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Fourth-order autonomous nonlinear differential equations can exhibit chaotic properties. In this study, we propose a family of fourth-
order chaotic systems with infinite equilibrium points whose equilibria form closed curves of different shapes. First, the phase diagrams
and Lyapunov exponents (LEs) of the system family are simulated. .e results show that the system family has complex phase diagrams
and dynamic behaviors. Simulation analysis of the Poincarè mapping and bifurcation diagrams shows that the system has chaotic
characteristics. .e circuit simulation model is constructed and simulated in Multisim. .e circuit simulation results coincide with the
numerical simulation results, which verifies the circuit feasibility of the system..en, based on Lyapunov stability theory and the adaptive
control method, the synchronous control of the system with infinite equilibria is designed. Numerical simulation results verify that the
system synchronization with the adaptive control method is well. Finally, the synchronous drive system is used for image encryption, the
response system is used for decryption, and color image encryption is realized by combining deoxyribonucleic acid (DNA) coding and
operating rules..erefore, this study not only enriched the research on infinite equilibria chaotic systems but also further expanded secure
communication technology by combining chaotic synchronization control and DNA coding in image encryption.

1. Introduction

.e study of chaotic systems has gradually become an
important part of nonlinear dynamics since 1963 when
Professor Lorenz proposed the classic Lorenz system [1].
Different characteristics have been identified in different
chaotic systems, such as multi-scroll chaotic oscillators [2],
fractional-order chaotic systems [3], three-dimensional
chaotic systems [4], and chaotic systems with infinite
equilibria [5]. Moreover, the complex dynamic character-
istics of chaotic systems can be applied to audio encryption
technology [6], image watermarking technology [7], chaotic
mask communication [8], and other fields. As the research
on chaotic systems has deepened, chaotic systems with
infinite equilibrium points have gained attention and the
analysis of their complex dynamic behavior has become a
representative research direction.

Recently, investigating infinite equilibrium points in
chaotic systems has attracted the attention of many re-
searchers. In 2015, Gotthans et al. [9] proposed a new class of

three-dimensional chaotic system, by analyzing two cases in
which the system has infinite equilibrium points and con-
stitutes a circle and a square, respectively. Later, the heart-
shaped equilibria chaotic system proposed by Pham et al. [5],
the pear-shaped equilibria chaotic system proposed by Aceng
et al. [10], and the cloud-shaped curve of the equilibrium
points chaotic system proposed byVaidyanathan et al. [11], all
promoted the rapid development of three-dimensional
infinite equilibria chaotic system. In 2019, Huynh et al. [12]
proposed a new four-dimensional memristor chaotic system
with a series of equilibrium points and analyzed the stability
interval of a series of equilibrium points. Subsequently, Yang
et al. [13] proposed a four-dimensional chaotic system with a
boomerang-like equilibrium based on Mobayen’s [14] three-
dimensional infinite equilibria chaotic system. Infinite equi-
libria chaotic systems can show complex dynamic charac-
teristics. However, there are few discussions on the
application of chaotic systems with infinite equilibria.

.e applications of chaotic system mainly includes the
following topics: weak signal detection [15], image
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encryption [13, 16], data encryption [17], voice encryption
[14], and chaotic system control [15, 18, 19]. Among these
topics, image encryption and the synchronous control of the
chaotic systems are still hot topics. .ere are many research
studies on the image encryption of chaotic systems. For
example, a double-channel image encryption/decryption
algorithm based on neural networks and chaos [20] was
designed; Huang et al. [21] proposed a parallel image en-
cryption algorithm based on compressed sensing, which
combines chaotic systems. Previous researchers have also
studied image encryption algorithms based on DNA coding.
Zhang and Liu [22] proposed different DNA coding and
decoding rules based on generated chaotic sequences. Wang
et al. [16] combined a chaotic system with DNA sequence
operations to realize image encryption/decryption.

