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*e regressionmodel is generally utilized in several fields of study because of its applications. Regression is an extremely incredible
approach; it builds up a connection between dependent and independent variables. We have addressed a powerful computational
model by utilizing dengue information joined with fuzzy multiple linear regression. Information is accumulated on dengue fever
through the survey. *is paper is centered on the comparison of the crisp method with fuzzy multiple linear regression, and then,
the utilization of a fuzzy multiple regressionmethod is explained after the comparison.We have usedmultiple regression and then
converted the said technique into three fuzzy cases. *e effectiveness of the fuzzy multiple regression model is measured by
numerical computation and comparison of both techniques. 2020 Mathematics Subject Classification. Primary 30C45; 30C50;
30C80; Secondary 11B65, 47B38.

1. Introduction

Regression is a method for determining the statistical re-
lationship between two or more variables where a change in
a dependent variable is associated with a change in one or
more independent variables [1]. Multiple linear regression
describes the relationship of one dependent variable with
more than one independent variable. *is is a statistical
technique that is used in examining how multiple inde-
pendent variables and dependent variables are related.
Certain assumptions need to be fulfilled for achieving better
results from multiple regression such as linearity, normality,
no multicollinearity, and homoscedasticity. Fuzzy set theory
was first introduced by Zadeh [2] in 1965, and it is a
technique used to handle vague, uncertain, imprecise, or
unclear information. *is technique is appropriate in the
case of vague information [1]. Many recent developments of
fuzzy and its applications have been explored by different

researchers [3–5]. *ey have applied different fuzzy tools,
and the applications of these tools have been explored in
different fields such as decision-making and logistics pro-
cesses. Fuzzy regression was proposed by the Japanese re-
searcher Tanaka (1982) [6]. *e model of fuzzy linear
regression has been treated from diverse points of view
which depend upon the type of data given in the input and
data try to be achieved from the output [7]. Fuzzy regression
can be used in very complex systems in the real world such as
economy, marketing, finance, ecology, and industry, see [7].
Dengue fever is a viral illness caused by mosquito bites that
are responsible for infecting approximately 96 million in-
fected people in America yearly [8]. In recent decades,
dengue has increased in geographic incidence and distri-
bution. *e impact of climatic factors on transmission was
investigated by researchers in [9, 10]. Zadeh et al. [2] gave
the idea of fuzzy set theory to deal with the vagueness and
uncertainties occurring in decision making. It is one of the
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applications which is in multisensing paradigm-based urban
air quality monitoring and hazardous gas source analyzing
[11]. Multiple linear regressions are often used to explain the
relationship of multiple independent variables. *is method
is particularly appropriate for disease models and is widely
used in the health sciences.In this paper, we discuss the
problems that occur in different situations of multiple linear
regression. First, it involves a linear relationship between the
independent and dependent variables which do not give
clear results based on the given information. Second, it
specifies the distribution of errors normally distributed
between the observed and expected values which cause
impreciseness. *ird, it assumes the data do not contain
multicollinearity. Another difficulty can be caused by
nonpreciseness and vague observations that occur frequently
in practice. Due to these facts, we used the term “fuzzy” in
multiple linear regression which overcome all these diffi-
culties. *is paper focuses on multiple linear regressions in a
biological paradigm. Here is the numerical computation
depending on the dengue study.

2. Fuzzy Sets and Numbers

*e fuzzy set is defined as a set that contracts with vague
boundaries [2]. *e set consists of fuzzy logic and linguistic
variables. Fuzzy sets are represented as

A �
μ1
X1

+
μ2
X2

+ · · · +
μn

Xn

, (1)

where μ1 and n express the membership function of Xi, i �

1, 2, . . . , n in A, and the union is denoted by the plus sign
[12]. Fuzzy sets are scientific, mathematical models of un-
clear quantitative or qualitative data, as often as possible,
which are generated from natural languages. *e model
depends upon the generalization of the characteristics
function of a set and the classical concept.

3. Multiple Linear Regression Model

Sir Francis Galton [1], an English Victorian, introduced the
term regression. *e general parametric equation is

Y � f(X) + ϵ,

Y � τ0 + τ1X1 + τ2X2 + · · · + τqXq + ϵ,
(2)

where Y and X represent the dependent and independent
variables. *e coefficients τ1, τ2, . . . , τq represent slopes, and
ϵ is the random error.

A fuzzy regression technique was first proposed by
Tanaka [6]. We have considered the following cases of
dependent and independent variables.

