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In this paper, we study the asymptotic behavior of solutions to the Kirchhoff type stochastic plate equation driven by additive noise
defined on unbounded domains. We first prove the uniform estimates of solutions and then establish the existence and upper

semicontinuity of random attractors.

1. Introduction

Plate equations can be found in many fields such as certain
physical areas as to vibration and elasticity theories of solid
mechanics. In this paper, we consider the following
Kirchhoff type stochastic plate equation with additive noise
defined on

i Uy + au, + Azut + AU+ du— M(||Vu||2)A”

d
+f(x,u)=g(x,t)+ﬁh(x)d—‘/;], W

u(x, 1) = uy(x),

| v, (%, 7) = u, (%),

where x € R", t>7 with 7 € R, a,A>0 and f are positive
constants, f is a nonlinearity satisfying certain growth and
dissipative conditions, g(x,-) and h are given functions in
L} (R,L*(R™) and H?(R"), respectively, and W (¢) is a
two-sided real-valued Wiener process on a probability space.

The function M (-) satisfies the following conditions:
(1) M € C!(R), such that
M, <M(s)<M,, (2)

where M, and M, are some positive real constants.
(2) Let M (z) = [ M (r)dr; for ¥2>0,
M(2)z=M(z)=0. (3)
For the nonlinear function nf (x,u), we presume
f(x,-) € C*(R) and let F(x,u) = [ f(x,s)ds; for x € R"

and u € R, there exist positive constants ¢; (i = 1,2, 3), such
that

If ()l < ul® + 7, (), 7, € L*(R"), (4)

f 6 uwu—cyF(x,u)2n,(x), n, € L (R™), (5)

F(x, 1) > csul™" = 5 (x), 75 € L' (RY), (6)
‘% (x,u)| <, (7)
ou

where @ >0, 1<k< (n+4/n—4). Note that (4) and (5)
imply

F(x,u) < c(ul® +ul*"!

2
7+ 1. (8)

As for deterministic plate equations, many authors have
showed the existence of global attractors (see [1-9]). For the
stochastic case, the existence of random attractors for plate
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equations has been investigated in [10, 11, 12] on bounded
domains. In addition, there are results about the existence of
random attractors and asymptotic compactness for plate
equations on unbounded domains in [13-18].

When M (s) =0 in (1), we have investigated the exis-
tence of a random attractor for plate equations with additive
noise and nonlinear damping defined on R” (see [14]).
However, when equation (1) is Kirchhoff type, the problem
is not yet considered by any predecessors.

To overcome the noncompactness of Sobolev embed-
dings on R”, we will apply the idea of uniform estimates on
the tails of solutions as in [19, 20] as well as the compactness
methods introduced in [21]. More precisely, we first show
that the tails of the solutions of (1) are uniformly small
outside a bounded domain for large time, and then we derive
the asymptotic compactness of solutions in bounded do-
mains by splitting the solutions.

This paper is organized as follows. In Section 2, we
present some notations and proposition about random
dynamical systems. In Section 3, we define a continuous
cocycle for equation (1) in H?(R") x L?(R"). In Section 4,
we obtain all necessary uniform estimates of solutions. In
Section 5, we show the existence and uniqueness of a
random attractor for (1) defined on R".

2. Notations

In this section, we present some basic notations and known
results on nonautonomous random dynamical systems
which can be found in [22, 20].

Let (X, ] - [lx) be a complete separable metric space and
be (Q,F, P, {6,},.r) an ergodic metric dynamical system (see
(23]).

Proposition 1. Let & be an inclusion closed collection of
some families of nonempty subsets of X and ® be a continuous
cocycle on X over (O, F, P,{6,},.p). Then, ® has a unique
D-pullback random attractor & in D if ® is D-pullback
asymptotically compact in X and © has a closed measurable
D-pullback absorbing set K in D.

Next, we present criteria concerning upper semi-
continuity of nonautonomous random attractors with re-
spect to a parameter.

Theorem 1. Let (X, | - |x) be a separable Banach space and
D, be an autonomous dynamical system with the global
attractor o, in X. Given >0, suppose that @ is the per-
turbed random dynamical system with a random attractor
Ap €D and a random absorbing set Eg € D. Then, for
P-aereR, wel,

dy (s (1, 0), 9y) — 0, asp — 0, (9)

if the following conditions are satisfied:

(i) There exists some deterministic constant ¢ such that,
for P—aeteR,we,

h:;lil(l)p "E,;(T, w)“XSC (10)
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(ii) There exists P,>0, such that for P—a.ert¢€

R,we Q,
U Ag(t,w)i tin X.
0<ieg, (7, w) is precompact in (11)
(iii) For P-aeT1eR,weQ, t>0,B,— 0, and
x,,x € X with x,, — x, it holds that
Mm@y (87, w)x, = @ (1), (12)

where ||Eg (7, w)llx = superB(T)w)IIxIIX.

3. Cocycles for Stochastic Plate Equation

In this section, we present some basic settings about (1) and
prove that it generates a continuous cocycle in
H? (R") x L* (R").

Let —A denote the Laplace operator in R", A = A%, with
the domain D (A) = H*(R"). We can define the powers A”
of A for v € R. The space V, = D(A)"* is a Hilbert space
with the following inner product and norm.

