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Pernicious insects and plant diseases threaten the food science and agriculture sector. Therefore, diagnosis and detection of such
diseases are essential. Plant disease detection and classification is a much-developed research area due to enormous development
in machine learning (ML). Over the last ten years, computer vision researchers proposed different algorithms for plant disease
identification using ML. This paper proposes an end-to-end semantic leaf segmentation model for plant disease identification. Our
model uses a deep convolutional neural network based on semantic segmentation (SS). The proposed algorithm highlights
diseased and healthy parts and allows the classification of ten different diseases affecting a specific plant leaf. The model suc-
cessfully highlights the foreground (leaf) and background (nonleaf) regions through SS, identifying regions as healthy and
diseased parts. As the semantic label is provided by the proposed method for each pixel, the information about how much area of a
specific leaf is affected due to a disease is also estimated. We use tomato plant leaves as a test case in our work. We test the proposed
CNN-based model on the publicly available database, PlantVillage. Along with PlantVillage, we also collected a dataset of twenty
thousand images and tested our framework on it. Our proposed model obtained an average accuracy of 97.6%, which shows

substantial improvement in performance on the same dataset compared to previous results.

1. Introduction

The plants’ diseases in crops and fruits have adverse effects
on agriculture production. If these diseases are not identified
and treated on time, an increase in food insecurity can occur.
Some particular crops, such as wheat, rice, and maize are
vital for ensuring the food supply as well as agriculture
production. Early warnings and some forecasting are very
effective prevention in controlling plants’ diseases. Fore-
casting and prevention play an essential role in adequately
managing agricultural production. However, until now,
visual observations of producers are the only approach for
various plants’ disease identification in mostly rural areas,
specifically in less developed countries. Continuous moni-
toring of experts is needed, which might be prohibitively
very expensive in large farms.

Similarly, to contact experts’ farmers may have to travel
large distances, which also makes the consultation expensive
and time consuming. We argue that this conventional ap-
proach is not practical for large farming areas looking into
the demands of the crops in the production industry.
Therefore, automatic plant disease recognition and classi-
fication are still crucial topics in computer vision (CV).

Diseases seriously affect the health of every living or-
ganism, including plants and animals. The state-of-the-art
(S.0.A) algorithms in the CV and ML domains have enabled
us to identify diseases beyond human accuracy. Interest-
ingly, the CV and ML algorithms can be applied to all
domains, including plants and humans, with almost no
difference in implementation. Modern technology enables
human society to generate sufficient food to fulfill the human
population’s requirements. Conversely, numerous factors
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still affect food safety, including plant diseases, climate
change, and the decline of pollinators. Plant diseases are
the primary danger to food safety. At the same time, the
deficiency of essential infrastructure makes it hard to
identify these diseases in many parts of the world quickly.
With the latest developments in CV algorithms, the ML
paradigm paves its way for agile and on-spot disease
diagnosis.

Plant diseases not taken seriously have caused a decline
in agricultural productivity in several countries worldwide.
The disease symptoms have a detrimental effect on crop
growth, restraining yields and rendering agricultural goods
unsuitable to be consumed. Therefore, their early detection,
modeling, and recognition are essential. This article explores
the modeling, detection, and recognition of plant diseases
that involve appearance-based analysis and can be captured
and modeled using ML. Since the leaves of plants provide
expressive appearance-based modeling, from modeling
perspectives, our interest is inclined towards disease de-
tection in tomato plants using deep learning (DL).

Determining the health quality of a plant is essential.
Several models have been created to deter the loss of crops to
pests and diseases. Plant disease symptoms are usually
noticeable when the leaves change color or shape. Tradi-
tionally, the identification of pests and diseases was done
using the naked eye and was supported by agronomic or-
ganizations. Presently, detection of plant diseases and pests
can be done through machine vision. Plant disease identi-
fication using ML is not a new research field. CV experts
have reported many good papers worth mentioning in [1-6].
The extensive penetration of smartphones, high-density
cameras, and high-performance processors have made it
possible for diseases to be detected by automated image
recognition.

