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)e occurrence of a new strain of SARS-CoV-2 cannot be ruled out.)erefore, this study seeks to investigate the possible effects of
a hypothetical imperfect anti-COVID-19 vaccine on the control of not only the first variant of SARS-CoV-2 but also the second
(new) variant of SARS-CoV-2. We further examine the rates r and a, escape of quarantined infectious individuals from isolation
centers. )e control Rc and basic reproduction numbers R0 are computed which gives assess to obtain asymptotic stability of
disease-free equilibrium point globally and the existence of a unique persistent equilibrium solution. Numerical results reveal that
people infected with the second strain who are vaccinated with an imperfect vaccine are under control but the prevalence of the
second variant enhances the prevalence of the first variant. )us, discovering a vaccine that is effective (to a good extent) for the
prevention of variant 2 (new variant) is necessary for the control of COVID-19. Numerical results also reveal that increase in the
rate at which individuals infected with the first variant escape the isolation center gives rise to the population infected with the first
variant and lowers the peak of the population infected with the second variant. )is is probably because individuals infected with
the second variant appear to be more careful with their lives and get vaccinated more than individuals infected with the
first variant.

1. Introduction

Since 2019, COVID-19 has wreaked havoc in several nations,
resulting in toomany infections and deaths. It has resulted in
several economic failures. )ere were also millions of
confirmed COVID-19 cases and deaths worldwide. As a
result of its high transmission efficiency and catastrophic
infection outcomes, the disease continues to represent a
hazard to human health. Coughing, sneezing, encountering
sick persons, or touching things or surfaces contaminated
with fecal traces are the major transmission pathways for the
SARS-CoV-2 virus, according to [1]. According to [2], an
imperfect vaccination is one that is unable to protect all

vaccinated vulnerable persons. Vaccines must elicit an
immune response similar to that elicited by a typical illness
without producing the true infectious disease [3]. According
to [3], there are three types of defective vaccines: the first is
known as a leaky vaccine, which reduces infection but does
not eliminate the risk of illness following exposure to an
infectious disease. )e second vaccination is an all-or-
nothing vaccine that confers lifetime protection to certain
individuals but does not protect others. )e third vacci-
nation, which is only effective for a limited time, is di-
minishing. )rough transmission dynamics, many
researchers have attempted to investigate and comprehend
the dynamical behavior of infectious diseases [4–10].
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COVID-19 articles may be found in [11–14]. In [15, 16],
some optimal control problems are also established. Moshen
et al. [17] also developed a mathematical model of media
coverage impacts on COVID-19 dissemination. Moreover,
the equilibrium solution stability requirements were dis-
covered. Finally, they used numerical simulations to cor-
roborate the theoretical conclusions and better understand
the impact of changing factors on COVID-19 dissemination.
)eir findings suggest that media attention might be a useful
tool for reducing illness transmission. Hattaf et al. [18]
created a mathematical model to describe the dynamics of
viral infections in vivo, including HIV infection. )ree
common incidence functions are used to represent the
physical behavior of viral infection. )ey thoroughly studied
the model basic features as well as its stability.

Hattaf et al. [18] modeled a novel within-host between
SARS-CoV-2 and host pulmonary epithelial cells. Also, they
developed a new generalized fractional derivative and sta-
bility [19, 20]. )ey included the lytic and nonlytic immune
responses, as well as both mechanisms of virus-to-cell in-
fection in the model. )ey proved that the model was well-
posed and that equilibria existed. )ey looked at the model
dynamical behavior using two threshold parameters. Finally,
the biological implications of the analytical data were pro-
vided. A mathematical model was used by Iboi et al. [21] to
estimate the influence of an imperfect anti-COVID-19
vaccination on COVID-19 control in the United States. )e
model theoretical analysis, as well as model fitting and
parameter estimates, was completed. )ey used baseline
parameter values acquired by fitting the model using
COVID-19 mortality data for the United States to run
numerical simulations of the model. )eir findings revealed
that an anti-COVID-19 vaccine would need to be admin-
istered to at least 82 percent of the vulnerable US population,
with an estimated protective effect of 80 percent. )ey came
to the conclusion that combining the vaccination program
with other treatments such as social distance, wearing face
masks, and so on will considerably improve the flawed
vaccine. Olaniyi et al. [22] developed an epidemic model that
took into account transmission paths from sick, asymp-
tomatic, and hospitalized people. Using the Least Squares
approach, their model was fitted to the equivalent cumu-
lative number of hospitalized persons provided by the
Nigeria Center for Disease Control (NCDC). To test the
model stability around a disease-free equilibrium point, they
estimated the basic reproduction number and built the
Lyapunov function. )ey also used Pontryagin’s Maximum
Principle to determine the model’s best control. )ey used
numerical simulations to back up their theoretical work, and
the results showed that if the disease’s current effective
transmission rate is decreased by 50%, the basic repro-
duction number in Nigeria may be reduced to less than one.
Using early report case data, Nkamba and Martin Luther
[23] constructed and assessed a mathematical model of the
COVID-19 epidemic in Cameroon to anticipate the peak
and examine the influence of containment efforts and un-
diagnosed sick persons on the epidemic pattern and features
of COVID-19. Using appropriate Lyapunov functions, they
calculated the fundamental reproduction number and

established the global stability of both the disease-free and
endemic equilibria. )ey used a sensitivity analysis to de-
termine the most important parameters in influencing the
dynamics of their model. Given the scenario in Cameroon,
their findings revealed that a sluggish quarantine rate will
raise the peak of infected persons, which will expand with
further delays. Iboi et al. performed mathematical modeling
and analysis of the COVID-19 epidemic in Nigeria [24].
)ey used a locally asymptotically stability analysis to
provide a thorough investigation of their model. )e
COVID-19 Nigeria data are taken from the Nigeria Center
for Disease Control (NCDC) to parameterize the model.
)is was used to evaluate the community-wide effect of
different control and mitigation techniques over the whole
Nigerian nation, as well as in two Nigerian federation states
(Kano and Lagos) and the Federal Capital Territory (FCT) of
Abuja. In areas where social distance, lock-down, and other
community transmission reduction measures are not
adopted, their findings indicated that Nigeria will have a
devastatingly high COVID-19 death rate by April 2021 (in
the hundreds of thousands). Parra et al. [25] developed a
mathematical model of COVID-19 to investigate the effects
of the emergence of a new, more transmissible SARS-CoV-2
stain in a specific location. In their model, they also included
presymptomatic and asymptomatic infected people. Using
the next-generation matrix approach, they were able to
derive the model fundamental reproduction number, R0.
Furthermore, they proceeded the equilibria’s local and
global stability. Numerical simulations of the impact of a
novel more infectious SARS-COV-2 strain in a population
backed up their theoretical conclusions. According to their
findings, a new, more infectious SARS-CoV-2 variant will
arise, and the existing form prevalence will diminish.

