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In industrial applications, Stewart platform control is especially important. Because of the Stewart platform’s inherent delays and
high nonlinear behavior, a novel nonlinear model predictive controller (NMPC) and new chaotic neural network model (CNNM)
are proposed. Here, a novel NMPC based on hyper chaotic diagonal recurrent neural networks (HCDRNN-NMPC) is proposed,
in which, the HCDRNN estimates the future system’s outputs. To improve the convergence of the parameters of the HCDRNN to
better the system’s modeling, the extent of chaos is adjusted using a logistic map in the hidden layer.(e proposed scheme uses an
improved gradient method to solve the optimization problem in NMPC. (e proposed control is used to control six degrees of
freedom Stewart parallel robot with hard-nonlinearity, input constraints, and in the presence of uncertainties including external
disturbance. High prediction performance, parameters convergence, and local minima avoidance of the neural network are
guaranteed. Stability and high tracking performance are the most significant advantages of the proposed scheme.

1. Introduction

Stewart platform is a six-degree-of-freedom parallel robot
that was first introduced by Stewart in 1965 and has
potential uses in industrial contexts due to its good dy-
namics performance, high precision, and high rigidity.
(e control of the Stewart platform is quite challenging
due to the nonlinear characteristics of dynamic param-
eters and time-varying delays. Stewart platform has more
physical constraints than the serial manipulators, there-
fore solving their kinematics and dynamics problem is
more difficult, and developing an accurate model of the
Stewart platform has always been a concern for re-
searchers in this field [1].

(ere has been a lot of research done on using the neural
networks to the model nonlinear systems [2–4]. In the study
of Chen et al. [5], to control nonlinear teleoperation ma-
nipulators, an RBF-neural network-based adaptive robust
control is developed. As a result, the RBF neural network is

used to estimate the nonlinearities and model uncertainty in
system dynamics with external disturbances. To handle
parameter variations, the adaptive law is developed by
adapting the parameters of the RBF neural network online
while the nonlinear robust term is developed to deal with
estimation errors. Lu employed a NN approximator to es-
timate uncertain parametric and unknown functions in a
robotic system in the study by Lu and Liu [6], which was
subsequently used to construct an adaptive NN controller
for uncertain n-joint robotic systems with time-varying state
constraints. As outlined in [7], an adaptive global sliding
mode controller with two hidden layers is developed. (e
system nonlinearities were estimated using a new RNN with
two hidden layers. An adaptive sliding mode control scheme
based on RBFNN-based estimation of environmental pa-
rameters on the slave side is proposed in the study by Chen
et al. [8] for a multilateral telerobotic system with master-
slave manipulators. (e environment force is modeled
generally.
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Changes in the structure of the neural network during
the training, as well as the use of chaos theory in the neural
network, have been considered to cover the behavioral di-
versity of nonlinear systems. In the study by Chen and Han
and Qiao [9, 10], the number of neurons in the hidden layer
is changed online. In the study by Han et al. [11], to optimize
the NN structure, a penalty-reward method is used. Aihara
presented a chaotic NN model in the study by Aihara et al.
[12]. Hopfield NN is introduced in the study of Li et al. and
Farjami et al. [13, 14] as a chaotic RNN with a chaotic
dynamic established temporarily for searching. Reference
[15] introduces a context layer that uses chaotic mappings to
produce chaotic behavior in NN throughout the training
phase in order to prevent local minima. Reference [16]
discusses the designing of a chaotic NN by using chaotic
neurons which show chaotic behavior in some of their
activity areas. In this aspect, the behavior of the neurons and
network will change according to the changes in the bi-
furcation parameters of the neurons which have mostly been
inspired by biological studies. A logistic map is utilized as an
activation function in the study by Taherkhani et al. [17],
which iteratively generates chaotic behavior in the nodes.

In the study of Dongsu and Hongbin [18], an adaptive
sliding controller has been used to identify fixed unknown
parameters, followed by external disturbances compensation.
In the study of Ghorbani and Sani [19], a Fuzzy NMPC is
introduced to handle uncertainties and external disturbances.
In the study of Jin et al. [20], different parallel robots’ NN-based
controlling approaches have been reviewed.(e applicability of
RNN, feedforward NNs, or both for controlling parallel robots
has been discussed in detail, comparing them in terms of
controlling efficiency and complexity of calculations.

In this paper, due to the inherent delays of the Stewart
platform and the design of the controller based on future
changes, special attention is paid to the model predictive
control. To predict the system behavior over a predefined
prediction horizon, MPC approaches require a precise linear
model of the under-control system. Stewart platform is
inherently nonlinear and linear models are mostly inaccu-
rate in dynamical nonlinear systems modeling. (ese all
bring up the motivation for using nonlinear models in MPC,
leading to NMPC.

(e most significant features of NMPCs include the
following: (I) nonlinear model utilization, (II) state and
input constraints consideration, (III) online minimization of
appointed performance criteria, (IV) necessity of solving an
online optimal control problem, (V) requirement of the
system state measuring or estimation, for providing the
prediction. Among universal nonlinear models, which are
used for predicting the behavior of the system in future, the
neural networks are significantly attractive [21, 22].

(e effectiveness of the NNs in nonlinear system
identification has increased the popularity of NN-based
predictive controllers. Nikdel [23], has presented a NN-
based MPC to control a shape memory alloy-based ma-
nipulator. For nonlinear system modeling and predictive
control, a multiinput multioutput radial basis function
neural network (RBFNN) was employed in the study of Peng
et al. [24]. (e recurrent neural networks (RNN) perform

well in terms of modeling dynamical systems even in noisy
situations because they naturally incorporate dynamic as-
pects in the form of storing dynamic response of the system
through tapping delay, the RNN is utilized in NMPC in the
study of Pan and Wang [25], and the results show that the
approach converges quickly. In the study of Seyab and Cao
[26], a continuous-time RNN is utilized for the NMPC,
demonstrating the method’s appropriate performance under
various operational settings.

In this paper, we will continue this research using the
hierarchical structure of the chaotic RNNs, application to
NMPC of a complex parallel robot. (is paper’s contribu-
tions and significant innovations are as follows: (I) a new
NMPC based on hierarchical HCDRNNs is suggested to
model and regulate typical nonlinear systems with complex
dynamics. (II) To overcome the modeling issues of complex
nonlinear systems with hard nonlinearities, in the proposed
controller, the future output of the under-control system is
approximated using a proposed novel hierarchical
HCDRNN. Note that the equations of motion of such
systems are very difficult to solve by mathematical methods
and bring forth flaws such as inaccuracy and computational
expenses. (III) (e weight updating laws are modified based
on the proposed HCDRNN scheme, considering the rules
introduced in the study of Wang et al. [15]. (IV) On the one
hand, propounding the novel hierarchical structure, and on
the other hand, the use of chaos in weights updating rules,
significantly reduced the cumulative error. (V) (e extent of
chaos is regulated based on the modeling error in the
proposed HCDRNN, in order to increase the accuracy of
modeling and prediction. (VI) (e control and prediction
horizons are specified based on closed-loop control features.
(VII) Weights convergence of the proposed HCDRNN is
demonstrated and system stability is assured in terms of the
Lyapunov second law, taking into account input/output
limitations. Furthermore, the proposed controller’s perfor-
mance in the presence of external disturbance is evaluated.