.ere are many methods for the synchronization and
control of chaotic systems, such as active control, adaptive
control, and sliding mode control. Based on the proposed
Chua’s circuit study, Li and Bo [15] realized a weak signal
detection method via chaotic synchronization. Changbiao
et al. [23] not only completed the signal tracking of the
proposed unified chaotic system by designing an adaptive
synovial controller but also realized the synchronous control
of different structures. Fu et al. [24] have implemented an
encryption algorithm and the double-chaotic system (the
chaos synchronization between two chaotic systems).
González-Zapata et al. [25] proposed the synchronization of
chaotic artificial neurons and its application to secure image
transmission. Ahmad et al. [26] proposed the application of
multi-switch synchronization control system in secure
communication, and Luo et al. [27] applied the multi-switch
synchronization control of a memristor chaotic system in
image encryption. However, this literature does not involve
the keys and the coding is simple; therefore, we can improve
the security of the encryption algorithm based on these two
points.

.e main works of this study are as follows:

(1) A family of chaotic systems with unique character-
istics, which have closed equilibria with different
curves, is proposed.

(2) An adaptive controller is designed. According to
Lyapunov stability theory, master and slave systems
can be synchronized and the synchronization effect
works well.

(3) An image encryption/decryption algorithm is
designed. An adaptive controller and DNA coding/
encoding are selected to achieve the security re-
quirements of encryption.

.e remainder of this study is organized as follows:
Section 2 proposes a class of chaotic systems with unique
characteristics. Section 3 describes the phase portraits and
dynamical analysis of the selected chaotic system, in which
parameter k is 2. In Section 4, a circuital implementation of
the new chaotic system is reported. In Section 5, the results
for the synchronization of the chaotic system are derived via
parameter adaptive control. Section 6 describes image en-
cryption via the synchronization of the chaotic system as an

engineering application of our work. Section 7 provides a
brief discussion. Section 8 draws the main conclusions.

2. A Family of Chaotic Systems with
Infinite Equilibria

.e chaotic system proposed in reference [9] is shown in
equation (1), where g1(x, y, z) � ay + by2 + xz and
g2(x, y, z) � x2 + y2. .e simulated phase diagram is shown
in Figure 1, when a � 5, b � 3, and the initial conditions
(x0, y0, z0) � (0, 0, 0):
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.e system proposed and studied in this study adds the
fourth equation of state and replaces g1(x, y, z) with
g1(x, y, z, w) � ay + by2 + xz − cw − d and g2(x, y, z) with
|x|k + |y|k − 1. .e system equation obtained is shown in
thefollowing equation:
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Here, x, y, z, and w are state variables and a, b, c, d, e, f,
and k are system parameters. Note that k is an integer. It is
clear that the equilibrium points of the system are
(x, y, 0, 0): |x|k + |y|k � 1􏽮 􏽯. As shown in Figure 2, as k

increases, the equation ||x|k + |y|k � 1 forms a closed curve
region with increasing k value.

System (2) can behave as chaos for a � 5, b � 3, c � 32,
d � 20, e � 0.01, and f � 25; the initial conditions are
assigned as (x0, y0, z0, w0) � (0.02, 0.02, 0.02, 0.02). .e
Runge–Kutta method was used for numerical simulation,
and simulation phase diagrams under different integers k

were obtained, as shown in Figure 3. In Figures 3a–f of the
simulation phase diagrams, the black closed curve is the
equilibrium points under different integers k, and it can be
seen that the attractor surrounds and connects the equilibria.
It shows that the new system has a more complex phase
diagram and satisfies at least one of the criteria [28].

According to System (2), the Jacobian matrix (3) of the
system family can be obtained. .e Lyapunov exponents
were obtained by numerical simulation based on the famous
Wolf’s algorithm [29], as listed in Table 1.
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3. Analysis of System Dynamics

We analyze the dynamics of the system at integer k � 2. For
a � 5, b � 3, c � 32, d � 20, e � 0.01, and f � 25 and initial
conditions ic � (0.02, 0.02, 0.02, 0.02)T, this system has cha-
otic solutions with the phase diagrams, as shown in Figure 4.

3.1. Equilibria Analysis and Lyapunov Exponents. When
k � 2, the Jacobian matrix of the system at the equilibrium
points [30] is illustrated in the following equation, where x∗

and y∗ are satisfied when x∗
2

+ y∗
2

� 1:

J �
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.en, the characteristic polynomial of the Jacobian
matrix is as follows:

det(λI − J) � 0. (5)

.e characteristic values at the equilibrium points ob-
tained by numerical calculation are as follows:

λ1 � −0.01, λ2 � 0, λ3,4 � ±
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In Table 2, I, II, III, IV represent the four quadrants,
respectively.