Our work varies from previous COVID-19 research in
the following ways. Anggriani et al. [11] developed and
assessed a COVID-19 mathematical model that included the
transmission path of asymptomatic and symptomatic
compartments, as well as decreasing immunity, without
taking into account the effect of vaccination on the novel
SARS-CoV-2 variant. To guarantee that COVID-19 vacci-
nations give maximum protection in the future, researchers
must investigate the influence of an incomplete anti-
COVID-19 vaccine on the new variation. To analyze and
monitor the COVID-19 epidemic, Youssef et al. [26] sug-
gested a modified version of the Susceptible-Exposed-In-
fectious-Quarantined-Recovered (SEIQR) essential disease
dynamics model for the COVID-19 emergence. )ey only
examined the standard Susceptible-Exposed-Infectious-
Quarantined-Recovered of COVID-19, ignoring the possi-
bility of a new SARS-CoV-2 variation and the impact of the
present anti-COVID-19 vaccination on the new variety.
Parra et al. [25] proposed an ordinary differential equation-
based model to investigate a new more transmissible SARS-
CoV-2 strain through the transmission route of exposed,
presymptomatic, symptomatic, and asymptomatic classes,
but they did not look into the impact of the COVID-19
vaccine on the new more transmissible SARS-CoV-2 strain.
)e absence of vaccinated persons in the presence of the new
strain is costly since it is necessary to determine if the current
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COVID-19 vaccination protects against the new strain. As a
result, the current study will fill in all of the gaps mentioned
above.

SARS-CoV-2 has recently been discovered in various
countries with a novel strain that offers a greater hazard to
humans. )e current study investigates the impact of an
imperfect vaccine on the dynamics of COVID-19 with two
SARS-CoV-2 variants, which was inspired by a paper [25], in
which they proposed two SARS-CoV-2 variants and pre-
symptomatic infectious individuals on the dynamics of
COVID-19. )is distinguishes our work from that of [25].
)e unique component of this work is modeling a new
version of SARS-CoV-2 transmission dynamics in order to
analyze the influence of a hypothetical imperfect anti-
COVID-19 vaccination on the control of both the first and
second variants of SARS-CoV-2. It is critical and necessary
to determine how well the current antigen-specific COVID-
19 vaccine protects individuals against the new variant so
that scientists can determine whether an update to the
current antigen-specific anti-COVID-19 vaccine is required
to ensure that the COVID-19 vaccine continues to provide
optimal protection as new antigenically distinct variants
emerge in the future. Furthermore, we include the influence
of the escape rate of quarantined infected persons from
isolation facilities in Nigeria in our model owing to fears or
beliefs that the government is utilizing the epidemic to
enrich its pockets in Nigeria [27]. None of the most current
and most recent publications on COVID-19, such as
[11, 25, 26, 28–30], have taken these specific elements into
account. Individuals should be aware that the COVID-19
vaccine does not provide 100 percent protection since im-
munization is one of the most effective advancements in
disease prevention. On the other hand, it is crucial that
everyone (with the exception of individuals with severe
allergy diseases) obtains a vaccine. As a result, we develop a
mathematical model that accounts for poor vaccination on
both SARS-CoV-2 types. To support the analytical con-
clusions, a global study of the model is performed and
numerical simulations are shown.

)e research aims and importance of the study are
highlighted in the following sections based on the above.

1.1. Objectives.

(1) To explore the impact of the new variant of SARS-
CoV-2 in a population, in the presence of an im-
perfect vaccine

(2) To examine the behavior of solution trajectories of
the model when the new variant transmission rate of
SARS-CoV-2 is higher than the pre-existing one [31]

(3) To determine the impact of escape of quarantined
infectious individuals from isolation centers

1.2. Significance.

(1) )e study will help the health authorities to know the
significance of imperfect vaccination on the

transmission dynamics in the presence of a new
variant of SARS-CoV-2.

(2) )e study will help to know whether vaccinating the
population against the new variant of SARS-CoV-2
plays a role in the control reproduction number.

(3) )e evaluation of analytical results will provide
useful information that will help to eradicate
COVID-19 in the population.

(4) )e study will help the policymakers on health to
have a clear picture of the impact of imperfect
vaccination against the new variant.

(5) )e research will aid government officials in rec-
ognizing the risk of COVID-19 patients fleeing
isolation facilities and developing strategies to ed-
ucate them in their different local languages and
dialects about COVID-19 and the repercussions of
refusing the government free treatment.

2. Mathematical Formulation of COVID-
19 Model

)is section describes the transmission dynamics of
COVID-19, and the formulated model is presented, re-
spectively. )e total individual population, denoted by N, is
divided into nine categories: susceptible individuals S,
vaccinated individuals V (individuals who get vaccinated),
two classes of exposed individuals E1,2, two classes of
quarantined infectious individuals Q1,2, two classes of
unquarantined infectious individuals U1,2, and recovered
individuals R, so that
N � S + V + E1 + E2 + Q1 + Q2 + U1 + U2 + R.

)e susceptible individuals population is generated by
the recruitment of individuals into the population, either by
birth or immigration, at the rate Λ. We assume that indi-
viduals would belong to one of the classes described above,
depending on the COVID-19 status [25]. We also assume
that vaccine is not perfect, and therefore vaccinated indi-
viduals may contact the virus at the rates α(1 − ψ1) and
η(1 − ψ2), where ψ1 ∈ [0, 1] and ψ2 ∈ [0, 1] represent the
vaccine efficacy against variant 1 and variant 2. Furthermore,
it is noteworthy that ψ1 � 1 and ψ2 � 1 imply that a vaccine
provides 100% assurance against COVID-19, while ψ1 � 0
and ψ2 � 0 indicate a vaccine that does not secure indi-
viduals in any way. Furthermore, because the vaccine was
designed to protect against variant 1, we assume that its
efficacy against variant 2 is less than its efficacy against
variant 1 (i.e., ψ2 <ψ1). It is also assumed that someone who
is infected with the first variant of SARS-CoV-2 cannot catch
the second variant (the new variant) due to an acquired
immune response [32, 33]. )ere is a progression rate from
quarantined infectious individual compartments to
unquarantined infectious individual compartments due to
the probability of fleeing isolation centers. It is assumed that
quarantined infectious individuals are not severely sick (i.e.,
they are moderately or mildly sick). By assumption, there is
no loss of immunity [25].