(e remainder of this work is structured as follows:
Section 2 describes the suggested control strategy in detail,
Section 3 discusses the simulation results to validate the
efficiency of the proposed method, and Section 4 discusses
the final conclusions.

2. The Proposed Control Strategy

(e MPC is made up of three major components: the
predictive model, the cost function, and the optimization
method. (e predictive model forecasts the system’s future
behavior. Based on the optimization of the cost function and
the projected behavior of the system, MPC applies an ap-
propriate control input to the process. (is paper uses a
novel HCDRNN as the predictive model. Moreover, to
optimize the cost function, it uses a type of improved
gradient method which utilizes the data predicted by the
proposed HCDRNN.

Figure 1 shows a block diagram of the designed control
system in whichR(t) represents the desired trajectory for the
coordinates origin of the moving plane. In which, y(t) and
u(t) are the outputs and inputs of the Stewart platform,
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􏽢y(t + 1) shows the output predicted by the NN model.
Finally, the optimization block extracts the control signal,
u(t), by minimizing the cost function using the improved
gradient descent method.

2.1. Stewart Platform. Figure 2 shows the Stewart platform.
All parameters and variables are the same as what Tsai used
in [27].

(e dynamic model of Stewart platform is introduced in
equation (1), which is obtained based on the virtual-work
principle [27].

−Fz − J
−T
p Fp + J

T
x Fx + J

T
yF􏼐 􏼑

y
� τ, (1)

where Jp, Jx, andJy are the manipulator Jacobian matrices,
Fp is the resultant of the applied and inertia wrenches
exerted at the center of mass of the moving platform,
τ, Fx, Fy, andFz are the vectors of input torque and forces,
which are applied to the center of mass of the moving plate
from the prismatic joints of the robot. For more details about
the robot and its mathematical model, the interested reader
can see the reference [27].

2.2. $e Proposed Hyper Chaotic Diagonal Recurrent Neural
Network. In general, the structure of the NNs may be cat-
egorized into feedforward or recurrent types. Possessing the
features of having attractor dynamics and data storage ca-
pability, the RNNs are more appropriate for modeling dy-
namical systems than the feedforward ones [28]. Reference
[15] introduces the essential concepts of the chaotic diagonal
recurrent neural network (CDRNN).(is study introduces an
HCDRNN, the structure of which is depicted in Figure 3.

(e proposed HCDRNN is made up of four layers: input,
context, hidden, and output. (e hidden layer outputs with
v-step delays are routed into the context layer through a
chaotic logistic map. (e following equations describe the
dynamics of the HCDRNN.

􏽢y(t) � W
o
(t)c(t),

c(t) � F(S(t)),

S(t) � W
I
(t)X(t) +

W
D
1 (t) − a.Z1(t)􏼐 􏼑Γ1(t − 1)

⋮

W
D
n (t) − a.Zn(t)􏼐 􏼑Γn(t − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Z(t + 1)ζZ(t) (1 − Z(t)),

(2)

where X(t) ∈ Rm×1 and 􏽢y(t) ∈ R1×1 show the inputs and
output of the HCDRNN, c(t) � [c1(t), ci(t),

. . . , cn(t)]T ∈ Rn×1 represents the hidden layer’s output. A
set of Γi(t − 1) � [ci(t − 1) . . . ci(t − v)]T ∈ Rv×1 is defined
as vectors of previous steps’ values of cifori � 1, 2, . . . , n.
F(.) shows a symmetric sigmoid activation function.
Z(t) ∈ Rn×1 represents the chaotic logistic map, with Z(0) as
a positive random number with normal distribution. (e
input, context, and output weight matrices are represented
as WI(t) ∈ Rn×m, WD

i (t) ∈ R1×v(∀i � 1, 2, . . . , n), and
Wo(t) ∈ R1×n, respectively. ζ ∈ R1×1 is the chaos gain coef-
ficient. (e degree of chaos within the HCDRNN can be
adjusted by adjusting the parameter a, which ranges from 0
for a simple DRNN to close to 4 for an HCDRNN. (is fact
allows you to regulate the level of chaos within the NN by
altering the parameter a in such a manner that the reduction
in training error leads to a progressive decrease in the extent
of chaos until it reaches stability. (e value of the parameter
a’s value could be altered as follows. As the change is ex-
ponential, the NN will rapidly converge.

β(t) � −
e(t)

e(t)
+ 1,

a �

μ0 + μmax − μ0( 􏼁exp
−β(t)

Ta

􏼠 􏼡, e(t)> ε,

0, e(t)≤ ε.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

where e(t) is the samples’ absolute training prediction error.
(e prediction error, ep(t), represents the difference be-
tween the system’s actual output, y(t), and the output of
HCDRNN, 􏽢y(t).
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Figure 2: Schematic of Stewart platform [27].
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ep(t) � y(t) − 􏽢y(t). (4)

μ
max

and μo represent the maximum and minimum
threshold of the parameter a, respectively. Ta is the annealing
parameter, and ε is the prediction error threshold. To min-
imize the error function, Ep(t), the weight update laws for the
output, hidden, and context layers are based on the robust
adaptive dead zone learning algorithm reported in [30].

Ep(t) �
1
2
e2p(t). (5)

Accordingly, weights updating laws are modified here
for the proposed structure of the HCDRNN as follows [29]:

2.2.1. Output Layer. If ep(t)<Δo(t) then Wo(t + 1) and
Δo(t + 1) do not change, otherwise:

W
o
(t + 1) � W

o
(t) +

2ep(t)c(t)
T

1 − c(t)
2 , (6)

Δo(t + 1) � Δo(t) +
2e(t)

1 − c(t)
2. (7)

2.2.2. Hidden Layer. If ep(t)<ΔI(t) then WI(t + 1) and
ΔI(t + 1) do not change, otherwise:

W
I
(t + 1) � W

I
(t) +

2(t)ep(t)W
o
(t)F′(t)X(t)

1 − W
o
(t)F′(t)X(t)

2 , (8)

ΔI
(t + 1) � ΔI

(t) +
2F’min(t)e(t)

1 − W
o
(t)F′(t)X(t)

2,

(9)

where F′(t) � (1 − c2(t)) is the first derivative of the acti-
vation function in the hidden layer and Fj

′(t) �

F′(sj(t)), ∀i � 1, 2, . . . , n, and F’min(t) � min(F’j(t))≠
0,∀j, t.

2.2.3. Context Layer. If ep(t)<ΔD(t) then WD(t + 1) and
ΔD(t + 1) do not change, otherwise ∀i � 1, 2, . . . , n:

W
D
i (t + 1) � W

D
i (t) +

2F
’
min(t)ep(t)W

o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

1 − W
o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

2 ,

(10)

ΔD
(t + 1) � ΔD

(t) +
2F’min(t)e(t)

1 − W
o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

2.

(11)

In these equations, “Δo(t) ,ΔI(t),ΔD(t) are the robust
adaptive dead zones for output, hidden and context layers,
respectively.”

Remark 1. (eorems A.1, A.2, and A.3 in the appendix
prove the convergence of neural network weights.