(u, V)y Z(AV/4M, AV/4V),
-1, =] ™
Set # = H?>(R") x L* (R") with norm

(13)

/
1Yl = (12 +(8% + A = 8a)Jull® + (1 - )l Auf?)”,  (14)

for Y = (u,v)" € &, where T stands for the transposition.
Let & = u, + 6u, where § is a small positive constant

whose value will be determined later; then, (1) is equivalent

to

[ du

a:f—au,

j—f=[8(a+A—5)—A]u—(¢x+A—6)f

—Mu+ M(IVul®)Au — f (x,u) + g (x,t) + Bh(x) dd—vf,

[ u(x, 1) = 1y (x),§(x, 1) = & (x),
(15)

where &, (x) = u; (x) + 0uy (x), x € R".
For g: we assume that there exists a positive constant o
such that

T
J “lg(9)Pds<oo, VreR, (16)

and

r—00

T
lim J j lg(-9)Pdxds =0, VreR,  (17)
—o00 J |x|>r

where | - | denotes the absolute value of real number in R.
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Denote w(t) =W (t) = W(t,x), t € R; then, we con-
sider the Ornstein-Uhlenbeck equation dy + ydt = dW (¢)
and the Ornstein-Uhlenbeck process

y(bw) = - jo e’ (Bw)(s)ds, teR. (18)

From [24], it is known that the random variable |y (w)] is
tempered, and there is a 6,-invariant set O € Q) of full P measure
such that y (6,w) is continuous in ¢ for every w €. Put

z(6,w) = z(x, 6,w)

(19)
=h(x)y(6,0),

which solves
dz + zdt = hdW. (20)

Lemma 1 (see [25]). For any >0, there exists a tempered
random variable y: QO — R, such that forallt e R, w € Q,

|z (6,0)] <™y (Il
[Vz(6,0)] <My ()IVAI, (21)
|az(6,0)] <™y ()AL,
where y(w) satisfies
e My () <y (6,0) <My (w). (22)

Now, let v(t, 7, w) = (8,7, w) — fz (6,w), and we have

du
it du + Pz (6,w),

%:(8—(x—A)v+[8(—8+0c+A)—A—A]u
J (23)
+B[1 - (a+ A-0)]z(6,w) + M(||VM||2)A”

—f(xu)+g(xt),

L u(x,7,7) = uy (x),v(x,7,7) = v (x),

where vy (x) = & (x) - z(0,w), x € R". We will consider (23)
for w €Q and write Q as Q from now on.

The well-posedness of the deterministic problem (23) in
H?(R™) x L*(R") can be established by standard methods as
in [13, 26-28]. If (2)-(7) are fulfilled, let go(ﬁ) (t+1,7,
6.0, q)éﬂ)) = (ult+1,1,0_0u), vit+1,7,0_ 0,
where q)éﬁ) = (ug,vp)". Then, for every we Q,7€R and
q)éﬂ) e Z(R"), problem (23) has a unique (F,%RB
(H?(R™) x B (L* (R")))-measurable solution P
(1,0,9F) € C([1,00), 7 (R™) with 9P (1, 7,0,9) =
goép), P (t, 1, w, (péﬁ)) € Xy (R") being continuous in (pémfor
each t>T. Moreover, for every
(t, 7, w,9y) € R* xR x Q x Z (R"), the mapping

(D,,g(t, T, 0, go(()ﬁ)) = ¢(ﬁ)(t+‘r, 7,0_,0, (péﬁ)), (24)

generates a continuous cocycle from R* x R x Q x Z (R") to
Z (R") over R and (Q, F, P,{6,},r)-

4. Uniform Estimates of Solutions

In this section, we derive uniform estimates on the solutions
of problem (23) and construct a tempered pullback ab-
sorbing set.

Let § € (0,1) be small enough such that

O’ +1-8a>0,1-8>0, (25)

and define ¢ appearing in (17) by

0=min{a—6,8,?}. (26)

Lemma 2. Assume that (2)-(7) and (16) hold. Then, for every
TeR,weQ, and D={D(1,w): T€e R,w € Q} € D, there
exists T =T (1, w, D) >0 such that for all t >T,

lo® (.7~ 1,6_0, %)";+ jT (s, 7 - 10 ,0,v)| ds
Tt

+ r e Nu(s,r-1,0_ 0, uo)szs + J-T
Tt

+ r e’ ? [Av(s,T-t,6_,w, ”0)"2(15
Tt

w57~ 1,6, up)[ds
Tt

(27)

cere [ e (1+]az @0 +[v2 @)+ e Bl )as

where (péﬁ) = (uy,vy)" € D(1—t,0_,0) and c is a positive
constant depending on A, o, o, and 8 but independent of T, w,
and D.

H?2

Proof. Taking the inner product of (23), with v in L* (R"),
we find that



E E” vIF = —(a=8)(v,v) — (/\ +6° - 604) (u,v)

—(1-8)(Au,v) - (Av,v)
+B(1 - a+8)(z(6,0),v)

- B(Az(6,0),v) + (g (. 1),7)
+ M(IVul®)Au = (f (x, 1), v).

By (23),, we get

v= Z—+8u Bz (6,w).

Next, we estimate some terms of (28).

(u,v) = (u,‘jl—bt{ +0u— ﬁz(@tw))

SR

||u|| + Slull’ - B(u, z (6,w))

l\.)l'—'

SIS W

|Iu|| + 8llull® = Bllz (6,) | Ilul

N \

30 B
Al + =l - e (6,0)],

&|Q_‘

1
2_
2

- (Au,v) = {Azu,‘;—” +Ou - ﬂz(@tw))

- —||A I? + =l Aul’ + B (Au, Az (6,0))

IA

Ly Al + -l Aul? ++ﬁ||Az(6 )| I1aul

Ed_
1d
< -3 Zlaul ——IIAuII ++ ||Az(6 o),
d
(f(x,u),v)=(f(x,u),d—1:+6u—/j’z(0tw))

_ % pr(x, wdx + 8 (f (x,u), u)

- B(f (xu), z(6,0)).

By (5), we get
(f (x,u),u)=c, JWF (x,u)dx + Janz (x)dx.