Applying the biological assumptions, nomenclature of
parameters in Table 1, the following system is formulated:
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dS

dt
� Λ − αSU1 − ηSU2 − (κ + μ)S,

dV

dt
� κS − α 1 − ψ1( 􏼁VU1 − η 1 − ψ2( 􏼁VU2 − μV,

dE1

dt
� αSU1 + α 1 − ψ1( 􏼁VU1 − (β + μ)E1,

dQ1

dt
� (1 − θ)βE1 − r + τ1 + μ + δ1( 􏼁Q1,

dU1

dt
� θβE1 + rQ1 − τ2 + δ2 + μ( 􏼁U1,

dE2

dt
� ηSU2 + η 1 − ψ2( 􏼁VU2 − (p + μ)E2,

dQ2

dt
� (1 − b)pE2 − a + c1 + μ + δ3( 􏼁Q2,

dU2

dt
� bpE2 + aQ2 − c2 + μ + δ4( 􏼁U2,

dR

dt
� τ1Q1 + τ2U1 + c1Q2 + c2U2 − μR,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

with initial conditions such as

S(0) � S0 > 0,

V(0) � V0 > 0,

E1(0) � E10 > 0,

Q1(0) � Q10 > 0,

U1(0) � U10 > 0,

E2(0) � E20 > 0,

Q2(0) � Q20 > 0,

U2(0) � U20 > 0,

R(0) � R0 > 0,

(2)

where the model parameters are nonnegative. For biological
reasons, the model is analyzed in the feasible-region as
follows:

D � S, V, E1, Q1, U1, E2, Q2, U2, R( 􏼁 ∈ R9
+: 0≤ S≤

Λ
μ + κ

, 0≤V≤
κΛ

μ(μ + κ)
, N≤
Λ
μ

􏼠 􏼡, (3)

that shows system (1) is to be positively invariant. )us, the
model is well-posed both mathematically and

epidemiologically in D. )e first eight equations of system
(1) do not affect the compartments R, and therefore we have

dS

dt
� Λ − αSU1 − ηSU2 − (κ + μ)S,

dV

dt
� κS − α 1 − ψ1( 􏼁VU1 − η 1 − ψ2( 􏼁VU2 − μV,

dE1

dt
� αSU1 + α 1 − ψ1( 􏼁VU1 − (β + μ)E1,

dQ1

dt
� (1 − θ)βE1 − r + τ1 + μ + δ1( 􏼁Q1,

dU1

dt
� θβE1 + rQ1 − τ2 + δ2 + μ( 􏼁U1,

dE2

dt
� ηSU2 + η 1 − ψ2( 􏼁VU2 − (p + μ)E2,

dQ2

dt
� (1 − b)pE2 − a + c1 + μ + δ3( 􏼁Q2,

dU2

dt
� bpE2 + aQ2 − c2 + μ + δ4( 􏼁U2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)
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2.1. Basic Reproduction Number. To determine the overall
dynamical behavior of the equilibrium solution, the control
reproduction number, Rc, will be used. Rc is computed as the

difference between the rate of new infection in each infected
compartment F and the rate of transfer between each infected
compartment G using the approach [38]. As a result, we have

dE1

dt

dQ1

dt

dU1

dt

dE2

dt

dQ2

dt

dU2

dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� F − G �

αSU1 + α(1 − ψ)1VU1

0

0

ηSU2 + η 1 − ψ2( 􏼁VU2

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

(β + μ)E1

− (1 − θ)βE1 + r + m1( 􏼁Q1

− θβE1 − rQ1 + m2U1

(p + μ)E2

− (1 − b)pE2 + a + m3( 􏼁Q2

− bpE2 − aQ2 + m4U2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where

m1 � τ1 + μ + δ1,

m2 � τ2 + μ + δ2,

m3 � c1 + μ + δ3,

m4 � c2 + μ + δ4.

(6)

)e disease-free equilibrium is

W
0

� S
0
, V

0
, E

0
1, Q

0
1, U

0
1, E

0
2, Q

0
2, U

0
2􏼐 􏼑

�
Λ

μ + κ
,

κΛ
μ(μ + κ)

, 0, 0, 0, 0, 0, 0􏼠 􏼡.

(7)

Consequently, Rc for the first and second variants is
given as

Table 1: Summary of the parameters.

Parameter Meaning Value Reference
N0 Initial population size 500,000 Assumed
α Contact rate between S and U1 0.5/N0day

− 1 [24]
η Contact rate between S and U2 0.65/N0day

− 1 [24]
θ Fraction of E1 who are unquarantined infectious 0.3 Assumed
b Fraction of E2 who are unquarantined infectious 0.3 Assumed
τ1 Recovery rate of quarantined infectious individuals 0.0815day− 1 [34]
τ2 Recovery rate of unquarantined infectious individuals 1/14day− 1 [35]
c1 Recovery rate of Q2 0.0815day− 1 [34]
c2 Recovery rate of U2 1/14day− 1 [35]
r Probability of fleeing isolation centers of Q1 0.01day− 1 Assumed
a Probability of fleeing isolation centers of Q2 0.01day− 1 Assumed
κ Vaccination rate 1/42day− 1 Assumed
Λ Recruitment rate N0μday

− 1 Assumed
μ Natural death rate 0.01186year− 1 [36, 37]
β Incubation rate of SARS-CoV-2 0.142 day− 1 [23]
p Incubation rate of new variant of SARS-CoV-2 0.0152 day− 1 Assumed
δ1 Disease-induced death rate of Q1 0.015 [24]
δ2 Disease-induced death rate of U1 0.015 [24]
δ3 Disease-induced death rate of Q2 0.02day− 1 Assumed
δ4 Disease-induced death rate of U2 0.02day− 1 Assumed
ψ1 Vaccine efficacy against variant 1 [0.1 − 0.7] Assumed
ψ2 Vaccine efficacy against variant 2 [0.1 − 0.65] Assumed
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Rc � max RFVc
, RSVc

􏽮 􏽯, (8)

where

RFVc
�
Λβα θm1 + r( 􏼁 μ + 1 − ψ1( 􏼁κ( 􏼁

m2μ(β + μ) m1 + r( 􏼁(κ + μ)
, (9)

and

RSVc
�
Λpη bm3 + a( 􏼁 μ + 1 − ψ2( 􏼁κ( 􏼁

m4μ(p + μ) m3 + a( 􏼁(κ + μ)
. (10)

Rc is used as an invasion threshold for both predicting
COVID-19 outbreaks and assessing control strategies that
would reduce COVID-19 spread in the community by low-
ering Rc and parameters that would increase disease spread by
increasing Rc. When control methods are ineffectual, the value
of R0 may be calculated from the value of Rc, in the sense that
ψ1 � 0, ψ2 � 0, and κ � 0. As a result, without any control
mechanisms, the basic reproduction number is

R0 � max RFV, RSV􏼈 􏼉, (11)

where

RFV �
Λβα θm1 + r( 􏼁

m2μ(β + μ) m1 + r( 􏼁
, (12)

and

RSV �
Λpη bm4 + a( 􏼁

m5μ(p + μ) m4 + a( 􏼁
. (13)

However, our analysis will be based on the control re-
production number, Rc. Furthermore, it is assumed that the
population is completely susceptible initially, and Rc measures
the average secondary cases at the beginning of the epidemic.