A pair of purely imaginary eigenvalues represents an
unstable central equilibrium. And this implies an unstable
saddle for pure real eigenvalues. In addition, the four-di-
mensional Bogdanov–Tarkens equilibrium
(λ2 � λ3 � λ4 � 0) for k � 2 is given.

.is system has a chaotic solution with Lyapunov ex-
ponents LE1 � 0.0240, LE2 � 0, LE3 � −0.0172, and
LE4 � −0.0199, and the Lyapunov exponential is shown in
Figure 5.

.e fractal dimension [17] can be calculated using the
following equation:

DL � j +
1

LEj+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘

j

i�1
LEi � 3 +

LE1 + LE2 + LE3

|LE4|
� 3.3417.

(7)

.e Lyapunov exponents are LE1 > 0, LE2 � 0, LE3 < 0,
and LE4 < 0, and the dimension is fractal (DL � 3.3417). .e
system shows chaotic behavior.

3.2. Bifurcation Diagram and the Poincarè Section Diagram.
Poincarè is a measure of the chaotic state that can effectively
and directly describe the phase space [31]. .e system is
chaotic when the Poincarè map is a continuous curve or
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Figure 1: Chaotic phase diagram of System (1) with (a) � 5, (b) � 3, and x(0) � [0 0 0]T [9].
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some dense points..e section diagram in Figure 6 shows an
irregular distribution of points. .erefore, we can verify that
the system is chaotic.

.e bifurcation diagram can reflect the periodic or
chaotic motion of a system [30]. If the parameters change,
the stability of the system will vary. .is is illustrated by
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Figure 3: Phase diagram of the difference in integer k. (a) k � 1. (b) k � 2. (c) k � 3. (d) k � 4. (e) k � 5. (f ) k � 6.

Table 1: Lyapunov exponents of different integersk.

Equations Equilibria LEs DKY

k � 1 |x∗| + |y∗| � 1 (0.0528, 0, −0.0200, −0.0400) 3.8200
k � 2 (x∗)2 + (y∗)2 � 1 (0.0240, 0, −0.0172, −0.0199) 3.3417
k � 3 |x∗|3 + |y∗|3 � 1 (0.0283 ,0, −0.0130, −0.0225) 3.6000
k � 4 (x∗)4 + (y∗)4 � 1 (0.0234 ,0, −0.0073, −0.0238) 3.6765
k � 5 |x∗|5 + |y∗|5 � 1 (0.0090, 0, −0.0047, −0.0125) 3.3440
k � 6 (x∗)6 + (y∗)6 � 1 (0.0144, 0, −0.0051, −0.0262) 3.3549
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observing the state changes of the chaotic system through
the bifurcation diagram and Lyapunov exponential when the
system parameter changes.

For a � 5, b � 3, c � 32, d � 20, e � 0.01, and
f ∈ [20, 100] this system has chaotic solutions with the
bifurcation diagram and Lyapunov exponential, as shown in
Figure 7. Obviously, from the bifurcation diagram and
Lyapunov exponent spectrum, we conclude that System (2)
exhibits robust chaos [32] in the whole region, except for the
periodic motion shown when the maximum Lyapunov
exponential zero at f� 50. .erefore, this type of system

signal has high scientific research value and can be used in
image encryption.

3.3. Multistability Analysis. Multiple stability is an inter-
esting phenomenon, which usually exists in chaotic systems
with infinite equilibrium points. It can be seen from the
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Figure 4: Chaotic system simulation two-dimensional phase diagram. (a) yz phase diagram. (b) xz phase diagram. (c) yw phase diagram.
(d) zw phase diagram.

Table 2: Eigenvalues of system (2) for k� 2.