By conditions (4) and (6), we obtain

(28)

(29)

(30)

(31)

(32)

(33)

Complexity

B(f (x,u),z(6,w))
SBJRn (C1|”|k 1M (x))'z (Gtw)ldx

klk+1
< Bl ol @) + (|l 'ax) (6w,
<Bln @l 0,0)]

k/k+1
+c1ﬁ<JRnF(x, u) + 113(x)dx> ||z (Gt“’)”kn

1 2 S
< 5||f11 @[+ %“z B )|*+ % JWF (x,1)dx

é +
+ LJ 1 (x)dx + cf*|z (6, w)"k g
(34)

Using the Cauchy-Schwarz inequality and the Young
inequality, there holds

a+0)
u" o) +

(o4

|| 8
(35)

BA-a+)(z(0w)v)<

-B(Az(8,w),v) = —B(Az(60,w), Av) %“Az(@w || + IIAVII
(36)

Ilg( N+ |I I,
(37)

(g(x, 1), v) < g (x, OV <

By (2) and (3) we have
(M(IVul*) Au, v)
= (M(IIVu||2)Au, u, + 0u — ﬁz(@tw))

= 2 2 (1vut®) + om(Ivul?) (19l?)

~ B(M(1IVul*) ) Vus, V2 (6,0)

1d -~ 2 2 2

< =5 S M(Ivul®) = oM (Ivel®)(I1ul)
g M(IVul®)(IVull®) + B> M(IVul?)|Vz (6,0)]
1d -~ 2 30 2 2

< =5 S M(Ivul”) - == M(Ivul’ ) (1vul’)

+ cﬁz”Vz(Gtw)"2

-MI(IVul) - %‘SM(nwuz) + B’ vz (6,0)|".
(38)

Q..|Q_‘

1
S__
2
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By (30)-(38), it follows from (28) that

1d 2 2 2 2 A 2
5£<||v|| +(6% + A = 8a)lull® + (1 = Ol Aul? + M([[Vu] )+2J.RnF(x,u)dx)

3 3 3 30 -~
< =5 (@Ol =28(8” + A = Sa)lull” =0 (1 = O)(IVul’) ==~ M(|IVul’) (39)

_%jwm, w)dx —%(uwuz) + B (1+]az (@) +[az @) +[az(6,0)[ +[az(8,0)°

k+1 2
o ) +elg (ol

By (14) and (26), we get from (39) that

d (||¢||§f + zj F(x, u)dx) + g(u(pu;/ + 2J F(x, u)dx)
dt R" 4 R"

1 1 1 0 ~
5 (a- OlvI* + E5(52 + A = dac)Jul* + Soa- NlAul® +[1Av])* + EM(||Vu||2) (40)

k+1

<of(1+[az(0.0) +[vz (@) +]z @) +]z O ) + clg DI

Multiplying (40) by e” and integrating over (7 —t,7)
and then replacing w by 0_,w, we get

(liso(n T—1,0_,0,0,)5 + 2J F(x,u(t, -t G_Tw,uo))dx>

R"

(s 10 ) s

1 T
+E ((X_ 8) J‘r—t
Lo enman) [ e uter-00. s

Tt

+%5(1—5)JT

Tt

e? D |Au(s,T-1,6_ 0, u0)||2ds + JT e?t D |av(s, T -6 ,w, v0)||2ds
Tt

W2 JT e“sM<||Au(s, T-10_,0, u0)||2>ds
2 )t
(41)
<e Ut("(p()"; + ZJ F(x, uo)dx>
RH

n j 1 1Az (00| +]|Az (6., 0)| +]|Az (6, 0)|} +]z (6. w)|r ds
Tt

T

. j g (x 9P
-t

k+1

0
<e(loolly +2] Fruax)+ 8 [ e1+fpz@a)f +f @0 +[7z@0.0)f +z (6.0} as

T
. j g (x5
—00



It follows from Lemma 1 that

~t

<
<
From (8),
pr(x, wdesc(1+ful ol ). @3

Because ¢, = (uy,vy)' € D(t-t,0_,0) and D € D, we
get from (43) that

lim e m(”%"; + ZJRnF(x, uo)dx> =0. (44)

t—>+00

JO e”s"Az (Osw)nz +||Az (Gsw)“2 +||Az (95w)||2 +||Az(95w)||H2 ds

Complexity

k+1

k+1

(_)OO e“"Az(Gsw)”2 +||Az(95w)||2 +||Az (Gsw)“2 +||Az (95“’)“}12 ds (42)

0
J ¢ (y* (@)(IARIP + VAP +11I7) + 9 (@) (1A + VA + 1R ))ds < + co.

Therefore, (17), (42), and (43) deduce the desired result
(27). O

Lemma 3. Assume that (2)-(7) and (16) hold. Then, there
exists a random ball iEﬂ(T, w):TeER,we Q} € D centered
at 0 with random radius

0(r,0) = c + cf’ j (14200 +lz(0.0) +z O.0) +|z 005 )ds, (45)

0
-0

such that Eg (,w): TeR,we Qf € D is a closed measur-
able D-pullback absorbing set for the continuous cocycle
associated with problem (23) in D, that is, for every
TeER,weQ, and D={D(1,w): T€ R,w € Q} € D, there
exists T =T (1, w, D) >0, such that for all t > T,

g (t, 7~ t,0_,0,D (7~ t,0_,0))CA (7, w). (46)

Proof. This is an immediate consequence of (24) and
Lemma 2.

Let p: R" — R be a smooth function such that
0<p(x)<1 for all x € R”, and

p(x) =0for0<|x|<1; andp(x) = 1for|x|>2. (47)
For every r € N, let

p,(x) = p(%), x e R". (48)

1d
2dt

Then, there exist positive constants c,,cs, ¢4, and ¢,
independent of k such that |Ap, (x)| < 1/rcy, |Ap, (x)| < 1/rcs,
|Ap, (x)| <1/rc, |A2p, (x)|<1/rc; for all x € R" and r € N.