This paper proposes an end-to-end (E2E) segmentation
model for plant disease identification and classification. The
model uses semantic leaf segmentation (SLS) using an op-
timized CNN. By successfully highlighting the foreground
and background regions, the proposed model classifies them
into healthy and disease parts. The proposed model encodes
the high-density maps and classifies tomato plant leaves into
ten different categories of various diseases. Our model
outperforms previous approaches in an evaluation setup on
the PlantVillage database. The significant contributions of
the proposed work are as follows:

(i) A new CNN-based algorithm for plants’ disease
recognition and classification has been presented in
the paper. ML and DL experts have already pro-
posed numerous methods for plants disease rec-
ognition; the novelty of our model is providing
information about each pixel of a leaf image, which
tells if a pixel belongs to a diseased or healthy part.

(ii) Second, we contributed a new dataset for tomato
leaves disease classification. We collected these
images from the Internet. These images are labeled
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manually as healthy and diseased images. The da-
tabase will be available after the publication of the
proposed work for research purposes.

(iii) The proposed model also provides information
regarding how much leaf area is affected by a
specific disease. Most of the previous ML-based
approaches do not provide this information. Along
with predicting the diseased and healthy part, in-
formation regarding how much leaf area is affected
by a specific disease is also provided.

The presentation of the remaining paper is arranged as
follows. In Section 2, we discuss previous research work on
the topic. Both conventional ML and DL-based methods are
discussed in this part. The proposed CNN-based method is
discussed in Section 3. Section 4 presents the experimental
setup, obtained results, and comparison of obtained results
with previous results. Finally, the conclusion is presented in
Section 5 with some promising future directions.

2. Related Work

Plant diseases typically affect the growth of crops in all stages
of development and sometimes may lead to the death of the
plant. Plant diseases affect food security globally and affect
small subsistence farmers who depend on their crops for
food and livelihood. Therefore, determining the health
quality of a plant is very important. Several models have been
created to deter the loss of crops to pests and diseases.
Traditionally, the identification of pests and diseases was
done using the naked eye and was supported by agronomic
organizations. Plant disease identification using ML is a
well-researched area. CV experts have reported many good
papers on the topic [1-9].

In meticulous agriculture, the subdivision of crops in
agricultural images is vital. Various techniques have been
deployed for the segmentation process, such as SS. The SS
marks the multiple features in an image into semantically
meaningful items and classifies each item into a class. For
example, the various classes can be leaf, stalk, or flower in
plants. Several studies have used different SS techniques to
identify plants from nonplants. For example, Sodjinou et al.
[10] suggest a method grounded on the mixture of SS and
K-means for detecting weed from images. K-means algo-
rithm is used for categorizing things that belong to similar
groups. The proposed technique provided a more accurate
segmentation of weeds and plants from the study results.
Several approaches were used by Miao et al. [11] to se-
mantically segment hyperspectral images of sorghum plants,
such as manual pixel annotation and classifying each of the
pixels as either nonplant or plant. The scholars further
classified the plant as belonging to either a panicle, leaf, or
stalk of the sorghum plant. They could separate the plant
pixels from the background, only that they could not classify
to what organ the plant pixel belonged. In another study, Li
etal. [12] used the region-based segmentation to detect crops
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from the images derived from a natural field. They used the
method to detect cotton specifically. The model was suc-
cessful as it could even detect the boll opening stage of the
cotton plant.

While identifying a plant from a nonplant can be an easy
task using SS, identifying plant diseases through an image is
tough since plants are complex environments. Through the
developmental stages of crops, their flowers, fruits, and
leaves change constantly. During the day, solar radiation
affects plants’ spectral response, so their appearance also
changes slightly. Additionally, different shapes, layouts, and
colors of plant diseases make them difficult to recognize.
Regardless, several successful techniques improve detection
methods for diseases in plants, both in a controlled envi-
ronment and in natural conditions.

Chen et al. [13] proposed using BLSNet to recognize the
rice bacterial leaf streak in rice and segmentation based on
UNet network. Rice bacterial leaf streak (BLS) is a threat-
ening disease usually found in rice leaves. BLS affects the
yield and quality of rice. BLSNet used a large-scale extraction
and an attention mechanism to increase the precision of
segmentation of the lesion.

One technique that has been widely successful in
identifying plant diseases is SS through CNN. The layers of
CNN can be viewed as corresponding filters that are directly
taken from the input data. CNNs bring out a hierarchy of
visual images adjusted for a precise task. The accuracy of
CNNess in detecting objects such as plant diseases and image
organization has made incredible growth over time [14]. The
CNN-based classification network implementation is the
most regularly used pattern in categorizing plant diseases
and pests, owing to CNN’s strong feature extraction capa-
bility. Zabawa et al. [15] used SS using convolutional neural
networks to extract phenotypic traits in grapevine berries.