Case λ2,3

I A pair of purely imaginary
II −0.996<x< 0, 0.05<y< 1 A pair of purely imaginary

II −1<x< − 0.996, 0<y< 0.05 One positive real, one negative
real

III One positive real, one negative
real

IV
0<x< 0.996, − 1<y< − 0.05

One positive real, one negative
real

IV 0.996<x< 1, − 0.05<y< 0 A pair of purely imaginary
x � 0, y � 1 λ3,4 � ± 4.8989
x � −1, y � 0 λ3,4 � ± 1.4142i

x � 0, y � −1 λ3,4 � ± 7.4833i

x � 1, y � 0 λ3,4 � ± 1.4142
x � 0.996, y � −0.05 λ3,4 � 0
x � −0.996, y � 0.05 λ3,4 � 0
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Figure 5: Lyapunov exponential of the system over time.
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bifurcation diagram in Figure 8. When the parameters a � 5,
b � 3, c � 32, d � 20, e � 0.01, and varying f are in the region
of [0, 30], there exist coexisting attractors. A set of initial
conditions (0.02 0.02 0.02 0.02) with blue color and another
set of initial conditions (0.5 0 0 0) with red color are fixed.
Some sample coexisting attractors are presented. For ex-
ample, when f� 2.5 or f� 12.12, the system produces the
coexisting periodic attractors as shown in Figures 9(a) and
9(b). Moreover, the coexisting chaotic attractor and periodic
attractor are found in the new System (2) with f� 12.72, as
shown in Figure 9(c). In addition, the coexisting chaotic
attractors are shown in Figure 9(d) with f� 25.

4. Implementation of System Circuit

Electronic circuit synthesis is not only a method to model
nonlinear dynamic systems accurately but also a method to
test the stability of system structures [11]. Multisim is used to
design the circuit diagram of the chaotic system to illustrate
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the feasibility of the system, as shown in Figure 10. We use
the popular design approach based on multipliers and op-
erational amplifiers, which is TL082CD, the supply voltage is
±15V, and the saturation voltage is ±13.5V..e multiplier is
AD633 (the output gain is set to 0.1).

Under the classical system parameters, the dynamic
range of the state variable of System (2) is too small. In order
to avoid excessive input errors of the multiplier, the linear
transformation of the state variable of the system of equation

(8) is performed and then the time scale transformation [33]
of τ � τ0t is performed. Finally, the system of equation (9) is
obtained.

A schematic diagram of the designed circuit is shown in
Figure 9. When the capacitance values are C1 � C2 � C3 �

C4 � 0.1μF and the resistor values are
R12 � R13 � R14 � R15 � R16 � R17 � 10kΩ, the other resis-
tor values are shown in equation (10):

(x, y, z, w)⟶ (0.1x, 0.25y, 0.05z, 0.25w), (8)
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.e phase diagram obtained by circuit simulation is
shown in Figure 11. Comparing the circuit simulation phase
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diagrams in Figure 11 and the numerical simulation phase
diagrams in Figure 4 shows that they coincide, which verifies
the circuit feasibility of the chaotic system.
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Figure 10: Circuit diagram of the chaotic system.
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5. Parameter Adaptive Synchronous Control

In this study, the synchronous control of two systems with
infinite equilibrium points is studied.

.e drive system with an infinite equilibrium point is
designed as follows:

x1
.

� x3,

x2
.

� −ax2x3 − bx2
2
x3 − x1x3

2
+ cx3x4 + dx3,

x3
.

� x1
2

+ x2
2

− 1,

x4
.

� −ex4 − fx2x3.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

.e designed response system is as follows:

(a) (b)

(c) (d)

Figure 11: Circuit simulation phase diagram. (a) yz phase diagram. (b) xz phase diagram. (c) yw phase diagram. (d) zw phase diagram.
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y1
.

� y3 + u1,

y2
.

� −􏽢ay2y3 − 􏽢by2
2
y3 − y1y3

2
+ 􏽢cy3y4 + 􏽢dy3 + u2,

y3
.

� y1
2

+ y2
2

− 1 + u3,

y4
.

� −􏽢ey4 − 􏽢fy2y3 + u4.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

Here, the adaptive controller is u � [u1, u2, u3, u4]
T and

the state error of the drive system and the response system is
defined as ei � yi − xi(i � 1, 2, 3, 4). .e synchronization
state error is calculated by the following equation [34]:

e1 � y1 − x1,

e2 � y2 − x2,

e3 � y3 − x3,

e4 � y4 − x4.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

Similarly, the estimated error of the calculated param-
eters is as follows:

ea � a − 􏽢a,

eb � b − 􏽢b,

ec � c − 􏽢c,

ed � d − 􏽢d,

ee � e − 􏽢e,

ef � f − 􏽢f,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

ea

.
� −􏽢a

.