3. Stability Analysis

)e global asymptotic stability for the disease-free equi-
librium is examined by following a positive definite Lya-
punov function. See [22, 23, 39] for further information on
the creation of the Lyapunov function.

3.1. Global Stability of Disease-Free Equilibrium

Theorem 1. Ee disease-free equilibrium is globally as-
ymptotically stable if Rc < 1.

Proof. Consider the Lyapunov function as follows:

L � β θm1 + r( 􏼁E1 + r(β + μ)Q1 +(β + μ) m1 + r( 􏼁U1 + p bm3 + a( 􏼁E2 + a(p + μ)Q2 +(p + μ) m3 + a( 􏼁U2. (14)

)e time derivative of (10) along the COVID-19 model
(4) is

_L � β θm1 + r( 􏼁 αSU1 + α 1 − ψ1( 􏼁VU1 − (β + μ)E1( 􏼁 + r(β + μ) (1 − θ)βE1 − m1 + r( 􏼁Q1( 􏼁

+(β + μ) m1 + r( 􏼁 θβE1 + rQ1 − m2U1( 􏼁 + p bm3 + a( 􏼁 ηSU2 + η 1 − ψ2( 􏼁VU2 − (p + μ)E2( 􏼁

+ a(p + μ) (1 − b)pE2 − a + m3( 􏼁Q2( 􏼁 +(p + μ) m3 + a( 􏼁 bpE2 + aQ2 − m4U2( 􏼁,

� β θm1 + r( 􏼁αSU1 + α 1 − ψ1( 􏼁VU1 − β θm1 + r( 􏼁 β + μE1( 􏼁 + r(β + μ)βE1

− r(β + μ)θβE1 − (β + μ) m1 + r( 􏼁m2U1 + p bm3 + a( 􏼁ηSU2 + η 1 − ψ2( 􏼁VU2 − p bm4 + a( 􏼁 p + μE2( 􏼁

+ a(p + μ)pE2 − a(p + μ)bpE2 − (p + μ) m3 + a( 􏼁m4U2,

� β θm1 + r( 􏼁αSU1 + α 1 − ψ1( 􏼁VU1 − β θm1 + r( 􏼁(β + μ)E1 + r(β + μ)(1 − θ)βE1 +(β + μ) m1 + r( 􏼁θβE1

− (β + μ) m1 + r( 􏼁m2U1 + p bm3 + a( 􏼁ηSU2 + η 1 − ψ2( 􏼁VU2

− p bm3 + a( 􏼁(p + μ)E2 + a(p + μ)(1 − b)pE2 +(p + μ) m4 + a( 􏼁bpE2 − (p + μ) m3 + a( 􏼁m4U2,

� β θm1 + r( 􏼁αSU1 + α 1 − ψ1( 􏼁VU1 − rβE1(β + μ)(1 − θ) + r(β + μ)(1 − θ)βE1

− (β + μ) m1 + r( 􏼁m2U1 + p bm3 + a( 􏼁 + ηSU2 + η 1 − ψ2( 􏼁VU2 − apE2(p + μ)(1 − b)

+ a(p + μ)(1 − b)pE2 − (p + μ) m3 + a( 􏼁m4U2,

� (β + μ) m1 + r( 􏼁m2U1
Λβα θm1 + r( 􏼁μ + 1 − ψ1( 􏼁κ
m2μ(β + μ) m1 + r( 􏼁(κ + μ)

− 1􏼠 􏼡 +(p + μ) m3 + a( 􏼁m4U2
Λpη bm3 + a( 􏼁μ + 1 − ψ2( 􏼁κ
m4μ(p + μ) m3 + a( 􏼁(κ + μ)

− 1􏼠 􏼡,

� m2(β + μ) m1 + r( 􏼁 RFVc
− 1􏼐 􏼑U1 + m5(ρ + μ) m3 + a( 􏼁 RSVc

− 1􏼐 􏼑U2, ≤ m2(β + μ) m1 + r( 􏼁U1 + m4(ρ + μ) m3 + a( 􏼁U2( 􏼁 Rc − 1( 􏼁.

(15)
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Furthermore, _L � 0↔Q1 � 0, U1 � 0 and Q2 � 0, U2 � 0
or S � S0, V � V0, and Rc � 1.

)us, the singleton set is the biggest compact invariant set
in (S, ; V, ; E1, ; Q1, ; U1, ; E2, ; Q2, ; U2) ∈ D : _L � 0, and W0
is globally asymptotically stable in D according to LaSalle’s
Invariance Principle [40]. )e aforementioned result has the
epidemiological implication that the starting sizes of the
model’s subpopulation (i.e., the initial number of sick persons)
introduced into the community do not have to be within the
model’s disease-free equilibrium W0 base of attraction. For
Rc < 1, this suggests that COVID-19 can be eradicated re-
gardless of the original size of the infectious population. □

3.2. Existence and Uniqueness of Endemic Equilibrium
Solution. Wewill show that the formulated COVID-19 model
contains an endemic equilibrium point, W1. )e COVID-19
infection continues in the population at the endemic equi-
librium point, which is a positive steady-state solution. )e
solution trajectories of the model are analyzed; when the
transmission routes of the second variant of SARS-CoV-2 are
higher than the first variant [25], we establish the existence of a
single endemic equilibrium point if the condition ηU∗2 > αU∗1
and then E∗1 � U∗1 � 0 hold. )e impact of the second SARS-
CoV-2 variant on the dynamics of COVID-19 in light of
defective vaccination in particular countries at the time of
advance is determined analytically. )e following are the
equations:

Λ − αS
∗
U
∗
1 − ηS

∗
U
∗
2 − (κ + μ)S

∗
� 0,

κS
∗

− α 1 − ψ1( 􏼁V
∗
U
∗
1 − η 1 − ψ2( 􏼁V

∗
U
∗
2 − μV

∗
� 0,

(1 − b)pE
∗
2 − a + c1 + μ + δ3( 􏼁Q

∗
2 � 0,

bpE
∗
2 + aQ

∗
2 − c2 + μ + δ4( 􏼁U

∗
2 � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

Let W1 � (S∗, V∗, E∗2 , Q∗2 ) where S∗, V∗, E∗2 , and Q∗2 can
be found from (16) to be