Givenr > 1, denote H, = {x € R"™: |x| <7} and R"\H, be
the complement of H,. To prove asymptotic compactness of
solution on R”, we prove the following lemma. O

Lemma 4. Assume that (2)-(7) and (16) hold. Then, for every
TeER,weQ, and D={D(1,0): T€ R,w € Q} € D, there
exist T =T (1,0,D,¢)>0 and R = R(7, w,€) > 1, such that
for all t>T,r>R,

"(p(ﬁ) (r,7-t,0_0, %)";(R"\H,) <e, (49)

where (péﬁ) = (ugvp)' € D(1—t,0_,w).

Proof. Taking the inner product of (3.7), with p, (x)v in
L*(R"), we obtain

J p, ()vPdx = ~(a - 5)J P (OIPdx —(A +6" - Soc)J p (x)uvdx
R" R" R"

—a- S)JRnpr (x) (Auyvdx - JR”pr (x) (Av)vdx + B(1 — a + 5)jwp, (x)z (6,0)vdx

(50)

_ ﬁJR"pr ((x)Az(6,w))vdx + prr (x)g (x, t)vdx + JRnP’ (x)M(||Vu||2)Auvdx

- JR“p, (x) f (x, u)vdx.
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. . . . IVvll < sllvil + C AV, Y6 > 0. (51)
Using the Young inequality and the Sobolev interpola-
tion inequality, We have
du
J p, (X)uvdx = J P, (x)u(— +0u - ﬁz(@tw))dx
R R dt
d
= J Py (x)(— —u’ + du’ - ﬁz(@gv)u)dx (52)
A baxs S| peowbax-E [ polzeafa
257 p, (x)|ul"dx pr(Wulidx =55 pr(x)|z (0,0)[ dx,

p, (x) - Au - vdx

= —J Au - A(p, (x)(% +0u-—ez (H,w)))dx
R" dt

—J Au - <Apr (x) - tvn+ q2hVp,x (x)7 - CV;v + p, (x) - A(f;: +0u — ez(@tw)))dx
RYI

2 1d
<& J |Au - vldx + &j |Au - Vvldx -~ —j o (x)lAuldx - 5[ p ()lAul? dx
R" r R" 2 dt R" R"
+ eJRnpr ()l AullAz (6,w)dx
c 2¢ d
< z—i (1aul’d +|v/*d) + 74 lAul(clivl + C llav) - yr J Py () Auldx

1
2
2 )
_8J P, (x)|Au| dx+zj p, (x)|Au| dx+—J pr(x)|Az (6,w) l dx
R"

C C
<= (18ul? +1WP) + Zaul’ + 261’ + 2C2 1A’

2
_ % % prr (x)|Aul*dx — g prr (x)|Aul*dx + 5_8 pr, (x)|Az (Otw)|2dx’
(53)
J p (%) f (x, u)vdx = j p (0 f (x, u)( + 0u— Pz (6, w)>dx
. (54)
_ % JRHp, (XF (x, w)dx + SJRnpr () f (x, wuidx — ﬁJRnpr () f (x,u)z (6,0)dx.
By (6), we get

5JR”pr () f (x wudx > CZ5JRin (XF (x, w)dx + 5JR”p, ()1, (x)dx. (55)

By (4) and (6), we get
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ﬁJRHpT () f (x, )z (6,0)dx < ﬁjwp, il + 7y (0)]e (B
2
S% J-Rnpr ()|, (x)|2dx + % JRnpr (x)|z (Gtw)|2dx (56)

N 0
+ CﬁZJRnPr (x)|z(6tw)|k dx+ % JRnPr (0 (F Ceva) + 115 ()

For the remainder terms, using the Cauchy-Schwarz
inequality and the Young inequality, we have

- J p, (%) Av-vdx = —J A2v~p,(x) -vdx = —I Av-A(p, (x) - v)dx
R" R" R"

—J Av- (Ap, (x)-v+2Vp,(x) - Vv+p,(x) - Av)dx

-

<5 (AP + v 24 AvlA AvPd

<5 VI +IvIP) + =2 avillavl - P (x)Av|"dx (57)
r r R

<S5 (IavI? +IvIP) + 254 C.la AviPd

<o (1A +Iv1P) + S vl (il + Cllavl) = | p, ()l

Cc C

<o (NAVI +1wI”) + = (VI + 26" I +2C AV ) - jRnpr (x)lAv|dx,

5JR () Az (6,0) - vdx = —ﬁj Nz(0,0) - p, (x) - vdx = —BJR”AZ(Gtw) A(p, (x) - v)dx

ﬁj Az (8,w) - (Ap, (x)-v+2Vp, (x)-Vv+p,(x) - Av)dx
R
STBJ |Az (6,0) - v|dx + 4BJ |Az (6,0) - Vv|dx + ﬁj p, (x)|Az (6,0)| - |AvIdx
R" " R
(58)
sz—f (laz @@ +1v) + 7“ |2z (8. (clvl + Clavi) + B j ez (6,0)]-1avidx
Czi (J|az(6,0)| +||V||2) + b ("Az(@tw)"2 +26°vl* +2C2 ||Av||2>
+J p, (x)|Av] dx+/3—J p,(x)|Az (6,w) l dx,
R
B(l-a+ 6)JR”p, (x)z (6,w)vdx
(59)
1-a+0)’p -4
JMoar I “_+8) £ prr (x)]z (6,0)["dx + “T pr, (x)lv*dx,
1 -9
jwpr (x)g (x, vz <—— prr (g + 2= pr, (PP, (60)
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J pr COM(IVul?) Auvdx = J oy COM(IVul) Aut (1, + 61 — Bz (6,0))dx
R" R"

_1d (19l — e
72 dtJRnPrWM("W" )Jdx 8IR“p,(x)M(||Vu|| )IVul’dx

+ ﬂJRnpr (M (IVul*)VuVz (6,0)dx
1d _
<=3 JW’J’ () (MIVul* )dx ~ 5JRnp, ()(MIVull®)|Vul*dx

5
5 JWP, () (M Vull*)|Vul*dx + cﬂzjwpr ()MIVulP|Vz (6,0)[ dx

IN
|

5
jwp, (O (MIVulR)dx - pr, () (MIVulP)Vuldx + cﬁZJRnp, (x)|Vz (6,0)|dx

IN
|

_ 5 _
yr JRnp, ()M (IVull*)dx - 3 prr ()M ([Vul*)dx + cﬁzjwpr (x0)|Vz (6,0)[ dx.