According to Bhatt et al. [16], CNN-based methods have
been used to achieve extraordinary results in supervised
image segmentation of leaves. Usually, the methods used
work under fully controlled conditions, whereas the deep
CNN models are built on various changing parameters.
However, the images would have different backgrounds,
lighting conditions, obstructions, and overlapping in an
environmental setting. In various stages of growth, plants do
have a reasonable amount of variation. The authors propose
unsupervised machine learning algorithms to segment the
leaves images to make it possible to be applied to various
crops and regions. Afterward, the specific segments are then
assessed for their texture, size, and color to measure any
change, such as the presence of a pest or disease.

Unsupervised feature learning, with fully convolutional
networks (FCN) followed by conditional random fields,
makes it possible to segment images into an optimal number
of clusters devoid of any prior training. The real-time
performance of this technique allows easy distribution of
devices such as cameras and mobile phones in the fields. In
addition, Shao et al. [17] propose using localization and DL-
based method to recognize dense rice images. The proposed
model can be used to determine rice diseases. The results
from the study show that better results can be obtained
compared to conventional ML methods. The SS method

grounded on deep CNNs can also identify crops from the
compound and natural field environments [18]. According
to Martins et al. [19], it can also detect tree canopies in an
urban setting.

The SS method based on DL demonstrates great pre-
cision in remote sensing categorization as well, and it ne-
cessitates vast sets of data in controlled learning [20]. The
simple notion of DL is using a neural network for analyzing
information and learning image feature. In their study of
estimating sorghum panicles, Malambo et al. [21] applied an
image analysis method founded on a SegNet framework.
Sorghum panicles are critical phenotypic data in the im-
provement of sorghum crops. The study results demon-
strated that DL combined with SS shows excellent precision
with large data. On the other hand, Pena et al. [22] suggest
using data fusion to enrich images used in remote sensing.

In very recent works [23-26], plant disease recognition
models have been improved for better results and performance.
Manjula et al. [24] have used ResNet-50 architecture, a variant
of the Resnet model that has 48 convolution layers. The ac-
curacy of the developed system is around 97-98%. Chen et al.
[25] have improved the plant disease-recognition model based
on the original YOLOv5 network model, which accurately
identified plant diseases under natural conditions. Hassan and
Maji [26] have proposed a novel deep learning model based on
the inception layer and residual connection. They used
Depthwise separable convolution to reduce the number of
parameters, which led the model to achieve higher accuracy.

3. Materials and Methods

3.1. Dataset Description and Data Annotation. The typical
DL-based methods require sufficient data for the training
phase. In contrast, conventional ML can also be trained on
limited data scenarios. One of the main drawbacks of DL
techniques is requiring a large amount of data. In this re-
search work, we used an already available dataset and also
collected our own database. We use two kinds of data in our
experiments, the details of which are provided next.

PlantVillage database [27]: The PlantVillage database is
publicly available for downloading and research purposes. It
is an open-access repository having more than 54K images.
PlantVillage is a large dataset with various plants’ leaves and
related materials collection. Most of the data in this database
are collected in controlled laboratory conditions. Exposure
to the real-time scenario is significantly less in the Plant-
Village database. Therefore, most researchers using only
PlantVillage database get nearly perfect results. The database
includes images of 14 crops, including grape, corn, tomato,
and soybean. The database consists of 10 folders, one for
healthy leaves and the remaining for nine different kinds of
diseases listed in Tables 1 and 2. We use a subset of images
for the tomato plant. Our subset consists of around 16012
images of plant leaves collected from tomato plants. The total
number of classes in these images is limited to ten only. Nine
classes are of various diseases for tomato plant leaves,
whereas one class is for healthy leaves. We keep the reso-
lution of each image as 250 x 250 pixels. Some sample images
of the database used are shown in Figure 1.



TaBLE 1: Number-wise distribution of the PlantVillage database.

Disease Number of images
Bacterial spot (BS) 2127
Late blight (LB) 1909
Two-spotted spider mite (TSSM) 1676
Yellow leaf curl virus (YLCV) 5357
Leaf mold (LM) 952
Target spot (TS) 1404
Early blight (EB) 1000
Tomato mosaic virus (TMV) 373
Septoria leaf spot (SLS) 1771

TaBLE 2: TomatoDB images and different diseases’ statistics.