S
∗

�
Λ

αU
∗
1 + ηU

∗
2 + κ + μ

,

V
∗

�
Λκ

αU
∗
1 + ηU

∗
2 + κ + μ( 􏼁 α 1 − ψ1( 􏼁U

∗
1 + η 1 − ψ2( 􏼁U

∗
2 + μ( 􏼁

,

E
∗
2 �

a + m3( 􏼁Q
∗
2

(1 − b)p
,

Q
∗
2 �

m4(1 − b)p m3 + a( 􏼁

m3 + a( 􏼁p a + bm3( 􏼁
U
∗
2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

)e following equations for U∗1 and U∗2 are obtained after
substituting (16) into (17),

ηΛ α 1 − ψ1( 􏼁U
∗
1 + η 1 − ψ2( 􏼁U

∗
2 + μ + κ 1 − ψ2( 􏼁( 􏼁

αU
∗
1 + ηU

∗
2 + κ + μ( 􏼁 α 1 − ψ1( 􏼁U

∗
1 + η 1 − ψ2( 􏼁U

∗
2 + μ( 􏼁

−
(p + μ)m4 a + m3( 􏼁

p bm3 + a( 􏼁
� 0. (18)

If we let

f x1, x2( 􏼁 �
ηΛ α 1 − ψ1( 􏼁x1 + η 1 − ψ2( 􏼁x2 + μ + κ 1 − ψ2( 􏼁( 􏼁

αx1 + ηx2 + κ + μ( 􏼁 α 1 − ψ1( 􏼁x1 + η 1 − ψ2( 􏼁x2 + μ( 􏼁
−

(p + μ)m4 a + m3( 􏼁

p bm3 + a( 􏼁
, (19)

so that _f(x1, x2)< 0, lima⟶+∞, f(x1, x2)< 0, and

f(0) �
m4(p + μ) m3 + a( 􏼁( 􏼁

p a + bm3( 􏼁
RSVc

− 1􏼐 􏼑. (20)

In the sense that if RSVc
> 1, then f(0)> 0. )us, for the

equation f(a) � 0, a unique positive solution exists only
when RSVc

> 1.

Theorem 2. Model (4) has a unique W1 whenever
RSVc
>max RFVc,1􏽮 􏽯.

3.3. Global Stability of Endemic Equilibrium Solution (W1).
In order to show that COVID-19 in the population persists
and converges to W1, the following result is stated and
proved.

Theorem 3. Ee unique equilibrium W1 is globally as-
ymptotically stable (GAS) whenever Rc > 1.

Proof. Given the following equations at the endemic
equilibrium point W1:
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Λ � μS
∗

+ μV
∗

+ αS
∗
U
∗
1 + ηS

∗
U
∗
2 + αU

∗
1 1 − ψ1( 􏼁V

∗
+ ηU
∗
2 1 − ψ2( 􏼁V

∗
,

κS
∗

� α 1 − ψ1( 􏼁V
∗
U
∗
1 + η 1 − ψ2( 􏼁V

∗
U
∗
2 + μV

∗
,

(β + μ)E
∗
1 � αS

∗
U
∗
1 + α 1 − ψ1( 􏼁V

∗
U
∗
1 ,

(p + μ)E
∗
2 � ηS

∗
U
∗
2 + η 1 − ψ2( 􏼁V

∗
U
∗
2 ,

Q
∗
1 �

(1 − θ)μU
∗
1

θμ + r
,

Q
∗
2 �

(1 − b)μU
∗
2

bμ + a
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Let

X � S
∗
, V
∗
, E
∗
1 , E
∗
2 , Q
∗
1 , Q
∗
2 , U
∗
1 , U
∗
2( 􏼁

T ∈ R8
+. (22)

And consider the following Lyapunov function:

V(x) � S − S
∗

− S
∗ln

S

S
∗􏼒 􏼓 + V − V

∗
− V
∗ln

V

V
∗􏼒 􏼓 + E1 − E

∗
1 − E
∗
1 ln

E1

E
∗
1

􏼠 􏼡 + d1 Q1 − Q
∗
1 − Q
∗
1 ln

Q1

Q
∗
1

􏼠 􏼡

+ d2 Q2 − Q
∗
2 − Q
∗
2 ln

Q2

Q
∗
2

􏼠 􏼡 + f1 U1 − U
∗
1 − U
∗
1 ln

U1

U
∗
1

􏼠 􏼡 + f2 U2 − U
∗
2 − U
∗
2 ln

U2

U
∗
2

􏼠 􏼡,

(23)

where

d1 �
αr S
∗

+ 1 − ψ1( 􏼁V
∗

( 􏼁

μ(μ + r)
,

d2 �
ηa S
∗

+ 1 − ψ2( 􏼁V
∗

( 􏼁

μ
,

f1 �
α S
∗

+ 1 − ψ1( 􏼁V
∗

( 􏼁

μ
,

f2 �
η S
∗

+ 1 − ψ2( 􏼁V
∗

( 􏼁

μ
.

(24)

Differentiating V with respect to time gives

_V(x) � 1 −
S
∗

S
􏼠 􏼡 _S + 1 −

V
∗

V
􏼠 􏼡 _V + 1 −

E
∗
1

E1
􏼠 􏼡 _E1 + 1 −

E
∗
2

E2
􏼠 􏼡 _E2 + d1 1 −

Q
∗
1

Q1
􏼠 􏼡 _Q1 + d2 1 −

Q
∗
2

Q2
􏼠 􏼡 _Q2

+ f1 1 −
U
∗
1

U1
􏼠 􏼡 _U1 + f2 1 −

U
∗
2

U2
􏼠 􏼡 _U2.
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_V(x) � 1 −
S
∗

S
􏼠 􏼡 Λ − αSU1 − ηSU2 − (κ + μ)S( 􏼁 + 1 −

V
∗

V
􏼠 􏼡 κS − α 1 − ψ1( 􏼁VU1 − η 1 − ψ2( 􏼁VU2 − μV( 􏼁

+ 1 −
E
∗
1

E1
􏼠 􏼡 αSU1 + α 1 − ψ1( 􏼁VU1 − (β + μ)E1( 􏼁 + 1 −

E
∗
2

E2
􏼠 􏼡 ηSU2 + η 1 − ψ2( 􏼁VU2 − (p + μ)E2( 􏼁

+ d1 1 −
Q
∗
1

Q1
􏼠 􏼡 (1 − θ)βE1 − r + m1( 􏼁Q1( 􏼁 + d2 1 −

Q
∗
2

Q2
􏼠 􏼡 (1 − b)pE2 − a + m3( 􏼁Q2( 􏼁

+ f1 1 −
U
∗
1

U1
􏼠 􏼡 θβE1 + rQ1 − m2U1( 􏼁 + f2 1 −

U
∗
2

U2
􏼠 􏼡 bpE2 + aQ2 − m4U2( 􏼁.