Remark 2. As illustrated below [11], it is expected that a
multiinput single-output nonlinear autoregressive exoge-
nous (NARX) model may represent the undercontrol
nonlinear system utilizing the nu delayed system’s inputs and
ny delayed system’s outputs.

y(t) � g y(t − 1), . . . , y t − ny􏼐 􏼑, u(t − 1), . . . , u t − nu( 􏼁􏼐 􏼑.

(12)

In this equation, g(.) is an unknown function.
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Figure 3: Structure of the HCDRNN [29].

4 Complexity



Based on Remark 1 and Remark 2, an array of Hp

HCDRNNs is used to forecast the system’s behavior in a
Hp-step-ahead prediction horizon after the training and
weights updating operations. (e structure of this
HCDRNN array is depicted in Figure 4.

Remark 3. Each HCDRNN in the array, as shown in Fig-
ure 4, is trained independently, and its weight matrices differ
from those of the other HCDRNNs. As a result, the for-
mulation in Sections 2.2.1 to 2.2.3 should be changed based
on the input-output permutation for each element of the
hierarchy. Remark 1 is, however, applied to all of the
HCDRNNs in the array.

2.3. $e Proposed HCDRNN-NMPC. A finite-horizon
NMPC cost function would be the same as indicated in
reference [11].

􏽢V(t) � ρ1[R(t) − 􏽢Y(t)]
T
[R(t) − 􏽢Y(t)] + ρ2ΔU(t)

TΔU(t),

(13)

where R(t) � [r(t + 1), r(t + 2), . . . , r(t + Hp)]T is the ref-
erence signal, Y(t) � [y(t + 1), y(t + 2), . . . , y(t + Hp)]T is
the system output, and 􏽢Y(t) � [􏽢y(t + 1), 􏽢y(t + 2), . . . , 􏽢y(t +

Hp)]T is the predicted output through the prediction ho-
rizon. ΔU(t) � [Δu(t),Δu(t + 1), . . . ,Δu(t + Hu − 1)]T is

the control signal variations during the upcoming control
horizon. ρ1 and ρ2 are weighting parameters, determining
the significance of the tracking error versus the control
signal variation in the cost function, 􏽢V. Hp is prediction
horizon and Hu is control horizon (Hu <Hp). However, the
equation faces the following constraints [11]:

|Δu(t)|≤Δumax, umin ≤ u(t)≤ umax,

􏽢ymin ≤ 􏽢y(t)≤ 􏽢ymax,

r t + Hp + i􏼐 􏼑 − 􏽢y t + Hp + i􏼐 􏼑 � 0,∀i≥ 1.

(14)

(e control signal, U(t + 1) � [u(t + 1), u(t + 2), . . . ,

u(t + Hu)]T, based on the improved gradient method is
given below [11, 31]:

U(t + 1) � U(t) + ΔU(t) � U(t) − η
z 􏽢V(t)

zU(t)
, (15)

ΔU(t) �
ηρ1

1 + ηρ2

z􏽢Y(t)

zU(t)
􏼠 􏼡

T

(R(t) − 􏽢Y(t)), (16)

where η> 0 represents the learning rate of the control input
sequence and z􏽢Y(t)/zU(t) represents the Jacobian matrix, J,
which is computed as a matrix with the dimension of
Hp × Hu.

z􏽢Y(t)

zU(t)
�

z􏽢y(t + 1)

zu(t)
0 0 · · · 0

z􏽢y(t + 2)

zu(t)

z􏽢y(t + 2)

zu(t + 1)
0 · · · 0

⋮ ⋮ ⋮ ⋱ ⋮

z􏽢y t + Hu( 􏼁

zu(t)

z􏽢y t + Hu( 􏼁

zu(t + 1)

z􏽢y t + Hu( 􏼁

zu(t + 2)
· · ·

z􏽢y t + Hp􏼐 􏼑

zu t + Hu − 1( 􏼁

⋮ ⋮ ⋮ ⋮ ⋮

z􏽢y t + Hp􏼐 􏼑

zu(t)

z􏽢y t + Hp􏼐 􏼑

zu(t + 1)

z􏽢y t + Hp􏼐 􏼑

zu(t + 2)
· · ·

z􏽢y t + Hp􏼐 􏼑

zu t + Hu − 1( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hp×Hu

. (17)

(e Jacobian matrix, J � z􏽢Y(t)/zU(t), can be computed
based on the chain rule.
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z􏽢y(t + i)

zu(t + j)
� W

o
(t + i)

zc(t + i)

zu(t + j)
,∀i � 1, 2, . . . , Hp,∀j � 0, 1, . . . , Hu − 1( 􏼁,

z􏽢y(t + i)

zu(t + j)
� F′(t + i) W

I
(t + i)

zX(t + i)

zu(t + j)
+

W
D
1 (t + i) − a.Z1(t + i)􏼐 􏼑

zΓ1(t + i − 1)

zu(t + j)

⋮

W
D
n (t + i) − a.Zn(t + i)􏼐 􏼑

zΓn(t + i − 1)

zu(t + j)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(18)

in which, F′(t + i) � zF(S(t + i))/zS(t + j) � (1 − c2(t))

and zc(t + i)/zu(t + j) can be computed recurrently
knowing that if j � i then zc(t + i)/zu(t + j) � 0. It means
that the computations should be completed from zc(t +

i)/zu(t + i − 1) to zc(t + i)/zu(t + j). Moreover, consider-
ing the structure of X(t + i), the zX(t + i)/zu(t + j) can be
calculated recurrently based on equation (26).

Algorithm 1 summarizes the proposed HCDRNN-
NMPC scheme [29].

In steps 4 and 5 of the proposed algorithm, as the
number of system inputs increases, the dimensions of the
Jacobian matrix increase, and the estimation error increases
due to the discretizations performed in calculating the de-
rivatives. Choosing the appropriate sampling, time is used as
a solution to reduce the estimation error in this paper.

2.3.1. Stability Analysis for HCDRNN-NMPC. (e stability
of NMPC-HCDRNN is demonstrated by considering the
convergence of the model, which is proved in Remark 1 and
Appendix, and the fact that the neural network training is
done offline.

Theorem 1. Consider the constrained finite-horizon optimal
control presented by (17) and (18). Lyapunov’s second law
ensures the asymptotic stability of the proposed controller due
to the limited input and output amplitudes and the semi-
definite negative _􏽢V(t) if the neural network weights’ con-
vergence is proven and the predictive control law is as given in
equations (19) and (20).

Proof. (e constrained finite-horizon optimal control given
in equation (13) can be rewritten as in (19) by rewriting the
cost function along the control horizon:

􏽢V(t) � ρ1 􏽘

Hp

i�1
r[(t + i) − 􏽢y(t + i)]

2
+ ρ2 􏽘

Hu

i�1
Δu2

(t + i − 1).

(19)

U(t) � [u(t), u(t + 1), . . . , u(t + Hu − 1)]T is the opti-
mal control sequence obtained at time t using the optimi-
zation algorithm. If Us(t + 1) is the suboptimal control
sequence extracted from U(t) and considered as
Us(t + 1) � [u(t + 1), . . . , u(t + Hu − 1)]T, the suboptimal
cost function 􏽢Vs(t + 1) is defined as follows:
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ŷ(t + Hp - 1)
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Figure 4: Prediction of Hp-step-ahead outputs by the hierarchical HCDRNN [29].
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􏽢V(t + 1) � ρ1 􏽘

Hp+1

i�1
[r(t + i) − 􏽢y(t + i)]

2
+ ρ2 􏽘

Hu

i�1
Δu2

(t + i − 1).