Disease Number of images in TomatoDB
EB 2250
LB 1800
™V 2190
HL 1600
LM 2000
YLCV 1802
BS 2380
SLS 2100
TS 2270
SM 2340
Total 20732

We use all images of the tomato plant contained in the
PlantVillage. The diseased leaf images vary from 373 to 5357,
as clear from Table 1. The total number of healthy images for
tomatoes in PlantVillage is 1591. It is clear from Table 1 that
all the ten classes in the dataset are not balanced as far as the
number of images is concerned. On the one hand, the
minimum value is 373, with a maximum of 5357. We use
data augmentation methods to balance all classes, including
adjusting the contrast, flipping images vertically and hori-
zontally, and changing brightness levels.

TomatoDB: since images in the PlantVillage are simple
and less challenging, comparatively good results are reported
in the literature. To assess the framework’s performance
more precisely, we also tested our model on a collection of
images we had taken from the Internet. Our own collected
dataset consists of more than 20000 images taken from
tomato plant leaves. We collected these images from the
Internet. While image collection, real-time scenarios, and
more challenging conditions have been considered. The
database TomatoDB will be available to the research com-
munity after the publication of the proposed research article.
All ten classes are equally considered while collecting the
database.

For SLS, correctly labeled leaf data for each pixel is
needed. This ground truth data are created through anno-
tation. We annotated these images manually using the in-
terface we developed. This labeling involves selecting the
areas of interest, random sketch application, adjustment of
contrast and brightness, and assigning a label. Such kind of
manual labeling is prone to errors. No automatic tool is used
in such labeling. The labeling is highly dependent on the
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subjective perception of the human doing this labeling
process. Hence, chances of error exist while providing an
exact label to every pixel.

Images setup for experiments: The model we presented
in this paper is applicable and valid to any plant disease with
some visible symptoms. However, manual labeling will be
needed to create an SS framework for training purposes. As a
test case, we select a tomato plant with ten classes. However,
since images in the PlantVillage dataset are not exposed to
light and other variations, we collected some images (20000)
from the Internet. Some tomato leaves images we collected
from the Internet are shown in Figure 2. We use a com-
bination of PlantVillage dataset images and our own col-
lected data set. We split the dataset into the ratio of 80 to 20,
a commonly used strategy for training and testing DL-based
models. Some of the authors also adopt 5-fold or 10-fold
cross validation. We set 80% data for training and 10% for
validation to know the model overfitting problem. We resize
each image in PlantVillage and TomatoDB to a size of 250
x250 before training and testing. The following section
discusses all the hyperparameters of the deep CNN-based
model.

3.2. Deep Model Learning. The performance of the visual
recognition tasks is improved with the introduction of DL-
based methods [28-33]. The proposed paper addresses leaf
disease recognition and classification using deep CNNs. We
utilize the concept of SLS in the proposed research.

Convolution layer: This layer plays a vital role in the
features extraction stage. The CovL is an essential compo-
nent of the CNN model. The layers consist of a set of
learnable filters. These terms are also known as kernels [34].
In this convolution process, the filter with a specific size
slides over the image and is convolved with pixel values of
the target image. The dot product is computed between
kernel and input image pixels producing a feature map.

ReLU: We use ReLU as activation function. This function
plays a crucial role in converting the input signal from a
specific network node to the output signal. The resultant
signal obtained a form as shown in equation.

f(F)= max(O, F]-). (1)

Pooling layer: The pooling layer follows the CovL. The
output from the CovL is given to the pooling layer. ML
experts use three pooling strategies: random pooling,
maximum pooling (MPL), and average pooling. We, in the
proposed work, adapted MPL. The MPL achieved spatial
invariance by reducing the feature map size obtained pre-
viously from CovL [35]. In this strategy, the max operation is
applied to the feature map when the feature map is passed
through MPL. This operation can be performed as described
by :

MPL; = max (F;). (2)

Classification: we use the SoftMax classifier for classi-
fication. The pooling layers provide a feature vector to the
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FiGure 1:

FIGURE 2: Some images of the leaves from the TomatoDB dataset.

SoftMax in the output layer. In the output layer, a function
that appears is the activation function for a multiclass
classification problem. The activation function calculates a
vector having a real number (k) and performs the nor-
malization task. The normalization converts input values
into vectors consisting of probability values in the range 0 to
1. The Softmax returns each class probability value, having
the maximum probability value as the target class [36].