(25)

After developing and using (21), we have the following:

_V(x) �
− μ
S

S − S
∗

( 􏼁
2

+ αU
∗
1 S
∗

+ 1 − ψ1( 􏼁V
∗

( 􏼁 + ηU
∗
2 S
∗

+ 1 − ψ2( 􏼁V
∗

( 􏼁 + κS
∗

+ μV
∗

− μV − κS
V
∗

V

+ d1 (1 − θ)β + f1θβE1 − μ − β( 􏼁E1 + d2 (1 − b)p + f2bpE2 − μ − p( 􏼁E2 − αSU1
E
∗
1

E1

− 1 − ψ1( 􏼁αVU1
E
∗
1

E1
− 1 − ψ2( 􏼁ηVU2

E
∗
2

E2
+(μ + β)E

∗
1 − (p + μ)E

∗
2 + f1r − d1(μ + r)( 􏼁Q1

+ f2a − d2(μ + a)( 􏼁Q2 − d1(1 − θ)βE1
Q
∗
1

Q1
− d2(1 − b)pE2

Q
∗
2

Q2
+ d1(μ + r)Q

∗
1 + d2(μ + a)Q

∗
2

+ − f1μ + αU
∗
1 + 1 − ψ1( 􏼁αV

∗
( 􏼁U1 + − f2μ + ηU

∗
2 + 1 − ψ2( 􏼁ηV

∗
( 􏼁U2 − f1θβE1

U
∗
1

U1
− f2pbE2

U
∗

U2

− f1rQ1
U
∗
1

U1
− f2aQ2

U
∗
2

U2
+ f1μU

∗
1 + f2μU

∗
2 .

(26)

Substituting d1, d2, f1, and f2 by their values and
exploiting, we have

_V(x) �
− μ
S

S − S
∗

( 􏼁
2

+ μV
∗ 3 −

S
∗

S
−

V

V
∗ −

SV
∗

S
∗
V

􏼠 􏼡 + αU
∗
1S
∗ 3 +

r(1 − θ)

θμ + r
􏼠 􏼡 + ηU

∗
2S
∗ 3 +

a(1 − b)

bμ + a
􏼠 􏼡

+ 1 − ψ1( 􏼁αU
∗
1V
∗ 4 +

r(1 − θ)

θμ + r
􏼠 􏼡 + 1 − ψ2( 􏼁ηU

∗
2V
∗ 4 +

a(1 − b)

bμ + a
􏼠 􏼡 − ηSU2

E
∗
2

E2
− αSU1

E
∗
1

E1

− 1 − ψ1( 􏼁αVU1
E
∗
1

E1
− 1 − ψ2( 􏼁ηVU2

E
∗
2

E2
−

1 − ψ1( 􏼁αSU
∗
1V
∗2

S
∗
V
∗ −

1 − ψ2( 􏼁ηSU
∗
2V
∗2

S
∗
V
∗

−
αr(1 − θ) S

∗
+ 1 − ψ1( 􏼁V

∗
( 􏼁U

∗
1

(θμ + r)
−
ηa(1 − b) S

∗
+ 1 − ψ2( 􏼁V

∗
( 􏼁U

∗
2

(bμ + a)
−
ηa S
∗

+ 1 − ψ2( 􏼁V
∗

( 􏼁Q2U
∗
2

μU2

−
αθβ S

∗
+ 1 − ψ1( 􏼁V

∗
( 􏼁E1U

∗
1

μU1
−
ηbp S

∗
+ 1 − ψ2( 􏼁V

∗
( 􏼁E2U

∗
2

μU2
−
αr S
∗

+ 1 − ψ1( 􏼁V
∗

( 􏼁Q1U
∗
1

μU1
.

(27)
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Define

g �
(1 − θ)r

θμ + r
,

k �
θ(μ + r)

θμ + r
,

h �
(1 − b)a

bμ + a
,

s �
b(μ + a)

bμ + a
.

(28)

)en,

g + h � 1, k + s � 1,

3 + g � 3g + 3k + g, � 3k + 4g,

3 + h � 3h + 3s + h, � 3s + 4h,

4 + g � 4k + 5g4 + h � 4s + 5h.

(29)

_V(x) can be rewritten as

_V(x) �
− μ
S

S − S
∗

( 􏼁
2

+ μV
∗ 3 −

S
∗

S
−

V

V
∗ −

SV
∗

S
∗
V

􏼠 􏼡 +(3h + 4g)αS
∗
U
∗
1 +(3s + 4k)ηS

∗
U
∗
2

+(4h + 5g) 1 − ψ1( 􏼁αV
∗
U
∗
1 +(4s + 5k) 1 − ψ2( 􏼁ηV

∗
U
∗
2 − αSU1

E
∗
1

E1
− ηSU2

E
∗
2

E2
− 1 − ψ1( 􏼁αVU1

E
∗
1

E1

− 1 − ψ2( 􏼁ηVU2
E
∗
2

E2
−

1 − ψ1( 􏼁αSU
∗
1V
∗2

S
∗
V
∗ −

1 − ψ2( 􏼁ηSU
∗
2V
∗2

S
∗
V
∗ −

αr(1 − θ) S
∗

+ 1 − ψ1( 􏼁V
∗

( 􏼁U
∗
1

(θμ + r)