Case 1

􏽥zi � τ0 + τ1􏽥k1 + ϵi. (3)

Case 2

􏽥zi � 􏽥τ0 + 􏽥τ1k1 + ϵi. (4)

Case 3

􏽥zi � 􏽥τ0 + 􏽥τ1􏽥k1 + ϵi. (5)

In the above models, here, τ0 and τ1 are the intercept and
slope of the regression line respectively. Zi are the fuzzy
responses. In case 1, the parameters τ0 and τ1 are crisp
parameters, and Ki are fuzzy. In Case 2, the parameters τ0
and τ1 are fuzzy but Ki are crisp. In case 3, the predictor and
parameters are all fuzzy.

Consider the multiple fuzzy regression model which can
be generalized as follows:

􏽥yi � 􏽥τ0 + 􏽥τ1􏽥xj1 + 􏽥τ2􏽥xj2 + · · · + 􏽥τp􏽥xjp + ϵj. (6)

Using the centered values of the crisp predictor, the
above equation can be written in matrix form as follows:

􏽥y � 􏽥x􏽥τ + ϵ, (7)

where 􏽥y is a (n × 1) fuzzy vector, 􏽥x is a (n × p) matrix of p
fuzzy predictors, and 􏽥τ is a (p × 1) vector of unknown p
fuzzy parameters. As a result of the lack of linearity of
Fc(Rp), ϵ is reduced to nonfuzzy random variable (FRV)ϵ.

yja � xj1aτ1a + xj2aτ2a + · · · + xjpaτpa,

yjb � xj1bτ1b + xj2bτ2b + · · · + xjpbτpb,

yjc � xj1cτ1c + xj2cτ2c + · · · + xjpcτpc,

(8)

where yja, yjb, yjc are left, middle, and right values,
respectively.

*e 􏽢τja is as follows:

􏽢τja � x
T
jaxja􏼐 􏼑

− 1
x

T
jayja􏼐 􏼑. (9)

On the same lines, the above equations can be simplified
as

􏽢τjb � x
T
jbxjb􏼐 􏼑

− 1
x

T
jbyjb􏼐 􏼑,

􏽢τjc � x
T
jcxjc􏼐 􏼑

− 1
x

T
jcyjc􏼐 􏼑.

(10)

Consider the multiple fuzzy regression model is gen-
eralized as follows:

􏽥yi � 􏽥τ0 + 􏽥τ1􏽥xi1 + 􏽥τ2􏽥xi2 + · · · + 􏽥τp􏽥xip + ϵi, (11)

where 􏽥y is a (n × 1) fuzzy vector, x is a (n × p) matrix of p
crisp predictors, and 􏽥τ is a (p × 1) vector of unknown p fuzzy
parameters. As a result of the lack of linearity of Fc(Rp), ϵ is
reduced to a nonfuzzy random variable (FRV)ϵ.

yja � xj1τ1a + xj2τ2a + · · · + xjpτpa,

yjb � xj1τ1b + xj2τ2b + · · · + xjpτpb,

yjc � xj1τ1c + xj2τ2c + · · · + xjpτpc,

yjd � xj1τ1 d + xj2τ2d + · · · + xjpτpd,

(12)

where yja, yjb, yjc, yd is lower, middle-lower, middle-upper,
and upper values correspondingly.
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*e 􏽢τja is as follows:

􏽢τja � x
T
x􏼐 􏼑

− 1
x

T
yja􏼐 􏼑. (13)

On the same lines above, the equation is simplified as

􏽢τjb � x
T
x􏼐 􏼑

− 1
x

T
yjb􏼐 􏼑,

􏽢τjc � x
T
x􏼐 􏼑

− 1
x

T
yjc􏼐 􏼑,

􏽢τjd � x
T
x􏼐 􏼑

− 1
x

T
yjd􏼐 􏼑.

(14)

4. Numerical Computation

*is research depends on the primary data of dengue fever
patients collected from two public sector hospitals in
Rawalpindi named (Benazir,Holyfamily), respectively. Af-
ter taking the data, we applied principal component analysis
to eliminate insignificant variables and consider those
variables that have a significant impact on our study. We
have implemented the Keiser-Meyer-Olkin and Bartlett’s
test for the reduction of data.

4.1. Normality Test

H0: the data are normal.
H1: the data are normal.

If the p value is greater than 0.05, then this is normal.
Table 1 indicates that all the p values are greater than

0.05, so we conclude that our data are normal.
Figure 1 indicates that all the p values are greater than

0.05 so we concluded that our data are normal.