Adam: It is a standard optimizer that computes indi-
vidual adaptive learning rates for each parameter [37]. The
exponential decaying average of previous gradients 7, is used
by this optimizer.

The proposed framework is presented in Figure 3.

Tables 3 and 4 summarize various parameters in the
proposed CNN framework. As an activation function, we
use ReLU. For constructing CNN-based model, we use three

[EBE SS

FiGUre 3: SLS-based leaf disease identification model.

layers containing CovL, MPL, and FCL. The details of these
layers with feature map description, kernel size, and stride
are summarized in Table 3. The feature extractor extracts the
features from the images of the leaves, including healthy and
affected leaves. More description of the feature extraction
part is in Figure 4. Features variation is handled by stage 1.
Certain environmental factors produce scaling variations in
images. These receptive fields overcome all the variations.
Each field has sixteen filters. Stage 1 output is given to stage
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TaBLE 3: CovL and MPL parameters’ setting.
Type of Size of Feature Size of Output
layer stride map kernel size
Input — — — 250 x 250
CovL1 2 96 5x5 124 x124
MPL1 2 96 3x3 62 %62
CovL2 2 256 5x5 30x 30
MPL2 2 256 3x3 15x15
CovL3 2 316 5x5 12x12
MPL3 2 316 3x3 6Xx6
Covl4 2 512 5x5 4x4
MPL4 2 512 3x3 2x2

TaBLE 4: Deep CNN parameters’ settings.

Parameters Values
Number of epochs 500
Activation function ReLU
Momentum 0.99
Batch size 150
Base learning rate 0.0001
Drop our rate 0.40

2. We use the 2 x 2 kernel in MPL in stage 2. Each layer of
ConvlL is followed by ReLU. We place a special pyramid
(SPD) between CovL and FCL. In stage 3, output from SPD
is given to FCL. Both stages 3 and 4 extract desired features.
More details about deep CNN parameters are presented in
Tables 3 and 4 and Figure 4.

Data including both training images and ground truth
are given to the framework. The density map is predicted in
density estimation (DE), taking supervision from the ground
truth data. We combined the segmentation map and DE
map, feeding the results to the CovL. Loss is added to the
algorithm (Dice Coeflicient) in the SS section. Additionally,
we add Euclidean distance loss for optimizing the estimated
density maps.

3.3. CNN Optimization. A complete illustration of how
hyperparameters are tuned and optimization is performed is
presented in this subsection. Overfitting is a severe problem
faced mainly by ML models. We use the methodology as
suggested and used in [38] to tackle this problem. We use a
combination of four different loss functions. We use the
Euclidean distance for better optimization. The obtained
segmentation density map can be written as shown in (3)
and (4)

1 X 5
LOSSint = m Z pk - sz. (3)
k=1
1 X >
LOSSden = m Z Pk - sz. (4)
k=1

In (3), p shows the estimated density in the supervision
process. Similarly, P; represents the estimated density, and
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P, represents the ground truth density value. Similarly, M
represents the pixel numbers in the GT density map.

We also introduce a loss in the SS part of the framework.
The loss in the framework is due to the dice coefficient. The
dice coefficient is two times the overlap area between the
predicted segmentation and true values. The result is then
divided by the total pixels in the ground truth and the
original image. The range of the dice coefficient is between 0
and 1. We use another special loss function, called cross-
entropy loss, which we represent as

LOSS x_entropy = o) Z Zxclog(x ) (5)

b=1 c=1

In (5), the symbol Q represents the total sample, and C
shows the number of classes used. Similarly, the ground
truth class is shown by x?, whereas the estimated output is
represented by x’. The final weighted loss function is rep-
resented by :

W.L = Loss;

int T Lossden + /\LOSSX—entropy' (6)

In (6), the value of A was 0.3.