(20)

Using the difference of 􏽢V(t) and 􏽢Vs(t + 1), and assuming
that e(t + i) � r(t + i) − 􏽢y(t + i), equation (21) is written as
follows:

􏽢Vs(t + 1) − 􏽢V(t) � ρ1 􏽘

Hp+1

i�1
e
2
(t + i) + ρ2 􏽘

Hu

i�1
Δu2

(t + i − 1)⎛⎝ ⎞⎠ − ρ1 􏽘

Hp

i�1
e
2
(t + i) + ρ2 􏽘

Hu

i�1
Δu2

(t + i − 1)⎛⎝ ⎞⎠,

� ρ1 e
2

t + Hp + 1􏼐 􏼑 − e
2
(t + 1)􏼐 􏼑 − ρ2Δu

2
(t)≤ 0.

(21)

(erefore, if U(t + 1) is the optimal solution of the
optimization problem time (t + 1) using the control law
described in equation (16), it outperforms Us(t + 1), which
is suboptimal and its cost function is smaller according to
equation (22).

􏽢V(t + 1) − V(t)≤ 􏽢Vs(t + 1) − 􏽢V(t)≤ 0. (22)

Hence, the proof is complete. □

3. Simulation

To control the Stewart platform, HCDRNN-NMPC is used
such that the upper moving plane of the platform tracks the
desired trajectory. (e simulations have been carried out by
MATLAB software, 2015 version. To evaluate the efficiency
of the control method against external disturbances, the
effects of the disturbance applied to the force on one of the
links of Stewart platforms have been investigated.

3.1.NeuralNetwork-BasedModel. To predict the behavior of
the Stewart platform, input-output data of the system under
different operating configurations are required. To generate
the training data, the inverse dynamics of the Stewart
platform are solved for several random desired trajectories,
based on the algorithm presented by [27] and the parameters
introduced by [32]. (e applied sampling time is ts � 0.01.

3.1.1. Training. (e general structure of the HCDRNN is
designed in such a way that its inputs vector, X(t), includes
the previous position of the moving plane, px(t), and the
forces exerted on each link, Fi(t), as in equation (23), and its
output vector, y(t), includes the position of the moving
plane as in equation (24).

X(t) � F1(t), . . . , F1 t − nu( 􏼁, . . . , F6(t), . . . , F6 t − nu( 􏼁, px(t − 1), . . . , px t − ny􏼐 􏼑􏽨 􏽩, (23)

y(t) � Px(t). (24)

(e number of elements of X(t) determines the number
of input layer neurons. Accordingly, thirteen input nodes
have been considered for six links. As the network’s output
comprises three positions and three directions, separate
networks should be considered for each output and,
therefore, there would be six MISO networks in our case. For
the aforementioned networks, a supervised learning scheme

is considered to train the networks with regard to the inputs
and outputs. Divided into two sets, 70% of the data were
chosen for training and 30% of them for testing. At the
beginning of the training of the HCDRNNs, the weight
matrices are randomly valued. Tangent sigmoid is selected as
the activation function, and the input-output data are
normalized.(e values for the NN parameters are defined as

Step 1. Determine Hp and Hu, such that Hp >Hu.
Step 2. Get R(t), U(t), and X(t) in each control step, such that:

(i) R(t) � [r(t + 1), . . . , r(t + Hp)]T is the desired values for Hp next steps.
(ii) U(t) � [u(t), . . . , u(t + Hu − 1)]T is the last optimal sequence of the predicted control signal.
(iii) X(t) is the delayed input-output vector of nonlinear system.

Step 3. Predict the outputs of the system for Hp next steps by the proposed HCDRNN.
Step 4. Calculate J by equation (17).
Step 5. Compute ΔU(t) and U(t + 1) by equations (15) and (16), respectively.
Step 6. Apply U(t + 1) as the first element of vector U(t + 1) to the nonlinear system, and go back to Step 2 for the next sample
time.

ALGORITHM 1: Details of HCDRNN-NMPC scheme.
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ε � 0.01, Ta � 0.07, μmax � 4, μ0 � 0, μo � μI � μD � 0.01,
ny � 2, and nu � 3 as well as WI,WD,Wo,ΔI,ΔD,Δo are
randomly initialized.

(e neural network training is done offline, but during
the training, the coefficient a is adjusted online in such a way
that the behavior of the Stewart platform is covered by
creating chaos in the neural network structure, and as the
training error decreases, its value changes such that the
neural network’s chaos is decreased. Figure 5 shows the
chaotic property of the HCDRNN.

(e impact of the number of hidden layer neurons on the
approximation performance is studied. Table 1 reports the
results of this study for 7 to 43 neurons, where their per-
formances are compared in terms of training time and MSE.

As shown in Table 1, the training time increases with an
increase in the number of neurons in the hidden layer.
Considering the fact that theMSE value is proper when there
are 7 neurons in the hidden layer, it would be more ap-
propriate to use 7 neurons in the hidden layer for the
prediction of the Stewart platform.

For a sinusoidal trajectory, the results of one-step-ahead,
two-step-ahead, and three-step-ahead system behavior
predictions are investigated. Table 2 reports the MSE of the
prediction error.

Table 2 indicates a reliable prediction by the
HCDRNN without any accumulated error. As a signif-
icant conclusion, it is shown that the use of chaotic
context layer, besides the use of different weight matrices
that were trained for each step, in the proposed hier-
archical structure, overcome the error accumulation in
n-step-ahead predictions.

3.2. $e Results of HCDRNN-NMPC. In this paper, the
values for the parameters are considered as follows: Hp � 3,
Hu � 2, ρ1 � 0.8, ρ2 � 0.2, and η � 0.01. (e performance of
the NMPC is compared with the MPC, which both are
evaluated by the integral absolute error (IAE).

IAE �
1
T

􏽘

T

t�1
|R(t) − Y(t)|, (25)

where T shows the total number of samples. Some research
studies are using other metrics like mean square error (MSE)
and/or integral square error (ISE). Each of these metrics has
drawbacks that led us to use of IAE instead. Metrics that use
error squares magnify the errors greater than one andminify
the errors less than one, which is not precise in robotics
motion errors. Input and output signals are bounded in the
intervals mentioned in equation (26).

0≤Fi(t)≤ 16, −1.7≤Px(t)≤ 1.2. (26)

3.2.1. Sample Trajectories. (e performance of the controller
to track the three paths demonstrated in sections (1), (2), and
(3).

(1) A sample trajectory has been designed, which is
intended to be tracked with the undercontrol Stewart

platform. Trying to calculate the control signal ap-
plied to link 1, assuming that the forces exerted on
other links remain fixed.