(61)

It follows from (52)-(61) that

% %prr O +]6% + X = Sad|[[ul® + (1 = )l Aul® + M([IVull®) + 2F (x, u)dx

a-90
2

(6% +1 - da)
2

s§||||Av||2 I + Al +Az] 6, ] - J -

(62)

dll1 -4l
2

xj p, ()lulfdx - j p,(x)|Au|2dx—@J p (X)F (x, u)dx
R" R" 2 Jgre

é ~
-3 JRnP’ (x)M(IIVu||2)dx + cﬁZJ-Rnpr (x)1 +|Az(0tw)|2

+

+|Vz (t9tw)|2 +|Vz(9ta))|2 +|Vz (Gtw)lk " +lg (x, )P dx.

Denote By (26), we get
X =[v” +(8% + A = 8a)[ul* + (1 - &) Aul’ + M| Vul”.  (63)

% %jwp, (x) (X + 2F (x, u))dx + OJRnpr (x) (X + 2F (x, 1))dx

s;IIAVIIZ + IV +IAul? +||Az|6,0| + cﬁzjwpr ()1 +|Az]6,0|[ (64)

+|Vz(0tw)|2 +|Vz(9tw)|2 +|Vz(0tw)|k+1 +lg (x, t)|*dx.

Multiplying (64) by e”* and integrating over (7 —t, 1)
and then replacing w by 0_,w, we get
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JRnp, x)(X(r,7-t,0_w0,X,) +2F (x,u (7,7 - t,0_,0, 1)) )dx

e UtJR,f’f (x) (X, + 2F (x, 1) )dx +; J:_t I Aav(s, T 1,60,
Hav(sT-6,60 0,9 +|au(s T~ 1,6 0,u)[ +]Az(6, )| ds
+cf’ J:_t ea(H)JRnPr (x)1 +|Az(9377w)|2 +|Vz (esf‘rw)|2 +|Vz(95,rw)|2
+|Vz (6, @) +1g (x, 5)Pdx ds

<e ‘”J p, (x) (X + 2F (x,uy))dx + ; J
-

eu(s—T) “AV (5, T-1,0_,0, VO)“2
Tt

0
+Hv(sT-1.60 0, v(,)||2 +|Au(s, 71,00, u0)||2ds + ; J e Az (0,0)|*ds (65)
-t

T 0
+c J eUSJ lg (x, 9)[dx ds + cf’ J e”SJ- 1+|Az (8,0)" +|Vz (8,0)[ +|z (8,0)[*
—t |x|>r —t |x|>r

T

+|z (Osw)|k+ldx ds
<e UtJ p, (x) (X + 2F (x,uy))dx + ; JT | Aav(s,T-1,60_ 0, vo)nz
R" Tt
2 2, e O o 2
v (s 7= £0_ 0, +|Au(s, T -1, 0. w,uy)| ds o J e”|Vz (6,0)| ds

T 0
+c J e”sj |9 (x, 8)*|dx ds + cf? J easj 1 +|Az(6$a))|2
o |xlzr -00 [x|>r

+|Vz (Gsw)|2 +|z(65c¢))|2 +|z(65w)|k+ldx ds.

c (7 o(s—1) 2
Due to (péﬁ) € D(r-1,0_,0) € D and (43), it is easy to 2 JH € "AV(S’ T-40_w, Vo)"
obtain that there exists T', = T, (7, ¢, w, D) > 0, such that for

all t> T, (st 0_0w)| (67)

—ot
e JRHp, (%)X + 2F (x,uy)dx <e. (66) Aus, 1,60 u0||2ds e

By Lemma 2, there are T, =T, (7,6, D)>0 and

_ by > J By Lemma 1, there are T;=T,;(ew)>0 and
R, =R, (¢,w,D) > 1, such that for all t >T, and r > R;, R

R, = R, (¢, w) > 1, such that for all t>T, and r >R,

0
B’ J easjl | (1 +|Az(05w)|2) +|Vz (6,0)|" +]z (8,0)[* +|z(05w)|k+ldxds
2r (68)
c (° s 2
+—2J e”|Az (b,w)| ds <e.
r° ) -

By equation (17), there is R; = R; (7, €) > 1, such that for Denote T = max{fl, T, ﬁ}, R = max{R,R,,R;}; by
all r > R;, (65)-(69), for all t >T and r >R, we have

cj eUSJ |g (x,5)[’dx ds<e. (69)
-0 |x|>r



Complexity

J pr(x)(X (7,7 —t,0_,0,X,)
R”

(70)
+2F (x,u(r, 71— t,0_w,uy)))dx <4e,
which implies
H(p(ﬁ) T,7T—t,0_ a),(po "%’(R" H)s4£ (71)

Let p = 1 - p with p given by (48). Fix r>1 and set
{ u(t, 7, w,y) = p, ()u(t, 7, w, up),

(72)
V(t, T, w0, V) = P (X)v(t, T, @, ),

and then 3P (t,7,w,3,) = (@ (t, 7, 0,13), ¥ (t, T, 0, 7)) "

is the solution of problem equatlon (23) on the bounded

domain H,,, where ¢, = p, (x)gooﬁ) € Z (H,,).
Multiplying (23) by p, (x) and using (72), we find that