4. Results and Discussion

4.1. Performance Evaluation Measures. We use different
evaluation measures, including precision (P,), recall (R,),
accuracy (A.), F-measure (F,), and confusion matrix
(Cypa)- Most of these measures are defined with some terms
called false positive (FP), true positive (TP), true negative
(TN), and false-negative (FN). P, is lower if the number of
FPs is more. The R, measures the correct prediction (positive
only) by calculating the proportion of the number of TPs to
the total sample (TP + FN). The range of both P, and R, is
between 0 and 1. The F,, assesses the performance of the
model by calculating the weighted harmonic mean between
P, and R.. Mathematically, all the evaluation measures are
defined in equations (7)-(10):

B (TP)

P = Ty ey @
B (TP)

Re= Ty + () ®)
B (Precision)x (Recall)

Fm =2 (Precision) + (Recall) ©)

A (TP + TN) (10)

«~ (TP + TN + FP + EN)

4.2. Experimental Setup. We perform our experiments with
an Intel i7 workstation and employ NVIDIA GPU 840
graphics card. We perform all our experimental work with
Tensor-flow, Keras, and Python. The number of epochs we
use is 500, having a batch size of 150. We use the base
learning rate as 0.0001 and the dropout rate as 0.4. We use
two datasets for experimental work: including PlantVillage
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Stage 1

CovL1
CovL2
CovL3

CovlL4

Shared Module

CovL1
CovL2

CovL3

Stage 2 Stage 3 Stage 4
FC — FC Shared
Module
CovL1
CovL1 FC
MPL
CovL2 _ MPL
Shared
MPL Module CovL1
EC CovL2
Covl2 1 CovL3
Shared Module

]

FIGURE 4: Proposed feature extractor module.

and our own collected database. The PlantVillage consists of
more than 16K images, and our own database consists of
more than 20K images. We combined both datasets and
performed our experiments in the ratio of training to testing
as 80 to 20.

4.3. Limitations of the Proposed Work. The numerical so-
lutions and results reported in this paper show that a good
performance is achieved by the proposed method; however,
our proposed algorithm still has limitations. It is a fact that
the research community has concerns about using DL ar-
chitectures. All DL-based methods are complex and require
inputs at several stages. Researchers using these techniques
rely on a trial and error strategy. To summarize, these
methods are time consuming and very well engineered.
However, it is also confirmed that the only choice CV experts
have for any CV-based task is DL methods. We use the idea
of SLS in our proposed work. Ground truth data are needed
for the training and testing phases to implement this model.
In order to create the ground truth data, manual labeling is
required. Since a single person does all this manual labeling,
errors are expected most of the time in labeling. We also did
this labeling manually through humans, which is a weakness
of our proposed method.

4.4. Reported Results and Its Discussion. Some conclusions
that emerge from the results and experiments are summa-
rized in the following paragraphs.

(i) Plant disease classification and identification using
ML is not a new research area for CV and ML
experts. The state-of-the-art reports many good
papers on this topic. Due to diverse applications
in agriculture, researchers explored this field
sufficiently. However, we notice less emphasis,
particularly on interclass disease identification.
Researchers mainly focus on a single plant disease

(ii)

(iii)

(iv)

recognition, whereas our proposed work focuses on
tomato plant disease classification with ten classes.

Initially, we run the whole experimental setup for a
maximum of 14 epochs (please see Figure 5). We
run this setup to know how the model performance
varies on training and validation databases. As
clear from Figure 5, training along with validation
accuracy changes very quickly up to value 6. After
value 6, change occurs very slowly in the upcoming
epochs. Both training and validation losses are also
shown. It is clear that loss is high in the initial
stages and is gradually reduced after increasing the
epochs. This loss reduction clearly shows that the
network is fine-tuned gradually with increasing
epochs.

We use ten class disease problems in our work. The
names of the classes, along with abbreviations, are
shown in Table 5. We report the results for P,, R,,
and F,, for all the ten classes. It is clear from Table 5
that near-perfect results are reported for the class BS
using all three evaluation measures. Similarly, better
results are reported for the classes LB, TMV, SM,
and HL. The worst performance has been shown for
the class EB with precision 0.93, recall 0.95, and
F-measure 0.95, which also shows acceptable and
good results. Our proposed method semantically
segments leaf images into background and fore-
ground. Please see some images in Figure 6, where
column 1 represents the original images, column 2
ground truth, and column 3 segmentation results.
After foreground estimation, each disease classifi-
cation is performed. Moreover, it is also estimated
how much percent of the leaf area is affected by a
disease.

C,.at is the best choice for multiclass evaluation
problems, which ML experts commonly use. It
shows the corresponding percentage of the
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FIGURE 5: Using Adam optimizer, accuracy, and loss changing obtained using training and validation sets.

TaBLE 5: Performance reported in the form of P,, R, and F,,, for the

proposed model.