4.2. Multicollinearity. Here, using the VIF (variance in-
flection factor) values, we have seen that each value of VIF is
below 10, and the assumption is fulfilled.

*e multiple linear regression results are explained in
Table 2 and represented by Figure 2.

4.3. Interpretation. *e estimated values in Table 3 represent
the regression coefficient which shows that the values of
dengue fever increased by 0.043 units for one element in-
crease in age, decreased 0.104 units for a unit increase in
suffering fever, decreased 0.004 units for one element add-in
checkup, decreased by 0.045 units for the unit increase in BP
(U), and decreased 0.088 units for one unit add-in BP (L).

*ese results are represented in Figure 2 which shows the
best fitted classical multiple regression model.

4.3.1. Case 1. Fuzzy multiple linear regression model with
fuzzy independent variables and crisp dependent variable.

*e fuzzy multiple linear regression results are explained
in Table 4 and represented by Figure 3.

4.4. Interpretation. *e estimated fuzzy regression coeffi-
cient shows that rates of Y increase by 0.037 units for one

element add-in X1, 0.114 divisions on behalf of the unit
increase in X2, 0.014 entities for the unit increase in X3,
0.064 units for the unit increase in X4, and increased 0.065
units for the unit rise in X5.

4.4.1. Case 1. Fuzzy multiple linear regression model with
fuzzy independent variables and crisp dependent variable.

*e multiple linear regression results are explained in
Table 5 and represented by Figure 4.

4.5. Interpretation. *e estimated fuzzy regression coeffi-
cient indicates that the value of Y increases by 0.200836 units
for a unit increase in X1, 0.277264 units for the unit rise in
X2, 0.024512 units for the unit increasingly in X3, decreases
by 0.09249 units for the unit increase in X4, and increases
0.43941 units for the unit increase in X5.

5. Performance Comparison

*e following section describes the performance of multiple
linear regression and fuzzy multiple linear regression.

Table 1: Normality test.

Variables P value
Age 0.178
Suffering 0.322
Checkup 0.334
BPU 0.103
BPL 0.212
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Figure 1: Data are normal.

Table 2: Multiple regression.

Variables Constant SE t P value
Intercept 108.473 6.350 17.083 0.001
Age 0.043 0.052 0.841 0.403
Suffering fever −0.104 0.289 −0.360 0.720
Check up −0.004 0.668 −0.006 0.996
BPU −0.045 0.060 −0.756 0.452
BPL 0.088 0.075 −1.167 0.246
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It is important to know which method from classical
multiple linear regression and fuzzy multiple linear re-
gression method is performing best and gives significant
results. Comparison between these methods is made by

using different evaluation criteria. Results obtained by using
different evaluation techniques are given in Table 6. *e
empirical analysis shows that the MSE, RMAE, BIC, and
RAE in the case of fuzzy multiple linear regression are all
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Figure 2: Best Fitted Graph of Multiple Linear regression.

Table 3: KMO and Bartlett’s test.

Kaiser-Meyar-Olkin measure adequacy Measure of sampling [.660]
Bartlett’s test of sphericity Approx. chi-square [53.67]

DF [10]
Sig. [.000]

Table 4: Result of fuzzy multiple regression when fuzzy independent variables and crisp-dependent variable in triangular membership
function.

Variables Constant SE t P value
Intercept 0.513 0.063 8.073 0.001
Age 0.037 0.055 0.679 0.499
Suffering fever 0.114 0.050 2.294 0.024
Check up 0.041 0.082 0.499 0.619
BPU 0.064 0.082 0.779 0.438
BPL 0.065 0.044 1.495 0.138
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Figure 3: Fuzzy multiple regression using triangular membership function.
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smaller than the classical multiple linear regression method.
*is shows that fuzzy multiple regression can smooth the
defuzzified forecast, and it is more consistent.

It is important to know which method is performing best
and gives significant results among classical multiple linear
regression and fuzzy multiple linear regression method.
Comparison between these methods is evaluated by using
different evaluation criteria. Results obtained by using dif-
ferent evaluation techniques are given in Table 7. *e em-
pirical analysis shows that theMSE, RMAE, BIC, and RAE in
the case of fuzzy multiple linear regression are all smaller
than the classical multiple linear regression method. *is
shows that fuzzy multiple regression can smooth the
defuzzified forecast, and it is more consistent.