% =v-6u+ fp, (x)z(6,w),

g = (- 87 —(A+6" - da)a - (1-0)An - AV
+B(1 - a+ 0)5, (x)z (6,0)

—Bp, (x)Az (8,0) + 5, (x)g (x, £) + M(|IVul*) At
{ ~M(Ivul®) A, (xu

—2M(IVull®)Vp, (x)Vu - p, (x) f (x, u)

+4(1 - 8)AVp, (x)Vu

+6(1 - 8)Ap, (x)Au + 4 (1 — 8)Vp, (x)AVu

+(1 - SuAp, (x)

| +4AVp, (x)Vv + 6Ap, (x)Av + 4Vp, (x)AVv + vAp, (x).
(73)

d.
s

N —

= ~(a = O[T, (1 + & - 8a)(7,. 7

+B(1 - a+8)(p, (x)z (6,0),

11
Consider the eigenvalue problem.
At = AiinH,,, with#i
ou
= (74)
= 0onoH,,.

Problem (74) has a family of eigenfunctions {e;};,, with
the eigenvalues {A;},:

M < << 04— +00(i — +00), (75)
such that {e;},y is an orthonormal basis of L* (H,, ). Given n,
let X, =spanfe,,...,e,} and P,: L*(H,) — X,, be the
projection operator. O

Lemma 5. Assume that (2)-(7) and (16) hold. Then, for every
TeERwe, and D={D(1,w): T € R, w € O} € D, there
exist T=T(r,w,D,6)>0 and R= R(T,w,£)>1 and
N = N (1,w,€) >0, such that for all t>T,r>R, and n>N,

"(I - Pn)¢(ﬁ)(T, T-1,0_.0,9, A(ﬁ) ”Z’(IH] S (76)
where @éﬂ) = /?,(x)(p(()ﬁ), (péﬁ) = (up,vy)' € D(t-1,0_,w).
Proof. Let i,, =P,u,t,,=U-P)u,v,, =PV, =

(I-P,)v. Applying I — P, to (73),, we obtain

_ dﬁn,z
Ym2 = gy

+ 01, - f(I - P,)p, (x)z(6,w). (77)

Then, applying I - P, to (73), and taking the inner
product of the resulting equation with ¥,,, in L*(H,,), we
have

) (1—8)(1414”2, n2) (Ai;n,Z’i;n,Z)

vn,Z) - ﬁ(PAr (x)Az (ez“’)’

V,2) +(p ()9 (x,1),9,,,)

+(M(IVul?) AL, 5, 9,,,) = (M(IVul®)Ap, (x)u + 2M([1Vul* )V, (x)Vus, 9,5 ) (78)

=(B, () f (x,1),9,,,) + (4(1 = 8)AVp, (x)Vu + 6 (1 = 8)AS, (x)Au

+4(1 = 0)Vp, (x)AVu + (1 - O)uAp, (x),7,,)

+(4Aij (xX)Vv + 6Ap, (x)Av + 4Vp, (x)AVY + vAp, (x), @1,2)'
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Complexity
Next, we estimate some terms of (78).
. _di,, _
(”n,z’ Vn,Z) = (un,2> dt +0u Uny ﬂ(I - Pn)pr (x)z(@tw)>
22 I+ ol - Bl - 1 - 25 (92 (60)] (79)
2 dt
1d
L o P Yl - 1 - ) 200
o R do,, . R
_<Aun,2’ vn)Z) = _<Aun,2’ A(dt’ + 8un,2 - ﬁ(I - Pn)pr (x)z (etw)))
<-= HA w2l = 8|AT, | + BAg,| - |(T - P)A(B, (02 (6,0))] (80)
2 dt
1d 1)
<1 Doz (2 a 8)||Aun2|| B - P)AG, (92 (6,0)]"-
Denote 0 =n(k — 1)/4(k + 1); by (4), we get
(ﬁ; (x)f (x, u),i?n’z) <¢ jRn/ﬁ (x)|u|k|’13n’2|dx + JRH@ ()|11 (20)[[P2]dx
<cylulica [Taales 72
<cullulf [ 7l 17al 7 4 A 89,
< bt Ml | A9, | + At || 47,2 (81)
0
<At 4, (cllnﬂllullﬁz +||m|l)
"A"nz” + Anﬂ(c A0+1"“”H2 +”’71H)
For the remainder terms on the right-hand side of (74),
we have
- B(p, ()Az (6,0),7,,) < B|(T = P,)p, (x)Az (6,0)| - | A%,
35 (82)
<@ - P,)p, ()82 (B0 0|+ ||Mn,2||2,
B - a+8)(p, (0z(6,0).7,,) B - a+ O|(I = P,)5, (x)z(6,0)] - [7,..]
(83)

<ef|(1- )5 0z () + [



Complexity

(5 (g (. £),7,2) < (T = )5, ()9 (%, D] - [P

7 _ -0
S TeEn L R UICT R ve R

(1 - 8)(4AVp, (x) - Vi + 6Ap, (x) - Au + 4Vp, (x) - AVu + uAp, (x),7,,,)

4 1-6 -1/4 = 1 Au
< C6( ) 1/1 ||1U/l|| . “VH,Z” + CS( ) ” ” : ”V”)Z”
4 1-6 - > ’ 1 u V
MA 1/14||Au|| . ”Avn2" + ( ) ” ” . “ nZII
— +[|Au
< /1 11/2" ﬁu" —||AV 2" + - (”M" ” ” ) ( )|| 712“

(4AVp, (x) - Vv + 6Ap, (x) - Av + 4V, (x) - AVY + vAp, (x),7,,)
- 6 -
< _m HIAVI- 7] + 22 18 - 5, + u BIAVI - [5] + Z 1AM - 5,0