Class Precision Recall F-measure
EB 0.93 0.95 0.95
LB 0.96 0.99 1.00
™V 0.97 0.99 0.96
HL 0.96 0.97 0.97
LM 0.93 0.95 0.98
YLCV 0.94 0.93 0.96
BS 0.96 0.99 1.00
SLS 0.96 0.96 0.98
TS 0.96 0.94 0.94
SM 0.96 0.98 0.99
Mean 0.95 0.96 0.97

predicted class and true class. The C,,,, for the
reported results for the 10-class problem is dem-
onstrated in Table 6. The results vary from 94%
(lowest) to 100% (highest). The lowest results are
reported for EB, whereas the highest values are
reported for HL. The LM, YLCV, BS, and LB results
are comparatively better, with predicted accuracy
values as 99%, 98%, 98%, and 97%, respectively.

4.5. Performance Comparison with Previous Results. We
compared the reported results with S.O.A. in Table 7. It is
clear that the reported results are far better than previous
results. The reported results and their comparison with
S.0.A. are for accuracy measure only. As most of the papers
reported their accuracy results, we compared our work with
this metric only. We want to add that some research papers
reporting results on plant disease classification using hand-
crafted features show better results than DL-based methods.
However, we believe a better understanding of DL methods

\l.
FIGURE 6: Some example images we used during our experiments:
column 1 shows original images, column 2 shows ground truth

data, and column 3 shows segmentation images with the proposed
SLS method.
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TABLE 6: Reported confusion matrix for tomato plant diseases recognition with proposed SLS-based method.
Predicted class
EB LB T™V HL LM YLCV BS SLS TS SM
EB 94 1 0 0 2 1 1 1 0 0
LB 1 98 0 0 0 0 0 1 0
™V 0 0 100 0 0 0 0 0 0 0
HL 0 0 0 100 0 0 0.24 0 0 0
True class LM 0 0 0 0 99 1 0 0 0 0
YLCV 0 0 0 0 0 98 0 1 1 0
BS 1 0 0 0 0 0 98 1 0 0
SLS 0 0 0 0 0 1 1 96 1 1
TS 0 0 0 0 0 2 1 1 95 1
SM 0 0 0 0 0 0 1 1 1 97

TABLE 7: Reported results and their comparison with previous results.

Method used Year Algorithm (s) Reported accuracy (%)
Proposed method 2022 SLS and CNNs 97.25
Abbas et al. [39] 2021 DenseNet 95.1
Agarwal et al. [40] 2020 GNN-based network 91.2
Elhassouny and Smarandache [41] 2019 MobileNet 90.3
Durmus et al. [42] 2017 Combination of squeez net and AlexNet 95.65
Howard et al. [43] 2017 MobileNet 63.7
Szegedy et al. [44] 2016 Inception V3 63.4
Simonyan and Zisserman [45] 2014 VGG 16 77.2

is still required to address a specific task. For example, the
requirement of a large amount of data is a problem DL
methods face. Generally, traditional ML methods perform
well on data collected in indoor scenes; however, researchers
report a significant drop in performance when these
methods are tested in real-time scenarios. On the contrary,
DL architectures extract a higher level of abstraction from
the data with much better results. Thus, the need for feature
engineering is minimized to a large extent with DL
algorithms.

5. Summary and Concluding Remarks

Due to diverse applications in the agriculture sector, plant
disease identification using DL is an active area of research.
Plant disease recognition is more challenging when the
method is exposed to real-time data. However, CV re-
searchers have shown tremendous progress in the past 5 to
10years. Our current research provides unification and
extension of our previous work reported in [7]. Our study is
mainly motivated by looking into the human visual cortex
to design an E2E trainable neural network architecture. We
propose an E2E SS framework for plant disease identifi-
cation using DL. We introduce the idea of SS for plant
disease recognition. The proposed model predicts the
nature of the disease of the tomato plant and tells how
much area of a specific leaf is affected due to a certain
disease. The model successfully classifies tomato plant
leaves into ten distinct classes. We present a novel loss
function that improves the model’s performance on a state-
of-the-art dataset. We evaluate our model with the stan-
dard dataset PlantVillage, noticing much better results than

previous results. Along with the PlantVillage database, we
also collected a database of more than 20000 images and
tested our framework on it. We expect more evaluation
using a much better optimized DL model for plant disease
recognition from the research community. In the future, we
intend to analyze some more tasks to develop robust
continual DL models, considering some complex combi-
nations of the neural network along with information
extraction.
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