov–Kuznetsov equation fractional in time. Before this, the
Elzaki transform and projected differential transform
method has been used by many researchers discretely due to
their strong characteristics. We are well familiar that integral
transformmethods are very helpful in finding the solution of
linear and nonlinear fractional, ordinary, and partial dif-
ferential equations. Previously, lot of articles were found on
applications of integral transforms such as Laplace, Fourier,
Hankel, and Mellin, but hardly any articles were found on
the power series of these integral transforms such as the
Elzaki transform. Apparently, this transformation is used
not extensively so far by many researchers. (e Elzaki
transform is very powerful tool to solve linear and nonlinear
differential equation, but it has several remarkable advan-
tages over the already used integral transforms. (e most
useful characteristics of the Elzaki transform is its unity
feature, which reduces the computational time to compute
nonlinear fractional problems arising in several branches of
engineering and applied sciences. (e development of the
proposed method is based on combination of two strong
methodologies and applicable to work with different types of
fractional order linear and nonlinear ordinary and partial
differential equation. We suggest the proposed method can
minimize the work and computational time as compared to
the already used methods, while the efficiency is maintained
for the approximate results, decreasing the size amount in
improvement of the implementation of proposed technique.

2. Basic Definitions of Fractional Calculus and
Elzaki Transform

(1) On the domain of functions the Elzaki transform
can be defined as

B � g(k)|N.k1.k2 > 0.|g(k)|<Ne
|k|/kj( 

if k ∈ (− 1)
j

×(0,∞) . (2)

Given formulae can be written in the form

E[g(k)] � 

∞

0

g(uk)e
− k

dk, u ∈ − k1, k2( . (3)

(2) (e Elzaki transform is defined for the Caputo
fractional derivative by the following formula:

E D
nα
x u(x, t)  � v

− nα
E[u(x, t)] − 

m− 1

k�0
v

(− nα+k)
u

k
(0.t),

n − 1< nα≤ n.

(4)

(3) He’s fractional derivative:
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(4) Keeping the first term of g0(v), we give another
application of He’s fractional derivative in the form

D
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(6)

Note that g can be continuous but possibly not
differentiable anywhere.

(5) Variational iteration method (VIM):

D
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(6) Caputo fractional derivative can be defined in He’s
fractional derivative as

D
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(7) Riemann Liouville derivative can be defined in He’s
fractional derivative as
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(8) Local fractional derivative has attracted much at-
tention due to its simple chain rule:

g
(α)

x0(  �
dαg(x)

dxα |x�x0
� lim

x⟶x0

Δα g(x) − g x0( ( 

x − x0( 
α ,

(10)

where

Δα g(x) − g x0( (  � Γ(1 + α)Δ g(x) − g x0( ( . (11)

(9) Fractal derivative:
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kL
α
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(10) Alternatively,

Du
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(U(A) − U(B))

xA − xB( 
α . (13)

3. Description of Elzaki Transforms’
Iterative Method

Consider the functional equation u(z) � g(z) + Nu(z),
where N is the nonlinear operator defined on Banach space
A and g is any known function. (e main objective is to
acquire the solution in convergent series form. Assume
u(z) � 

α
i�0 ui(z), whereas Nu(z) nonlinear operator can be

represented as

N[u(z)] � N 
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So, we obtain
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(15)

Comparing both sides, we have

u0 � g,

u1 � N u0( ,

uk+1 � N u0 + u1+, . . . , +uk(  − N u0 + u1+, . . . , +uk− 1( ,

k � 1.2 . . . . . .

(16)

Now, consider

D
α
t u(z, t) + Mu(z, t) � g(z, t), (17)

with initial condition,

u(z, 0) � h(z), (18)

where nonlinear operator is denoted by M. Now, apply the
Elzaki transform on either sides of equation (17), we obtain

E D
α
t u(z, t) + Mu(z, t)  � E[g(z, t)]. (19)

Using the differential property of the Elzaki transform,
we obtain
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Using the inverse Elzaki transform, we obtain
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which is of the type as u � g + Nu, where
Nu � − E− 1[vαE[Mu]]; then,

u0 � G,

u1 � − E
− 1

v
α
E Mu0  ,

uk+1 � − E
− 1

v
α
E M 

i

j�0
uj − M 

i− 1

j�0
uj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦.