72l

5(oc 0)

<2 Av + “Aan" +- ("V” +lAv ||)

n+1

(M1l )AL ,7,,,) < 8, + = “ =l

(M(1Vul®)Ap, ()u + 2M([IVul* )V, (x)Vu, vn2)< Epaul? +2 ||vn2||

By (30)-(39), we get

1d (. ~ )
2 i (Bnal” +(5° + 1= 00’ + (1 - s,

a—0,_ é N ) _
<~ Al 5 (8 + 2=, -3 (1 - A, |

+C/52<||(I P,)p, (x)z Hw)“ +(I-P,)|A (5, (x)z (6, w))"

+e(T=P,)7 (g (o O + AL (18ul? +1av1?) = (Jul? + 1P + hsul’ +1AvIP)
3 -1 0/2 k 2
+ EA;H.](CIA;'HI"”“HZ +”’71||) :

By (13), (25), and (89), we get

il
dt

~ P2 )
n2 r)

S+ (la =25z @0

+(1 - PYA B, 0z (8,0)|" +|T - P.)A, (x)Az(@tw)“Z)

+c|(1-P,)5 (g (x| + A, (IAaull® +1Av)) +;(Ilu||2 +IvI? -+ Aul® +Av)?)

n+1

3.
# 2 (e, + )’

(' al )Az(@w)

13

(84)

(85)

(86)

(87)

(88)

(89)

(90)
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As 7, € L*(R"), A, —> oo, there exist N, =
and R, =

N (s)>0
R (e)>0 such that for all n> N, and r>R1,

Complexity

d o~
(180, )= - APEL g 10~ P70
+<§ " 5>("u||2 VP +lAul® +1Av]?) (91)

+e(1+lullf, +y (6,0)[):

Multiplying (91) by e” and integrating over (7 -t,7)
and then substituting w by 0_,w, for alln> N, and > R, we
have

B) (B) -
Pt =10, 0050, 0y 5"

2 Z)O”%’([HI yte J_oo (1P|, (x)g (x. 9)[ds

c T o(s—1) 2
+(—+£>J e o (s 7= 1,00, 140)
r -t

+v(s,T

+|Av(s, T

-t,0_.0, vo)”2 +]|Au(s, T

-t,0_,w, ”0)“2 (92)

-t,0_ o, v0)||2ds

+£JT e 1)<1 (57 = £, 6_0,u) [ +|)’(9371w)|2)ds,
Tt

By (4), ¢ € D(r~1,0_,0), and D(r~1t,0_,0) € D,
there exist T T (T,s,D w) >0 and R1 = Rl(‘r,e w)>1,
such that if £ > T and r> Rl, then

=(B)

- “20“%(u-n D)

<e. (93)

For the second term on the right-hand side of (92), by
(16), weAknow that there is N = N (7, ¢, w) > 0, such that for
all n>N,

c jioo 7 ”(I - P,)p, (x)g(x, s)||2ds <e (94)

For the third and fourth terms on the right-hand side of
(93) by Lemma 2, there exist T; T2 (1,6, D,w) >0 and
R2 (7,6 w)> 1, such that forall t >T, and r > Rz, there holds

c ' o(s—1) 2
<7+e>J e e (s 7= 1,00, 140)
r Tt

+|v(s,t- 10,0, vo)nz

(95)

+||Au (ss7-t,0_,0, UO)HZ

+|Av(s,T - 1,00, v0)||2ds <e

For the last term on the right-hand side of (93), by
Lemma 2, there is T5 = T5(7,& D, w) >0, such that for all
t>Ts,, it follows that

T o(s—1) 2k 2
j e (1 Hlu (s, T 1, 0_ 0,141 +]y (6 0)] )ds < 00.
Tt
(96)

Denote T = max{Tl,Tz,T3} and R= max{TEl,Tiz}.
Then, by (92)-(96), for all ¢ > T,r>R, and n> N, we get

~(
S"n{;z)'f’ -0 0, %20"%(H SCE (97)

which completes the proof. O

5. Random Attractors

In this section, we prove the existence of Z-pullback
attractors for stochastic problem (23).

Lemma 6. Assume that (2)-(7) and (16) hold. Then, the
solution of problem (23) is asymptotic compactness in Z (R");
that is, for every Te€R,weQ, and B={B(t,0):

7€ R,w € Q} € P, the sequence {go(ﬂ) (r,7-t,,,0_ 0, (pé”f}d }



Complexity

has a convergent subsequence in Z (R") provided t,, — 0o
and %ﬁ) € B(1—t,,,0_, w).

Proof. We first let BeP, and %m
B(r-t,,0_, w).Bylemma2, {(p(ﬁ) (1, 7—t,,0_ 0,9, m)} is
bounded in # (R"); that is, for every 7 € R,w € Q, there
exists M, = M, (7, w, B) >0 such for all m> M,,

t,, — 00,

RIS PR

In addition, it follkos froAm Lemma 4 that there exist
ry =11(T, eLw) >0and M, = M, (1, B, &, w) >0, such that for
every m=M,,

||<p(’8)(1,1—t 0. wgoo <e (99)

”7/ [R" H, )

Next, by using Lemmg 5, tEere are N = N(1,¢0) >0,
ry=1,(1,6,0) 21, and M3 = M;(7, B,&,w) >0, such that
for every m> M3,

|- P0)3 P (2.7~ . 6_0, 5500 ||;(H2,2)Sf- (100)

Using (73) and (98), we find that
{PN(p(B) (r,7-t,,0_ 0, gooﬁ))} is bounded in the finite-di-
(H,,,), which together with (100)
implies that {(7)(/3)(1’,7— t 0_ w, gﬁéﬂ)} is precompact in
H?(H,, ) x L*(H,, ).