P(t) �

Px(t)

Py(t)

Pz(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

−1.5 + 0.2 sin(ωt)

0.2 sin(ωt)

1.0 + 0.2 sin(ωt)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (27)

whereω � 3 and 0≤ωt≤ 2π. Considering the desired
trajectory for the robot’s movement and the actual
trajectory on x, y, z axis, tracking error varies within
the range of [−5.625e − 3, 0.015e − 3] for all three
axes which are neglectable.
Figure 6 shows the three-dimensional path of the top
plane of the Stewart platform. As found in Figure 6,
the NMPC has extracted the control signal in a way
that the Stewart platform’s output tracks the refer-
ence signal along three axes well. Moreover, Figure 7
shows the force exerted to link 1.
As it is shown in Figure 7, the control signal applied
to link 1 provides for the limit needed for the forces
exerted in each link.

(2) (e second sample trajectory sets out to track the
following two-frequency trajectory.

ϕx � ϕy � ϕz � 0,

P(t) �

Px(t)

Py(t)

Pz(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

0.2sinω1t + 0.4sinω2t

0.2sinω1t

1.0 + 0.2sinω2t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m,ω1

� 3,ω2 � 2, 0≤ω1t,ω2t≤ 2.

(28)

Considering the desired trajectory for the robot’s
movement and the actual trajectory on x, y, z axis,
tracking error range on x, y, z axis, is reported in
Table 3.
Taking Table 3 into consideration, it can be con-
cluded that the tracking error varies within the range
of [−1.01 2.03]∗ e − 8 for all three axes which are
neglectable.
Figure 8 shows the three-dimensional path of the top
plane of the Stewart platform, and Figure 9 shows the
force exerted to link 1.
As found in Figure 9, the NMPC has extracted the
control signal in a way that the Stewart platform’s
output tracks the reference signal along three axes
well. As found in Figure 9, the control signal applied
to link 1 provides for the limit needed for the forces
exerted in each link, assuming that the positions of
other links remain unchanged.

(3) In the third sample path, which is similar to the path
presented in the reference [33], to evaluate the
performance of the proposed controller in tracking
the paths with rapid changes, the following two-level
step path has been examined.
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ϕx � ϕy � ϕz � 0,

P(t) �

Px(t)

Py(t)

Pz(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

3.5(u(t) − u(t − 5))

3(u(t) − u(t − 1))

5.3(u(t) − u(t − 7))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
cm,

0≤Px(t), Py(t), Pz(t)≤ , 0≤Fi(t)≤ 6.

(29)

Considering the desired trajectory for the robot’s
movement and the actual trajectory on x, y, z axis, tracking
error range on x, y, z axis is reported in Table 4. (e three-
dimensional path traveled by the Stewart platform is shown
in Figure 10. (e force exerted to link 1 is shown in
Figure 11.

As shown in Figures 10 and 11, due to intensive changes
in the desired path, the controller made a control effort to
extract the control signal in order to reach the desired path,
and after reaching the desired path, the control signal did not
change. (e transient phase of the response is well observed
in this optimal path, and as reported in Table 4, the tracking
error in tracking the reference signal for x, y, and z axes
changes between [−5.1–5.5], which is desired considering
the severe changes of the reference and the control signal
applied to link 1 satisfies the applied force’s constraint.

3.3. External Disturbance Rejection. (e effect of external
disturbance is assessed here, in the form of a pulse signal
with 0.4N amplitude, during 1 to 1.4 seconds, applying to
another link’s force. (e proposed control performance is
shown in Figure 12.

Figure 13 demonstrated the tracking error and control
signal in the presence of external disturbance.

By applying disturbance, the output is changed and a
control effort is made to enhance the tracking. Some ad-
vantage of the proposed method can be the low number of

oscillations in disturbance rejection, the smaller overshoot
and undershoot than the initial disturbance magnitude,
resulting in a more uniform output, and a significant im-
provement that is the smaller and more smooth control
signal.
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Figure 5: Traces of the training (a) traces of the training mean square error (MSE) and (b) traces of the coefficient a.

Table 1: Comparison of prediction performance versus the
number of hidden layer neurons.

No. of hidden layer neurons Training MSE Training time (sec)
7 9.7927e − 5 658.28
27 9.6511e − 8 978.12
43 9.4508e − 5 1804.05
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Figure 6: Tracking the three- dimensional path.
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Figure 7: Force exerted to link 1 (control signal).
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3.4. Simulation Results Analysis. (e nonlinear model pre-
dictive controller requires high computational to extract the
control signal, but because of the system’s nonlinear model,
it can achieve the desired control performance with mini-
mum error. Because the Stewart platform has unknown
dynamics, the NN was used to model it. Chaos theory was
used in NN to reduce and speed up control calculations,
which accelerates the learning dynamics and thus solves the
problem of predictive control being slow. Furthermore,
involvement with local minimums is avoided by employing
chaos in the neural network and increasing the order of
chaos by employing more chaotic functions in the hidden
layer, resulting in hyper-chaos in the proposed neural
network. Table 5 compares the prediction performance of
the DRNN and proposed HCDRNN.

Table 6 compares the performance of the proposed
control with the proportional-integral-derivative (PID)
control [34], the sliding mode control [18], and the fuzzy
NMPC [19] and DRNN-NMPC. (e comparison results are
recorded in terms of IAE.

(e proposed method provides a minor value of IAE
compared with the other method.

PID controllers need a set of big gains for the propor-
tional, integral, and derivative coefficients, and this makes

the control signal highly sensitive to external disturbance so
that the control signal rises to a large value with the lowest
level of disturbance. However, the control inputs are
bounded for factual reasons, thus, the control signal com-
puted through the PID controller would not be applicable in
practice.

As demonstrated in Figure 13(a), when the external
disturbance is applied to the robot, tracking error has a small
value in the range of [−6e − 4, −3e − 3], which is proof of the
proposed method’s high performance.

Table 2: MSE of prediction error for a sinusoidal trajectory.

No. of step ahead One-step-ahead Two-step-ahead (ree-step-ahead
MSE of prediction error 8.9321e − 8 1.2463e − 6 9.7927e − 5
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Figure 8: Tracking the three-dimensional path.
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Figure 9: Force exerted to link 1 (control signal).

Table 3: Tracking error range on x, y, z axis for two-frequency trajectory.

Axis x y z
Tracking error range [−1.01 2.03]∗ e − 8 [−1.01 1.88]∗ e − 6 [−0.79 1.05]∗ e − 5
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Figure 10: Tracking the three-dimensional path.
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Figure 11: Force exerted to link 1 (control signal).

Table 4: Tracking error range on x, y, z axis for two-level step trajectory.

Axis x y z
Tracking error range [−3.2 3.5] [−1.8 3] [−5.1 5.5]

Desired
Actual
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Figure 12: Disturbance rejection.
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4. Conclusion

(is paper proposed a novel hierarchical HCDRNN-NMPC
for modeling and control of complex nonlinear dynamical
systems. Numerical simulations on the control of a Stewart
platform are prepared to demonstrate the performance of
the proposed strategy in tracking and external disturbance
rejection. One of the most essential aspects of the suggested
method is its hierarchical HCDRNN’s ability to accurately
estimate the system’s output via a forward-moving window.
(e hierarchical structure enables the proposed mechanism
to precisely adjust each HCDRNN for predicting the outputs
of the system for only one specified sample ahead. (is
enhances the ability of the predictive model in adapting with
variations of the complex dynamical systems. (is paper
provides the adaptive weight update rules for the proposed
v-step delayed HCDRNN. Moreover, for determining the
sequence of the control signal, an enhanced gradient opti-
mization method is used. Results of the provided simula-
tions and comparisons indicate superior performance of the
proposed control system in tracking and removing the effect
of the external disturbances. In future research studies, the
effects of merging HCDRNNs instead of the hierarchical

structure will be investigated, which will last to create a deep
HCDRNN structure. (e suggested controller’s robustness
against various forms of disturbances will also be tested.