,

eb

.
� −􏽢b

.

,

ec

.
� −􏽢c

.

,

ed

.
� −􏽢d

.

,

ee

.
� −􏽢e

.

,

ef

.
� −􏽢f

.

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where 􏽢a, 􏽢b, 􏽢c, 􏽢d, 􏽢e, and 􏽢f are the estimated of parameters.
.e estimation error of the dynamic parameters can be
obtained by equation (15).

To achieve adaptive synchronous control, namely, to
achieve limt⟶+∞‖e(t)‖ � limt⟶+∞‖y(t) − x(t)‖ � 0, the
adaptive controller is designed as follows:

u1 � −e3 − k1e1,

u2 � 􏽢a e2e3 + e2x3 + e3x2( 􏼁 + 􏽢b y2
2
y3 − x2

2
x3􏼐 􏼑 + y1y3

2
− x1x3

2
− 􏽢c e3e4 + e3x4 + e4x3( 􏼁 − 􏽢de3 − k2e2,

u3 � −e1 y1 + x1( 􏼁 − e2 y2 + x2( 􏼁 − k3e3,

u4 � 􏽢ee4 + 􏽢f e2e3 + e2x3 + e3x2( 􏼁 − k4e4.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

Here, k1, k2, k3, and k4 are normal numbers, and the
parameter updating law is defined as follows:

􏽢a
.

� −λ1 e
2
2e3 + e

2
2x3 + e2e3x2 − ea􏼐 􏼑,

􏽢b

.

� −λ2 e2y2
2
y3 − e2x2

2
x3􏼐 􏼑 − eb,

􏽢c
.

� λ3 e2e3e4 + e2e3x4 + e2e4x3 + ec( 􏼁,

􏽢d

.

� λ4 e2e3 + ed( 􏼁,

􏽢e
.

� −λ5 e
2
4 − ee􏼐 􏼑,

􏽢f

.

� −λ6 e2e3e4 + e2e4x3 + e3e4x2 − ef􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

.e designed controller and parameter updating rules
are inserted into the error equation to obtain the following
equation:

e1
.

� −k1e1,

e2
.

� −ea e2e3 + e2x3 + e3x2( 􏼁 − eb y2
2
y3 − x2

2
x3􏼐 􏼑 + ec e3e4 + e3x4 + e4x3( 􏼁 + ede3 − k2e2,

e3
.

� −k3e3,

e4
.

� −eee4 − ef e2e3 + e2x3 + e3x2( 􏼁 − k4e4.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(18)
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Lyapunov stability theory [16, 35] was used to verify the
synchronization of the drive system and response system.
.e Lyapunov function is constructed as follows:

V e1, e2, e3, e4, ea, eb, ec, ee, ef􏼐 􏼑 �
1
2
e
2
1 +

1
2
e
2
2 +

1
2
e
2
3 +

1
2
e
2
4 +

1
2λ1

e
2
a

+
1
2λ2

e
2
b +

1
2λ3

e
2
c

1
2λ4

e
2
d +

1
2λ5

e
2
e +

1
2λ6

e
2
f.

(19)

In equations (17) and (19), factor λi > 0(i � 1, 2, 3, 4, 5, 6)

and the derivative ofV yields equation (20), which is obvious
for V≥ 0 and V

.

< 0. .erefore, according to Lyapunov
stability theory, the driving system and the response system
can realize synchronization.

.e synchronization is verified by an example. .at is,
the fourth-order Runge–Kutta algorithm is used for nu-
merical simulation. .e system parameters are a � 5, b � 3,
c � 32, d � 20, e � 0.01, and f � 25. .e initial values of the

drive system are x1(0) � 0.01, x2(0) � 0.01, x3(0) � 0.01,
and x4(0) � 0.01. .e initial values of the response system
are y1(0) � 2, y2(0) � 4, y3(0) � 6, and y4(0) � 8. .e
initial conditions of the parameter estimation are 􏽢a � 2.5,
􏽢b � 1.5, 􏽢c � 35, 􏽢d � 25, 􏽢e � 0.02, and 􏽢f � 20. .e control
parameters are set as k1 � k2 � k3 � k4 � 80 and
λ1 � λ2 � λ3 � λ4 � λ5 � λ6 � 60. .e simulation results are
shown in Figure 12.