−
ηa(1 − b) S

∗
+ 1 − ψ2( 􏼁V

∗
( 􏼁U

∗
2

(bμ + a)
−
αθβ S

∗
+ 1 − ψ1( 􏼁V

∗
( 􏼁E1U

∗
1

μU1
−
ηbp S

∗
+ 1 − ψ2( 􏼁V

∗
( 􏼁E2U

∗
2

μU2

−
αr S
∗

+ 1 − ψ1( 􏼁V
∗

( 􏼁Q1U
∗
1

μU1
−
ηa S
∗

+ 1 − ψ2( 􏼁V
∗

( 􏼁Q2U
∗
2

μU2
,

_V(x) �
− μ
S

S − S
∗

( 􏼁
2

+ μV
∗ 3 −

S
∗

S
−

V

V
∗ −

SV
∗

S
∗
V

􏼠 􏼡 + kαS
∗
U
∗
1 3 −

S
∗

S
−

SU1E
∗
1

S
∗
U
∗
2E1

−
θβE1

kμU1
􏼠 􏼡

+ sηS
∗
U
∗
2 3 −

S
∗

S
−

SU2E
∗
2

S
∗
U
∗
2E2

−
bpE2

sμU2
􏼠 􏼡 + gαS

∗
U
∗
1 4 −

S
∗

S
−

SU1E
∗
1

S
∗
U
∗
1E1

−
rQ1

gμU1
−

r(1 − θ)βE1Q
∗
1

gμ(μ + r)U
∗
1Q1

􏼠 􏼡

+ hηS
∗
U
∗
2 4 −

S
∗

S
−

SU2E
∗
2

S
∗
U
∗
2E2

−
aQ2

hμU2
−

a(1 − b)pE2Q
∗
2

hμ(μ + a)U
∗
2Q2

􏼠 􏼡 + k 1 − ψ1( 􏼁αV
∗
U
∗
1 4 −

S
∗

S
−

VU1E
∗
1

V
∗
U
∗
1E1

−
θβE1

kμQ1
−

SV
∗

S
∗
V

􏼠 􏼡

+ s 1 − ψ2( 􏼁αV
∗
U
∗
2 4 −

S
∗

S
−

VU2E
∗
2

V
∗
U
∗
2E2

−
bpE2

sμQ2
−

SV
∗

S
∗
V

􏼠 􏼡 + g 1 − ψ1( 􏼁αV
∗
U
∗
1 5 −

S
∗

S
−

VU1E
∗
1

V
∗
U
∗
1E1

−
SV
∗

S
∗
V

−
r(1 − θ)βQ

∗
1E1

gμ(μ + r)U
∗
1Q1

−
rQ1

gμU1
􏼠 􏼡

+ h 1 − ψ2( 􏼁ηV
∗
U
∗
2 5 −

S
∗

S
−

VU2E
∗
2

V
∗
U
∗
2E2

−
SV
∗

S
∗
V

−
a(1 − b)pQ

∗
2E2

hμ(μ + a)U
∗
2Q2

−
aQ2

hμU2
􏼠 􏼡.

(30)

By arithmetic-geometric means inequality, i.e.,
n − (m1 + m2 + · · · + mn)≤ 0, where m1.m2 . . . mn � 1 and
m1, m2, . . . , mn > 0, it follows that _V≤ 0 with V � 0 if and
only if S � S∗, V � V∗, E1 � E∗1 , E2 � E∗2 , Q1 � Q∗1 , Q2 � Q∗2 ,
U1 � U∗1 , and U2 � U∗2 . Hence, (W1) is said to be GASwhich
follows LaSalle’s Invariance Principle [12]. □

3.4. Sensitivity and Uncertainty Analysis. Figures 1 and 2
show the sensitivity and uncertainty analysis SA/UA of the
obtained reproduction numbers for both variants with 2000
samples (up to 5 simulations for Figure 1 and a single
simulation for Figure 2), getting a reliability indicator of
100%. From the SA in Figure 1(a), it is noticeable that the
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parameters ψ1, μ, and τ1 contribute most to the disease
reduction while the parameters Λ, θ, and α contribute to the
spread of the disease. On the other hand, the UA in
Figure 1(b) shows that the range of the RFVc

is approximately
[0.4 − 1.8], though most of the outputs are concentrated in
low values ([0.4 − 1.1]). From the SA in Figure 2(a), it is
noticeable that the parameters ψ2, μ, and c2 contribute most
to the disease reduction while the parameters b, a, η, p, andΛ
contribute to the spread of the disease. On the other hand,
the UA in Figure 2(b) shows that the range ofRSVc

is ap-
proximately [0.2 − 2], and most of the outputs are con-
centrated in low values ([0.2 − 1.1]).

4. Numerical Simulations and Discussion

)is section presents numerical solutions of the proposed
model and discussion of our findings. All simulations are
done onMATLAB platform while parameter values used are
in Table 1.

4.1. Investigationof Stability. Figure 3 shows the trajectories of
the state variables in the proposed model when Rc < 1. Dif-
ferent initial values are used as shown in Figure 3. Although the
number of individuals in the infected classes (i.e., exposed
individuals, quarantined individuals, and undetected
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Figure 2: Global sensitivity and uncertainty analysis of variant 2. (a) Partial rank correlation coefficients (PRCC) for variant 2. (b) )e box
plot of variant 2.
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plot of variant 1.
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individuals) first increases, it later decreases and attains a
disease-free state. )is confirms the result in )eorem 1. In
other words, the condition R0 < 1 is sufficient for the disease
control irrespective of the initial size of infection.

In Figure 4, the number of susceptible individuals de-
creases and reaches a stable equilibrium. )e populations of
the vaccinated individuals exhibit ups and downs until a
stable equilibrium is reached. Infected classes (i.e., exposed
individuals, quarantined individuals, and undetected indi-
viduals) approach the equilibrium position after early rises.
It very well may be found in Figure 4 that the infectious
population approaches the endemic point with Rc > 1.
However, before approaching to endemic point, the infected
individuals increase. )us, after a certain percentage of the
population has become vaccinated, infected, and recovered,
the entire population will have certain level of indirect
immunity. )is is known as herd immunity.

4.2. Impact of Intervention Strategies. Figure 5 shows the
impact of the new variant of SARS-CoV-2 in the presence of
imperfect vaccine. RFVc

� 0.7899 andRSVc
� 0.8287 imply

that the spread of variant 1 of SARS-CoV-2 is relatively
under control than the spread of variant 2. Furthermore,
Figure 5 shows that prevalence of variant 2 enhances the
prevalence of variant 1. )us, discovering a vaccine which is
effective (to a good extent) for the prevention against variant
2 is necessary for the control of COVID-19.

Simulation in Figure 6 is done to investigate the
impact of escape of quarantined infectious individuals
from isolation centers. )e parameters responsible for this
are r and a. When r � a � 0.01, a good number of sus-
ceptible individuals become vaccinated leading to an
increase in vaccinated population. )is population later
reduces as the susceptible population decreases (see
subplot 1). It can also be seen from the subplots of 3–8 in
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Figure 3:)ese graphs are obtained by numerically solving the proposed model using ψ1 � 0.7 andψ2 � 0.65 and other parameter values as
contained in Table 1. With this choice of parameter values, Rc � 0.6742, where S is the susceptible individuals, V is the vaccinated in-
dividuals, E1 is the individuals exposed to variant 1, Q1 is the quarantined individuals who are infected with variant 1, U1 is the undetected
individuals who are infected with variant 1,E2 is the individuals exposed to variant 2,Q2 is the quarantined individuals who are infected with
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Figure 6 that, with increase in the rate at which individuals
infected with variant 1 escape the isolation center, vac-
cination of susceptible individuals lowers the peak of the
population infected with variant 2 while there is an

increase in the population infected with variant 1. )is is
probably because individuals infected with variant 2
appear to be more careful with their lives and get vac-
cinated more than individuals infected with variant 1.