(22)

4. Error Analysis of Proposed Technique

In this section, the error analysis of proposed technique is
presented.

Theorem 1. If there exist a real number k, 0< k< 1, satis-
fying, ui+1(z, v)≤ kui(z, v) for each values of i. Furthermore,
if we use the truncated series 

l
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solution of u(z, t). We get the maximum truncated error:
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(24)

which completes the proof. □

5. Illustrative Examples

In this section, we execute the proposed iterative method on
fractional Zakharov–Kuznetsov equation.

Example 1. Consider the nonlinear time-fractional
Zakharov–Kuznetsov equation:
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� 0 , (25)

where 0< α< 1 and given initial condition
u(x, y, 0) � (1/3)σ(e(x+y) − e− (x+y))2, where σ is arbitrary
constant.

Exact solution for α � 1 is

u(x, y, 0) �
1
3
σ e

(x+y− σt)
− e

− (x+y− σt)
 

2
. (26)

Applying the Elzaki transform on both sides,
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1
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2
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2
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u
2

 
xyy

  . (27)

Using inverse Elzaki transform, we obtain
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(28)

Similarly, we can find the higher order terms of u(x, y, t)

using the proposed method. Finally, we get the approximate
solution u(x, y, t) denoted by equation (28) is
(x, y, 0) � 

∞
i�0 ui.

For α � 1, t � 0.5, and σ � 0.001 , illustrate absolute
error, numerical solution, and exact solution in Figures 1–3.
On comparison, we found that numerical solution obtained
by the Elzaki transform iterative method is identical to exact
solution shown in Figures 1–3. We used third order ap-
proximation to estimate the efficiency, absolute error, and
approximate solution obtained by the Elzaki transform it-
erative method. Comparison between approximate and
exact solution to obtain absolute error for specific value of x

and t with other techniques is presented in the tabular form
(Table 1).

Example 2. Consider (3, 3, 3) time-fractional Z-K equation:

D
α
t u + u
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xyy
� 0, 0< α< 1.

(29)

Initial condition:

u(x, y, 0) �
3
4
σ e

(x+y/6)
− e

− (x+y/6)
 . (30)

For α � 1, the exact solution of equation (29) is

u(x, y, t) �
3
4
σ e

(x+y− σt/6)
− e

− (x+y− σt/6)
 . (31)

Using the differential properties of Elzaki transformation
on both sides of equation (29), we obtain

u �
3
4
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(x+y− σt/6)
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  + v

α
E − u
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 . (32)

Applying the inverse Elzaki transform, we obtain

u(x, y, t) �
3
4
σ e

(x+y− σt/6)
− e

− (x+y− σt/6)
  + E

− 1
v
α
E − u
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xyy
  . (33)
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Using the Elzaki iterative method, the successive terms
are as follows:

u0(x, y, t) �
3
4
σ e

(x+y/6)
− e

− (x+y/6)
 ,

u1(x, y, t) � −
3σ2tα
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e
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−
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e

(x+y/2)
− e

− (x+y/2)
  +

51σ3tα

2048Γ(1 + α)
e

(x+y/2)
− e

− (x+y/2)
+ 3 e

(x+y/6)
− e

− (x+y/6)
  

−
27σ3tα

64Γ(1 + α)
e

(x+y/2)
− e

− (x+y/2)
  +

15σ3tα
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e
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− e

− (x+y/6)
 

+
27σ3tα
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e

(x+y/3)
− e

− (x+y/3)
− 2  e

(x+y/6)
− e

− (x+y/6)
 .

(34)
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Figure 1: Represents exact solution of Example 1 at α � 1.
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Similarly, we can find the higher order terms of u(x, y, t)

using the proposed method. Finally, we get the approximate
solution u(x, y, t) is given by (x, y, 0) � 

∞
i�0 ui.