Appendix

(e adaptive dead zone vector method described in [15] was
used to demonstrate the convergence of neural network
weights for each layer. As a result, the relationship between
neural network prediction error, output error, and bounded
disturbance of each layer has been used.

A Proof of Weight Convergence for the
Output Layer

In order to evaluate the convergence of the weights of the
output layer, the predictive error of the neural network,
ep(t), is defined as in the following equation (A.1).

ep(t) � y(t) − 􏽢y(t) + v(t),

� W
o∗

(t)c
∗
(t) − W

o
(t)c(t) + v

o
(t),

� W
o∗

(t)c
∗
(t) − W

o∗
c(t) + W

o∗
c(t) − W

o
(t)c(t) + v

o
(t),

(A1)
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Figure 13: (a) Tracking error and (b) extracted control signal in the presence of external disturbance.

Table 5: Prediction performance of the DRNN and proposed HCDRNN.

NN DRNN HCDRNN
Prediction error Training Test Training Test
Step1 1.7545e − 6 4.2148e − 5 3.8214e − 8 1.1284e − 7
Step2 7.2561e − 4 6.7316e − 3 9.1852e − 8 5.6371e − 7
Step3 9.1027e − 1 1.4111e − 1 6.2379e − 7 9.0141e − 7

Table 6: IAE comparison.

Control approach PID Sliding mode control Fuzzy NMPC DRNN-NMPC (e proposed method
IAE 3.2e − 4 2.8e − 5 4.6e − 6 1.9e − 3 2.9e − 8
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in which y(t) is the desired output, 􏽢y(t) is the output
predicted by the neural network, and v(t) is the noise. Wo∗

and c∗ are the optimal or suboptimal values of the output
layer’s weight and output of the hidden layer of the neural
network. Equation (A.2) describes the relationship between
the predictive error of the neural network, error of the
output layer eo(t), and bounded disturbance of the output
layer 􏽥vo(t).

ep(t) � W
o∗

(t)c
∗
(t) − W

o∗
c(t) + v

o
(t)( 􏼁

− W
o
(t)c(t) + W

o∗
c(t)( 􏼁,

ep(t) � 􏽥v
o
(t) − e

o
(t),

(A2)

TheoremA.1. Assume that the dead zone vector is defined as
Δo � [Δo

1 . . .Δo
k . . .Δo

h]T in which Δ0k(t)≥max(|􏽥vo
k(t)|). If the

weights of the neural network and the dead zone vector is
updated such that equation (A.3) is satisfied:

% lim
t⟶∞

sup 􏽥W
o
(t + 1) − 􏽥W

o
(t) − 􏽥Δo

(t + 1) − 􏽥Δo
(t)􏼐 􏼑􏼐 􏼑≤ 0.

(A3)

(en, the neural network’s error is limited as follows and
the weight of the output layer converges.

lim
t⟶∞

supep(t)≤Δo∗
(A4)

􏽥W
o
(t) � Wo(t) − Wo∗, 􏽥Δo

(t) � Δo(t) − Δo∗ , Δo∗ , and
Wo∗ are the optimal or suboptimal value of the dead zone
vector and weight of the output layer.

Proof. By using 􏽥W
o
(t) � Wo(t) − Wo∗ and substituting

equation (10) and equation (11) in equation (A.3), we have:

� lim
t⟶∞

4ep(t)c(t) W
o
(t) − W

o∗
( 􏼁

1 − c(t)
2 +

2ep(t)c(t)

1 − c(t)2

2

−
4e(t)

1 − c(t)
2
􏽥Δo

(t) −
2e(t)

1 − c(t)2

2
⎛⎝ ⎞⎠. (A5)

By substituting equation (A.2) in equation (A.5), we
have:

� lim
t⟶∞

􏽘

h

k�1

4epk(t) 􏽥v
o
k(t) − Δo

k(t) − epk(t)􏼐 􏼑

1 − c(t)
2 +

2ep(t)c(t)

1 − c(t)2

2

+
4e(t)

1 − c(t)
2Δ

o∗
−

2e(t)

1 − c(t)2

2
⎛⎝ ⎞⎠. (A6)

Since Δo
k(t)> 􏽥vo

k(t), the following inequality can be used.

􏽘

h

k�1

4ep k(t) 􏽥v
o
k(t) − Δo

k(t) − ep k(t)􏼐 􏼑

1 − c(t)
2 +

2ep(t)c(t)

1 − c(t)2

2

+
4e(t)

1 − c(t)
2Δ

o∗
−

2e(t)

1 − c(t)2

2
⎛⎝ ⎞⎠,

≤ 􏽘
h

k�1

−4e
2
pk

(t)

1 − c(t)
2 +

2ep(t)c(t)

1 − c(t)2

2

+
4e(t)

1 − c(t)
2Δ

o∗
−

2e(t)

1 − c(t)2

2
⎛⎝ ⎞⎠,

≤
−4

1 − c(t)
2ep(t)

2
+
2ep(t)c(t)

1 − c(t)2

2

+
4

1 − c(t)
2 e(t)Δo∗

−
2e(t)

1 − c(t)2

2
⎛⎝ ⎞⎠.

(A7)

Hence: lim
t⟶∞

−4
1 − c(t)

2ep(t)
2

+
4

1 − c(t)
2e(t)Δo∗

􏼠

−
2

1 − c(t)2
􏼠 􏼡

2

ep(t)
2 1 − c(t)

2
􏼐 􏼑⎞⎠,

≤ − 4 lim
t⟶∞

1
1 − c(t)

2ep(t) ep(t) − Δo∗
􏼐 􏼑􏼠 􏼡≤ 0.

(A8)

Since the above equation is limited and smaller than
zero, lim

t⟶∞
supep(t)≤Δo∗ . □
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B Proof of Weight Convergence for the
Hidden Layer

Similar to the proof in Section A, the predictive error of the
HCDRNN, ep(t), is defined as in equation (B.1).

ep(t) � y(t) − 􏽢y(t) + v(t),

� W
o∗

(t)F∗(S(t)) − W
o
(t)F(S(t)) + v

I
(t),

� W
o∗

(t)F∗(S(t)) − W
o
(t)F∗ + W

o
(t)F∗

− W
o
(t)F(S(t)) + v

I
(t).