×105

×105 ×104 ×105

×104 ×104 ×105

×105 ×105

0

5

10

15
S

0

0.5

1

1.5

2

V

0

0.5

1

1.5

2

2.5

E 1

0

0.5

1

1.5

2

2.5

E 2

0

2

4

6

8

10
U

1

0

0.5

1

1.5

2

Q
1

0

0.5

1

1.5

2

U
2

0

2

4

6

R

0

0.5

1

1.5

2

Q
2

100 200 3000
Time in days

100 200 3000
Time in days

100 200 3000
Time in days

100 200 3000
Time in days

100 200 3000
Time in days

100 200 3000
Time in days

100 200 3000
Time in days

100 200 3000
Time in days

100 200 3000
Time in days

Figure 4: )ese graphs are obtained by numerically solving model 1 using parameter values as contained in Table 1. With this choice of
parameter values ψ1 � ψ2 � 0.1, α � 0.6/N0, η � 0.7/N0, and Rc � 1.8883, where S is the susceptible individuals, V is the vaccinated
individuals, E1 is the individuals exposed to variant 1, Q1 is the quarantined individuals who are infected with variant 1, U1 is the undetected
individuals who are infected with variant 1,E2 is the individuals exposed to variant 2,Q2 is the quarantined individuals who are infected with
variant 2, U1 is the undetected individuals who are infected with variant 2, and R is the recovered individuals.

Complexity 13



200 250150 30050 1000
Time in days

0

2000

4000

6000

Q
2

0

2000

4000

6000

U
2

0

2

4

6

8

10

R

0

1

2

3

4

E 2

0

2000

4000

6000

8000

U
1

0

5000

10000

15000

Q
1

1

2

3

4

5
S

0

1

2

3

V

0

5000

10000

15000

E 1

50 100 150 200 250 3000
Time in days

50 100 150 200 250 3000
Time in days

200 250150 30050 1000
Time in days

50 100 150 200 250 3000
Time in days

50 100 150 200 250 3000
Time in days

200 250150 30050 1000
Time in days

50 100 150 200 250 3000
Time in days

50 100 150 200 250 3000
Time in days

×105 ×105

×104

×104

ψ1 = 0.62, ψ2 = 0.1
ψ1 = 0.62, ψ2 = 3
ψ1 = 0.62, ψ2 = 0.5

ψ1 = 0.62, ψ2 = 0.1
ψ1 = 0.62, ψ2 = 0.3
ψ1 = 0.62, ψ2 = 0.5

ψ1 = 0.62, ψ2 = 0.1
ψ1 = 0.62, ψ2 = 0.3
ψ1 = 0.62, ψ2 = 0.5

ψ1 = 0.62, ψ2 = 0.1
ψ1 = 0.62, ψ2 = 0.3
ψ1 = 0.62, ψ2 = 0.5

ψ1 = 0.62, ψ2 = 0.1
ψ1 = 0.62, ψ2 = 0.3
ψ1 = 0.62, ψ2 = 0.5

ψ1 = 0.62, ψ2 = 0.1
ψ1 = 0.62, ψ2 = 0.3
ψ1 = 0.62, ψ2 = 0.5

Figure 5: )ese graphs are obtained by numerically solving the model using ψ1 � 0.62 and other parameter values as contained in Table 1.
With this choice of parameter values, RSVc

� 0.8287, where S is the susceptible individuals, V is the vaccinated individuals, E1 is the
individuals exposed to variant 1, Q1 is the quarantined individuals who are infected with variant 1, U1 is the undetected individuals who are
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5. Conclusion

Wepresented a COVID-19model consisting of ninemutually
exclusive compartments representing COVID-19 dynamics.
)e model considers a vaccinated population and a new
variant of SARS-CoV-2 in which the vaccine is not perfect

and the transmission rate of the new variant (second variant)
of SARS-CoV-2 is higher than the transmission rate of the
first variant. )e model also considers the escape rate of
quarantined infectious individuals. )is study is necessary
and important as it gives a clear understanding of the impact
of the imperfect vaccine on the new variant (second variant).
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Figure 6: Investigation of the impact of escape of quarantined infectious individuals from isolation centers, where S is the susceptible
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Also, it gives an idea of the disease dynamics with the oc-
currence of a new variant of SARS-CoV-2. )e control re-
production number, Rc, is obtained using the next-generation
matrix method. )e basic reproduction number R0 is ob-
tained from the control reproduction number, Rc, by setting
the control measures to be zero, i.e., ψ1 � ψ2 � κ � 0. It is
found that the control reproduction number, Rc, is given by
the maximum of the two threshold quantities, RFVc

and RSVc
.

It is shown that there are two possible equilibria of the model;
one is a disease-free equilibrium that exists and is globally
asymptotically stable if Rc < 1, and the other is endemic
equilibrium which is shown to exist for RSVc

> 1. Analytically,
results reveal that the second variant (new variant) of SARS-
CoV-2 dominates the first variant. Hence, the first variant of
SARS-CoV-2 clears out of the population over time, even
with the control reproduction number greater than one.
Moreover, the first and second variant can only be cleared out
of the population if RFVc

and RSVc
are less than one, i.e.,

RFVc
, RSVc
< 1. Further, the impact of the imperfect vaccine on

the new variant is explored through numerical simulations.
Numerical results reveal that individuals infected with the
new variant (second variant) of SARS-CoV-2 who are vac-
cinated with an imperfect vaccine are under control but the
prevalence of the second variant enhances the prevalence of
the first variant. Numerical results also reveal that increase in
the rate at which individuals infected with the first variant
escape the isolation center gives rise to the population in-
fected with the first variant and lowers the peak of the
population infected with the second variant. )is is probably
because individuals infected with the second variant appear to
be more careful with their lives and get vaccinated more than
individuals infected with the first variant. As a result, current
antiviral methods such as frequent hand washing, use of
mask, physical separation, excellent ventilation, and avoiding
crowded locations or enclosed settings continue to function
against the first and second types by limiting viral trans-
mission. )is study can be extended by introducing frac-
tional-order into the formulated model. In this case, the
model will be given fractional differential equations. All these
directions need more investigation, and therefore they shall
be left for future works.
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