For α � 1, t � 0.5, and σ � 0.001 , illustrate absolute
error, numerical solution, and exact solution in Figures 4–6.
On comparison, we found that numerical solution obtained
by the Elzaki transform iterative method is identical to the
exact solution shown in Figures 4–6. We used third-order
approximation to estimate the efficiency, absolute error, and
approximate solution obtained by the Elzaki transform it-
erative method. Comparison between approximate and
exact solution to obtain absolute error for different value of x

and t with other methods is presented in Table 2.

6. Results and Discussion

On comparison of numerical and exact solution in Figures 1
and 2 at α � 1, t � 0.5, and σ � 0.001 for nonlinear (2, 2, 2)
Zakharov–Kuznetsov equation fractional in time and
u strictly increases with the increase in x. Comparison shows
exceptional concurrency between numerical and exact so-
lutions. In Figure 3, we demonstrate if x increases at
y � 1, t � 1, and σ � 0.001, respectively, and at α � 0.75, 1.
u strictly increases and α � 0.25, 0.5. From Figure 4, it is
now obvious that the solution depends on fractional de-
rivative of time. In Figure 5, we evaluate exact and numerical
solution for standard case of time-fractional Zakhar-
ov–Kuznetsov. When α � 1, t � 0.5, σ � 0.001, then the
nonlinear time (3, 3, 3) time-fractional Zakharov–Kuznetsov
u increases strictly with the x increases. Figure 6 demon-
strates α at y � 1, t � 1, and σ � 0.001, numerous values of
fractional order, respectively. It is pragmatic from Figure 6
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Figure 2: Represents numerical solution of Example 1 at α � 1.
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Figure 3: Represents absolute error of Example 1 at α � 1.

Table 1: Comparison among different methods for absolute error
when α� 1 and σ � 0.001.

x t ETIM VIM HPTM NISTM

0.0

0.0 2.00×10− 8 2.00×10− 8 2.00×10− 8 2.00×10− 8

0.01 1.50×10− 7 3.99×10− 6 1.50×10− 7 1.40×10− 7

0.03 3.06×10− 7 8.01× 10− 6 3.06×10− 7 3.10×10− 7

0.05 5.55×10− 7 1.59×10− 5 5.55×10− 7 5.55×10− 7

0.07 7.66×10− 7 2.24×10− 5 7.80×10− 7 7.80×10− 7

0.10 8.12×10− 7 2.01× 10− 5 8.11× 10− 7 8.12×10− 7

0.01

0.0 1.40×10− 7 3.95×10− 6 1.40×10− 7 1.40×10− 7

0.01 3.25×10− 7 8.01× 10− 6 3.01× 10− 7 3.01× 10− 7

0.03 5.53×10− 7 9.19×10− 6 4.65×10− 7 4.65×10− 7

0.05 7.32×10− 7 2.05×10− 5 6.35×10− 7 8.11× 10− 7

0.07 8.11× 10− 7 2.11× 10− 5 8.11× 10− 7 8.11× 10− 7

0.10 9.98×10− 7 2.41× 10− 7 9.99×10− 7 9.98×10− 7

Table 1: Continued.