(B1)

F∗ is the activation function. Equation (B.2) describes the
relationship between the predictive error of the neural
network, error of the hidden layer eI(t) , and bounded
disturbance of the hidden layer 􏽥vI(t).

ep(t) � 􏽥v
I
(t) − e

I
(t),

􏽥v
I
(t) � W

o∗
(t)F∗(S(t)) − W

o
(t)F∗ + v

I
(t) � 􏽘

n

j�1
􏽥v

I
j(t),

e
I
(t) � W

o
(t)F(S(t)) − W

o
(t)F∗

� W
o
(t)F W

I
(t)X(t) +

W
D
1 (t) − a.Z1(t)􏼐 􏼑Γ1(t − 1)

⋮

W
D
n (t) − a.Zn(t)􏼐 􏼑Γn(t − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− W
o
(t)F W

I
(t)X(t) +

W
D∗
1 (t) − a.Z1(t)􏼐 􏼑Γ1(t − 1)

⋮

W
D∗
n (t) − a.Zn(t)􏼐 􏼑Γn(t − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(B2)

TheoremA.2. Assume that the dead zone vector is defined as
ΔI � [ΔI

1 . . .ΔI
j . . .ΔI

h]T in which ΔI
j(t)≥F′(t)/ εI

min(t)max
(|􏽥vI

j(t)|)> 0 and εI
min(t) � min(εI(t))≠ 0. If the weights of

the neural network and the dead zone vector is updated such
that equation (B.3) is satisfied.

% lim
t⟶∞

sup W
I
i (t + 1) − 􏽥W

I

i (t) − 􏽥ΔI

i (t + 1) − 􏽥ΔI

i (t)􏼒 􏼓􏼒 􏼓≤ 0.

(B3)

(en, the neural network’s error is limited as follows and
the weight of the hidden layer converges.

lim
t⟶∞

supep(t)≤ΔI∗
i , (B4)

􏽥W
I
(t) � WI(t) − WI∗, 􏽥ΔI

i (t) � ΔI
i (t) − ΔI∗

i , ΔI∗
i , and

WI∗ are the optimal or suboptimal value of the dead zone
vector and weight of the hidden layer.

Proof. By substituting equation (12) and equation (13) in
equation (B.3), we have:

� lim
t⟶∞

4F
’
min(t)ep(t)W

o
(t) 􏽥W

I
(t)F′(t)X(t)

1 − W
o
(t)F′(t)X(t)

2
⎛⎝ ⎞⎠

+
2F’

min(t)ep(t)Wo(t)F′(t)X(t)

1 − Wo(t)F′(t)X(t)2

2

−
4F’min(t)e(t)􏽥ΔI

(t)

1 − W
o
(t)F′(t)X(t)

2 −
2F’min(t)e(t)

1 − Wo(t)F′(t)X(t)2

2

.

(B5)

Since WI(t) is the inner part of the activation function F,
an approximation of F regarding WI(t) is considered as the
product of F and WI(t). (us,

e
I
(t) � W

o
(t)εI

(t) 􏽥W
I
(t)X(t)

� 􏽘

n

j

εI
j(t)W

o
j(t) 􏽥W

I

j(t)Xj(t),

� 􏽘
n

j

e
I
j,

(B6)

where εI(t) � [εI
1(t),εI

2(t), . . . ,εI
j(t), . . . ,εI

n(t)] and 0≤εI
j≤1.

Hence,
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� lim
t⟶∞

4F
’
min(t)ep(t)F(t)εD− 1

j (t)

1 − W
o
(t)F′(t)X(t)

2
⎛⎝

+
2F’

min(t)ep(t)Wo
i (t)F′(t)X(t)

1 − Wo
i (t)F′(t)X(t)2

2

−
4F

’
min(t)e(t)􏽥ΔI

(t)

1 − W
o
i (t)F′(t)X(t)

2 −
2F’

min(t)e(t)

1 − Wo
i (t)F′(t)X(t)2

2
⎞⎠.

(B7)

By substituting eI
j(t) � 􏽥vI

j(t) − ep(t)/n and ΔI(t) �

ΔI(t)− ΔI∗ in equation (B.7), and considering ΔI
j(t)≥

F′(t)/εI
min(t)max(|􏽥vI

j(t)|)> 0 and εI
min(t) � min(εI(t))≠ 0,

we have,

􏽘

n

j�1

4F
’
min(t)ep(t) 􏽥v

I
j(t) − ep(t)/n􏼐 􏼑􏼐 􏼑F′(t)εI−1

(t)

1 − W
o
(t)F′(t)X(t)

2

+
2F’

min(t)ep(t)Wo(t)F′(t)X(t)

1 − Wo(t)F′(t)X(t)2

2

,

−
4F

’
min(t)e(t) ΔI

(t) − ΔI∗
􏼐 􏼑

1 − W
o
(t)F′(t)X(t)

2 −
2F’

min(t)e(t)

1 − Wo(t)F′(t)X(t)2

2

,

≤ 􏽘
n

j�1

−4F
’
min(t)ep(t)

1 − W
o
(t)F′(t)X(t)

2

F′(t)ep(t)

nεI
(t)

−
F′(t)􏽥v

I
j(t)

εI
(t)

+ ΔI
j(t)⎡⎢⎣ ⎤⎥⎦,

+
2F’

min(t)ep(t)Wo(t)F′(t)X(t)

1 − Wo(t)F′(t)X(t)2

2

+
4F

’
min(t)e(t) ΔI∗

􏼐 􏼑

1 − W
o
(t)F′(t)X(t)

2

−
2F’

min(t)e(t)

1 − Wo(t)F′(t)X(t)2

2

,

≤
−4F

’
min(t)

1 − W
o
(t)F′(t)X(t)

2ep(t)
2

+
4F

’
min(t)

1 − W
o
(t)F′(t)X(t)

2 e(t) ΔI∗
􏼐 􏼑

2
,

−
−4F

’
min(t)

1 − W
o
(t)F′(t)X(t)

2
􏼐 􏼑

2ep(t)
2 1 − W

o
(t)F′(t)X(t)

2
􏼐 􏼑,

�
−4F

’
min(t)

1 − W
o
(t)F′(t)X(t)

2ep(t) ep(t) − ΔI∗
+ ep(t)􏼐 􏼑.

(B8)

Hence,

lim
t⟶∞

−4F
’
min(t)

1 − W
o
(t)F′(t)X(t)

2ep(t) ep(t) − ΔI∗
+ ep(t)􏼐 􏼑􏼠 􏼡,

≤ − 4 lim
t⟶∞

F
’
min(t)

1 − W
o
(t)F′(t)X(t)

2ep(t) ep(t) − ΔI∗
􏼐 􏼑􏼠 􏼡≤ 0.

(B9)

Since the above equation is limited and smaller than
zero, lim

t⟶∞
supep(t)≤ΔI∗

i . □

C Proof of Weight Convergence for the
Contex Layer

Similar to the proof in Sections A and B, the predictive error
of the HCDRNN, ep(t), is defined as in the following
equation :

ep(t) � y(t) − 􏽢y(t) + v(t) � W
o∗

(t)F∗(S(t))

− W
o
(t)F(S(t)) + v

D
(t),

� W
o∗

(t)F∗(S(t)) − W
o
(t)F∗ + W

o
(t)F∗

− W
o
(t)F(S(t)) + v

D
(t).