We have compared the fuzzy regression results of tri-
angular and trapezoidal membership functions in Figure 4
which shows that the triangular membership function re-
sults were lower than that of trapezoidal so the triangular
membership function is more efficient compared to the
trapezoidal membership function and can be used in further
studies for comparison.

6. Conclusion

*ere are numeral classical methods that are used to dis-
tribute accurate information, but in a lot of circumstances,
accurate quantities cannot be achieved. *is paper is based
on the basic idea of the multiple linear regression method
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Figure 4: Fuzzy multiple regression using trapezoidal membership function.

Table 6: Error comparison of multiple regression and fuzzy
multiple regression.

Error computation Multiple regression Fuzzy regression
MSE 49.03473 0.086875
BIC 944.26 −20.168
RMSE 7.00248 0.294746
RAE 4903.473 8.687522

Table 7: Error comparison of multiple regression and fuzzy
multiple regression.

Error computation Multiple regression Fuzzy regression
MSE 49.03473 0.025824
BIC 944.26 −225.783
RMSE 7.00248 0.1607
RAE 4903.473 2.582449

Table 5: Result of fuzzy multiple regression when fuzzy independent variables and crisp-dependent variable in trapezoidal membership
function.

Variables Constant SE t P value
Intercept 2.114 0.147 14.420 0.001
Age 0.053 0.082 0.647 0.519
Suffering fever 0.160 0.068 2.358 0.020
Check up 0.099 0.058 1.700 0.092
BPU −0.156 0.103 −1.514 0.133
BPL 0.289 0.112 2.584 0.011

Complexity 5



and fuzzy multiple regression method. In the proposed
work, the fuzzy multiple regression method is done by using
the triangular and trapezoidal membership function and
evaluating the computation of dengue fever data to express
the efficiency of the proposed fuzzy multiple regression with
the existing multiple regression model. *e realistic result of
the mean square error (MSE), Bayesian information criteria
(BIC), root absolute error (RAE), and root mean square
error (RMSE) of fuzzy multiple regression with triangular
and trapezoidal membership function is smaller compared
to the multiple linear regression which indicates that the
proposed method has a better performance as compared to
multiple regression [13–17].

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

References

[1] K. Kumari and S. Yadav, “Linear regression analysis study,”
Journal of the practice of Cardiovascular Sciences, vol. 4, no. 1,
pp. 33–36, 2018.

[2] L. A. Zadeh, “Information and Control,” Fuzzy sets, vol. 8,
no. 3, pp. 338–353, 1965.

[3] S. Mustafa, I. Fatimah, and Y. B. Jun, “Modelling the logistic
processes using fuzzy decision approach,”Hacettepe Journal of
Mathematics and Statistics, vol. 48, no. 2, pp. 552–563, 2018.

[4] M. Bibi and S. Mustafa, “Modelling the logistic processes
Using Fuzzy Soft sets,” Hacettepe Journal of Mathematics and
Statistics, vol. 48, no. 2, pp. 1–79, 2020.

[5] S. Mustafa, N. Safdar, M. Bibi, A. F. Sayed, M. G. Khan, and
Z. Salleh, “A Study of Bipolar Fuzzy Soft Sets and its Sppli-
cation in Decision-Making Problems,” Data-Driven Fuzzy
Multiple Criteria Decision Making and its Potential Applica-
tions 2021, vol. 2021, Article ID 5742288, 12 pages, 2021.

[6] H. Ishibuchi and H. Ishibuchi, “Identification of possibilistic
linear systems by quadratic membership functions of fuzzy
parameters,” Fuzzy Sets and Systems, vol. 41, no. 2,
pp. 145–160, 1991.

[7] V. Marza and M. A. SeyyediSeyyedi, “Fuzzy multiple re-
gression model for estimating software development time,”
International Journal of Engineering Business Management,
vol. 1, no. 1, p. 9, 2009.

[8] C. Papadopoulos, M. Spiliotis, I. Gkiougkis, F. Pliakas, and
B. Papadopoulos, “Fuzzy linear regression analysis for
groundwater response to meteorological drought in the
aquifer system of Xanthi plain, NE Greece,” Journal of
Hydroinformatics, vol. 23, no. 5, pp. 1112–1129, 2021.

[9] J. Saqib and Mustafa, Fuzzy Estimation of Regression Pa-
rameters in the Spline Regression Miodel, vol. 5, pp. 1–19,
PMAS Arid Agriculture university Rawalpindi, Pakistan,
2016.
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