Note that p, (x) = 1 for |x| <r,. Recalling (73), we find
that {go(ﬁ) (r,7—t,,0_.w, goéﬁ)} is precompact in # (H, ),
which along with (99) shows the precompactness of this

sequence in # (R"). This completes the proof.
The main result of this section is given below. O

mensional space Py

Theorem 2. Assume that (2)-(7) and (16) hold. Then, the
continuous cocycle Oy associated with problem (23) has a
unique P-pullback attractor A g = {Qi/g (w):TeR,we Q}
in I (R").

Proof. This is an immediate consequence of Proposition 1
and Lemmas 2 and 6. O

6. Upper Semicontinuity of Pullback Attractors

In this section, we will use Theorem 1 to consider an upper
semicontinuity of random attractors &4 (w) when f — 0.
To indicate the dependence of solutions on f3, we, respec-
tively, write the solutions of problem (23) as u® and v#),
that is, (u®,v®) satisfies

Eg(7,0) ={(u,v) € H* (R") x L’ (R"): e oy + V152 oy < R, (1, @)}

Then, we get

15
(d B
M _ B 5y ® + Bz (6,w),
dt
®
d:zt =(0—a- AP +[5(-0+a+A) -A-Au®
1 +B11 = (a + A - )]z (6,0)
+M<||Vu(ﬂ)”2>Au(ﬁ) - f(x,u(ﬁ)) +g(x,1),
P (r,1,x) = uo’g)(x) v (1,7,x) = vo ) (x).
(101)

When =0, the random problem (23) reduces to a
deterministic one:

du® su (0)
dt
av®
—=(0- a—- AW +[8(-8+a+A) -1-Alu®

M([vu®] )au®

—f(x,u(o)) +g(x,t),

u® (r,7,x) = uéo) (%), y©@ (r,7,x) = véo) (x).
(102)
By Theorem 2, the deterministic and autonomous system

@, generated by (102) is readily verified to admit a global
attractor o/ in Z (R").

Theorem 3. Assume that (2)-(7) and (16) hold. Then, the
random dynamical system ®; generated by (23) has a unique

D-pullback attractor {dﬁ (7, w)}reR veq H (R™). More-
over, the family {.QYB} of random attractors is upper

semicontinuous.

B>0

Proof. By Lemma 3 and Theorem 2, ®; has a closed mea-
surable random absorbing set Eg (7, w) and a unique random
attractor /.

(i) In Lemma 2, we have proved that the system @
possesses a closed random absorbing set
Eg = {Eﬁ (1, w),eR’wGQ} in 9, which is given by

(103)
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lilr;i%p “Ef‘ (r, “’)"%’(R“) =6 (104)

which deduces condition (i) in Theorem 1
immediately.
(ii) Given B € (0,1], let E; (1,0) = {(u,v) € H*(R")x
L* (R™): ||u||§12(Rn)+ IIVIIIZ}(R") <R, (1, w)}, where
0
R, (T,w)=c+ CJ‘ e"s(l +||Az(65w)||2
- (105)
2 2 k+1
vz (6.0) +]z 0 +]z @) )ds.

Complexity

Then,
U dg(r,w)c U E CE, (1, w).
0<ﬁ£l /j(T w) 0<ﬁ£l ﬁ(w) 1(T a)) (106)

First, by (106), Lemma 4, and the invariance of
Ap(1,w), we obtain that for every >0 and
P-aetreR, weQ, there exists ry =rj(w, &) >1
such that

j (It W +1Au (I +lv () )dx <e, forall (u,v) € U dlg(,w). (107)
x|2rg 0<B<1 B

Second, by (106), the proof of Lemma 5, Lemma 6,
and the invariance of &f [ (1, w), we know that there
exists r; = 1, (w, &) 21, such that for all r>r,, the
set Ug.p<19p(T,w) is precompact in 7 (H,),
which together with (107) implies that
Ug<p<193 (T, w) is precompact in Z (R").

(dU
dt

av
dt

Taking the inner product of (108), with V in L? (R"), we
get

% %(uvu2 +(8% + 1 = 8a) UI* + (1 - &)|AU|?)
< _Z (@-VI? - Za(az +1 - 8a)|U?
- 260~ o)lauP?
+<M(||Vu(5)“2) - M("Vu(o)“z)AU,V)
(= (o u®) + f(xu®), V)
+ef(1+]az @0 +|z0)).

(109)

— =V -0U + Bz(6,w),

| (o) - (o )av) - ()

(iii) Let 9@ = (u®@,v®) be a mild solution of (102)
with initial data ¢© = (1@, v©®), and U = u®-
u®, v =y® O By (101) and (102), we get

—=0-a-AV+[§(-0+a+A-L)-AlU

(108)

+f(x,u(°)) +B[1 - (a+ A-9)]z(6,0),

LU (1,7,x) =U, (%), V(1,7,%x) =V (x).

Taking advantage of M(a®) - M (b?) <

M’ (sup{a?,b*})la +b| - |a — b| and Lemma 2, we get

(5w ) - (o)
< (0 (sop{ o o ]

o - v

(110)

<c|AUJ? + VI~

By (7), we get



Complexity

(F(u®) = f(xu®), V)| <clUI +clVIE,  (111)
which along with (107)-(108) implies
%(IIVII2 +(8% + 1= 8a)lUI* + (1 - O)|AU|?)
<c(IVI? +(8% + A = 8a)[UI* + (I = SDIAUI?)  (112)

+ C/SZ(I +||Az(0tw)||2 +||z (Otw)||2>.

2

"u(ﬁ)(t, o, uéﬁ)) _ u(o)(t) T, ué‘)))' R

<cef” ﬂ(”uéﬁ) - uéo)| 2

+||z(65w)||2ds,

H2(R™) +||Vél;) ~Yo

which along with (i), (ii), and Theorem 1 completes the proof
[29]. O
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