x t ETIM VIM HPTM NISTM

0.03

0.0 3.01 × 10− 7 7.90 × 10− 7 3.01 × 10− 7 3.01 × 10− 7

0.01 4.75 × 10− 7 1.49 × 10− 6 4.66 × 10− 7 4.66 × 10− 7

0.03 5.63 × 10− 7 1.89 × 10− 6 6.63 × 10− 7 6.63 × 10− 7

0.05 8.91 × 10− 7 2.11 × 10− 5 8.11 × 10− 7 7.55 × 10− 7

0.07 9.40 × 10− 6 2.23 × 10− 5 9.97 × 10− 7 8.11 × 10− 6

0.10 1.2 × 10− 6 2.94 × 10− 5 2.41 × 10− 6 1.2 × 10− 6

0.05

0.0 4.66 × 10− 7 1.19 × 10− 6 4.66 × 10− 7 4.66 × 10− 7

0.01 5.67 × 10− 7 1.34 × 10− 6 6.35 × 10− 7 6.35 × 10− 7

0.03 7.22 × 10− 7 1.98 × 10− 5 8.12 × 10− 7 8.12 × 10− 7

0.05 8.98 × 10− 7 2.00 × 10− 5 9.98 × 10− 7 9.98 × 10− 7

0.07 1.01 × 10− 7 2.41 × 10− 5 1.20 × 10− 7 1.20 × 10− 7

0.10 1.2 × 10− 7 3.27 × 10− 5 1.41 × 10− 7 1.41 × 10− 7

0.07

0.0 6.35 × 10− 7 1.55 × 10− 6 6.35 × 10− 7 6.35 × 10− 7

0.01 1.38 × 10− 7 1.89 × 10− 6 7.12 × 10− 7 1.38 × 10− 7

0.03 7.22 × 10− 7 2.11 × 10− 6 8.34 × 10− 7 7.22 × 10− 7

0.05 8.98 × 10− 7 8.98 × 10− 5 9.98 × 10− 7 8.98 × 10− 7

0.07 1.01 × 10− 7 3.52 × 10− 5 1.20 × 10− 6 1.01 × 10− 7

0.10 1.2 × 10− 7 2.48 × 10− 5 1.56 × 10− 6 1.2 × 10− 7

0.10

0.0 8.12 × 10− 7 2.00 × 10− 6 8.12 × 10− 7 8.12 × 10− 7

0.01 8.98 × 10− 7 2.21 × 10− 6 9.98 × 10− 7 8.98 × 10− 7

0.03 7.22 × 10− 6 2.64 × 10− 5 522 × 10− 6 7.22 × 10− 6

0.05 6.35 × 10− 6 3.27 × 10− 5 3.35 × 10− 6 6.35 × 10− 6

0.07 4.66 × 10− 6 3.77 × 10− 5 2.66 × 10− 6 4.66 × 10− 6

0.10 1.63 × 10− 6 4.11 × 10− 6 1.88 × 10− 6 1.63 × 10− 6
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that u increases strictly with the increase in x. Table 2
demonstrates that the absolute error can be neglected be-
tween the consecutive iterations because it approaches 0, and

Table 3 represents the absolute error for Example 1 between
two consecutive approximate terms at different values of α
for unknown exact solution.

Table 2: Absolute error for Example 1 between two consecutive approximate terms at different values of α for unknown exact solution.

x t α � 0.5 |φ2 − φ1| α � 0.5 |φ3 − φ2| α � 0.75 |φ2 − φ1| α � 0.5 |φ3 − φ2|

0.0 0.0 4.27 × 10− 8 6.57 × 10− 11 3.21 × 10− 8 2.97 × 10− 11

0.01 0.01 4.12 × 10− 8 8.98 × 10− 11 4.11 × 10− 8 3.98 × 10− 11

0.03 0.03 4.98 × 10− 8 7.22 × 10− 10 4.98 × 10− 8 6.88 × 10− 10

0.05 0.05 6.35 × 10− 8 1.35 × 10− 9 5.35 × 10− 8 1.65 × 10− 9

0.07 0.07 8.11 × 10− 7 4.66 × 10− 9 8.11 × 10− 7 3.33 × 10− 9

0.10 0.10 1.63 × 10− 7 7.63 × 10− 9 9.63 × 10− 7 5.98 × 10− 9

5

×10–6

4

3

φ 
(x

, y
, t

)

2

1

0
0.1

0.10.07
0.070.05

0.050.03
0.030.01 0.010 0

y x
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Fractional order α number of iteration increases. (is
shows the application of proposed method for the fractional
order.

7. Conclusion

In this study, we used ETNM to obtain the solution of
nonlinear Zakharov–Kuznetsov equation fractional in time.
We attain the solution in the convergent series form. (e
basic characterization of ETNM to find solution of nonlinear
models is without using restrictive assumption, which is the
improvement over other methods. Numerical comparison
shows that this method is more powerful than VIM and
HPM. (ese methods also work well for the unknown in-
teger order. Consequently, we deduce that the presented
numerical scheme is efficient and powerful in solving linear
and nonlinear fractional order models.
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