(C1)

Equation (C.2) describes the relationship between the
predictive error of the neural network, error of the contex
layer eD(t), and bounded disturbance of the contex layer
􏽥vD(t).
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ep(t) � 􏽥v
D

(t) − e
D

(t), 􏽥v
D

(t) � W
o∗

(t)F∗(S(t)) − W
o
(t)F∗ + v

D
(t) � 􏽘

n

j�1
􏽥v

D
j (t),

e
D

(t) � W
o
(t)F(S(t)) − W

o
(t)F∗ � W

o
(t)F W

I
(t)X(t) +

W
D
1 (t) − a.Z1(t)􏼐 􏼑Γ1(t − 1)

⋮

W
D
n (t) − a.Zn(t)􏼐 􏼑Γn(t − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

− W
o
(t)F W

I
(t)X(t) +

W
D∗
1 (t) − a.Z1(t)􏼐 􏼑Γ1(t − 1)

⋮

W
D∗
n (t) − a.Zn(t)􏼐 􏼑Γn(t − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(C2)

TheoremA.3. Assume that the dead zone vector is defined as
ΔD � [ΔD

1 . . .ΔD
j . . .ΔD

h ]T in which ΔD
j (t)≥F′(t)/

εD
min(t)max(|􏽥vD

j (t)|)> 0 and εD
min(t) � min(εD(t))≠ 0. If the

weights of the neural network and the dead zone vector is
updated such that equation (C.3) is satisfied.

lim
t⟶∞

sup 􏽥W
D

i (t + 1) − 􏽥W
D

i (t) − 􏽥ΔD

i (t + 1) − 􏽥ΔD

i (t)􏼒 􏼓􏼒 􏼓≤ 0.

(C3)

$en, the neural network’s error is limited as follows and
the weight of the contex layer converges.

lim
t⟶∞

supep(t)≤ΔD∗
i , (C4)

􏽥W
D

i (t) � WD
i (t) − WD∗

i , 􏽥ΔD

i (t) � ΔD
i (t) − ΔD∗

i , ΔD∗ ,
and WD∗

i are the optimal or suboptimal value of the dead
zone vector of the contex layer.

Proof. By substituting equation (14) and equation (15) in
equation (C.3), we have,

lim
t⟶∞

4F
’
min(t)ep(t)e

D
j ε

D− 1

j (t) 1 − c
2
i (t)􏼐 􏼑

1 − W
o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

2 +
2F’

min(t)ep(t)Wo
i (t) 1 − c2

i (t)( 􏼁ΓTi (t − 1)

1 − Wo
i (t) 1 − c2

i (t)( 􏼁ΓTi (t − 1)2

2

−
4F

’
min(t)􏽥ΔD

i (t)e(t)

1 − W
o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

2
⎛⎝

−
2F’

min(t)e(t)

1 − Wo
i (t) 1 − c2

i (t)( 􏼁ΓTi (t − 1)2

2
⎞⎠.

(C5)

Since WD(t) is the inner part of the activation function
F, an approximation of F regarding WD(t) is considered as
the product of F and WD(t). (us,

e
D

(t) � W
o
(t)εD

(t) 􏽥W
D

(t)Γ(t − 1) � 􏽘
n

j

εD
j (t)W

o
j(t) 􏽥W

D

j (t)Γj(t − 1),

� 􏽘
n

j

e
D
j ,

(C6)
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where εD(t) � [εD
1 (t), εD

2 (t), . . . , εD
j (t), . . . , εD

n (t)], 0≤ j≤ n,
and 0≤ εD

j ≤ 1.
By considering equation (C.6), we have,

lim
t⟶∞

4F
’
min(t)ep(t)e

D
j ε

D− 1

j (t) 1 − c
2
i (t)􏼐 􏼑

1 − W
o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

2 +
2F’

min(t)ep(t)Wo
i (t) 1 − c2

i (t)( 􏼁ΓTi (t − 1)

1 − Wo
i (t) 1 − c2

i (t)( 􏼁ΓTi (t − 1)2

2

−
4F

’
min(t)􏽥ΔD

i (t)e(t)

1 − W
o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

2
⎛⎝

−
2F’

min(t)e(t)

1 − Wo
i (t) 1 − c2

i (t)( 􏼁ΓTi (t − 1)2

2
⎞⎠.

(C7)

By substituting eD
j (t) � 􏽥vD

j (t) − ep(t)/n, 􏽥ΔD

i (t) � ΔD
i (t)−

ΔD∗
i in equation (C.7) and considering ΔD

i (t)≥F′(t)/
εD
min(t)max(|􏽥vD

j (t)|)> 0 and εD
min(t) � min(εD(t))≠ 0, the

following inequality can be used.

􏽘

n

j�1

4F’
min(t)ep(t) 􏽥vD

j (t) − ep(t)/n􏼐 􏼑εD− 1

j (t) 1 − c2
i (t)( 􏼁

1 − Wo
i (t) 1 − c2

i (t)( 􏼁ΓTi (t − 1)2
+
2F’

min(t)ep(t)Wo
i (t) 1 − c2

i (t)( 􏼁ΓTi (t − 1)

1 − Wo
i (t) 1 − c2

i (t)( 􏼁ΓTi (t − 1)2

2

,

−
4F

’
min(t) ΔD

i (t) − ΔD∗
i􏼐 􏼑e(t)

1 − W
o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

2 −
2F’

min(t)e(t)

1 − Wo
i (t) 1 − c2

i (t)( 􏼁ΓTi (t − 1)2

2

,

≤ 􏽘
n

j�1

−4F
’
min(t)ep(t)

1 − W
o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

2 1 − c
2
i (t)􏼐 􏼑

ep(t)

nεD
j

−
1 − c

2
i (t)􏼐 􏼑􏽥v

D
j (t)

εD
j

+ ΔD
i (t)⎡⎢⎢⎣ ⎤⎥⎥⎦,

+
2F’

min(t)ep(t)Wo
i (t) 1 − c2

i (t)( 􏼁ΓTi (t − 1)

1 − Wo
i (t) 1 − c2

i (t)( 􏼁ΓTi (t − 1)2

2

+
4F

’
min(t) ΔD∗

i􏼐 􏼑e(t)

1 − W
o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

2,

−
2F’

min(t)e(t)

1 − Wo
i (t) 1 − c2

i (t)( 􏼁ΓTi (t − 1)2

2

≤
−4F

’
min(t)

1 − W
o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

2ep(t)
2
,

+
4F

’
min(t)

1 − W
o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

2 e(t) ΔD∗
i􏼐 􏼑

2
,

−
4F

’
min(t)

1 − W
o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

2ep(t)
2 1 − W

o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

2
􏼐 􏼑,

�
−4F

’
min(t)

1 − W
o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

2ep(t) ep(t) − ΔD∗
i + ep(t)􏼐 􏼑.

(C8)

Hence,

lim
t⟶∞

−4F
’
min(t)

1 − W
o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

2ep(t) ep(t) − ΔD∗
i + ep(t)􏼐 􏼑⎛⎝ ⎞⎠,

≤ − 4 lim
t⟶∞

F
’
min(t)

1 − W
o
i (t) 1 − c

2
i (t)􏼐 􏼑ΓTi (t − 1)

2ep(t) ep(t) − ΔD∗
i􏼐 􏼑⎛⎝ ⎞⎠≤ 0.

(C9)
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Since the above equation is limited and smaller than
zero, lim

t⟶∞
supep(t)≤ΔD∗ . □
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