V
.

� e1e1
.

+ e2e2
.

+ e3e3
.

+ e4e4
.

+
1
λ1

eaea

.
+

1
λ2

ebeb

.
+

1
λ3

ecec

.
+

1
λ4

eded

.
+

1
λ5

eeee

.
+

1
λ6

efef

.
� −k1e

2
1

− eae2 e2e3 + e2x3 + e3x2( 􏼁

− ebe2 y2
2
y3 − x2

2
x3􏼐 􏼑 + ece2 e3e4 + e3x4 + e4x3( 􏼁

+ ede2e3 − k2e
2
2 − k3e

2
3 − eee

2
4 − efe4 e2e3 + e2x3 + e3x2( 􏼁 − k4e

2
4

−
1
λ1

eaa
⌢
.

−
1
λ2

ebb
⌢
.

−
1
λ3

ec c
⌢
.

−
1
λ4

edd
⌢
.

−
1
λ5

ee e
⌢
.

−
1
λ6

eff
⌢
,

,

� −k1e
2
1 + ea −e2 e2e3 + e2x3 + e3x2( 􏼁 −

1
λ1

a
⌢
.

􏼠 􏼡 + eb −e2 y2
2
y3 − x2

2
x3􏼐 􏼑 −

1
λ2

b
⌢
.

􏼠 􏼡

+ ec e2 e3e4 + e3x4 + e4x3( 􏼁 −
1
λ3

c
⌢
.

􏼠 􏼡 − k2e
2
2 − k3e

2
3 + ed e2e3 −

1
λ4

d
⌢
.

􏼠 􏼡

+ ee −e
2
4 −

1
λ5

e
⌢
.

􏼠 􏼡 + ef −e4 e2e3 + e2x3 + e3x2( 􏼁 −
1
λ6

f
⌢
.

􏼠 􏼡 − k4e
2
4

� −e
2
a − e

2
b − e

2
c − e

2
d − e

2
e − e

2
f − k1e

2
1 − k2e

2
2 − k3e

2
3 − k4e

2
4.

(20)

.e synchronization error curves between the driving
system and the response system are achieved in approxi-
mately 0.08 seconds. .e system completes the identification
of unknown parameters in approximately 0.1 seconds. .is
shows that the synchronization control of the two systems is

realized and that the synchronization effect is good. But in
different synchronization systems, the control parameters
are selected differently, reflecting different synchronization
effects. .erefore, the choice of control parameters should
depend on the specific situation.
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Figure 12: Synchronous simulation. (a) Synchronization waveform of x2 and y2. (b) Synchronization waveform of x4 and y4.
(c) Synchronization errors e1, e2, e3, and e4. (d) Identification curves of parameters.
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6. Application in Image Encryption

In cryptography, there are some basic concepts [36], such as
plaintext representing information to be encrypted, ci-
phertext representing information processed by an en-
cryption algorithm, an encryption algorithm representing
the way plaintext converted to ciphertext, and a decryption
algorithm representing the way ciphertext converted to
plaintext. .ere are two principles for encryption in cryp-
tography: diffusion and confusion. Diffusion is the purpose
of encrypting plaintext by loading plaintext into ciphertext
[16]. However, confusion uses obfuscation to conceal the
relationship between plaintext and ciphertext without
changing the plaintext, making the plaintext undecipherable.
.e analysis of the image encryption effect mainly includes
histograms, information entropy, sensitivities to keys, cor-
relations, and other measures. .e overall structure of the
image encryption and decryption process of this study is
shown in Figure 13.

6.1. Method of Image Encryption and Decryption Method.
In this study, a chaotic adaptive parameter synchronization
control system with infinite equilibria is used for image
encryption to verify that the system is more secure for
cryptography.

.ere are 3-color data matrices R, G, and B of original
image I with 512 × 512 × 3 pixels. .e original image I is
denoted as M × N.

.e detailed steps of image encryption are as follows:

Step 1: Preprocess the chaotic sequences.
When the initial values of the adaptive parameter
system are x1(0) � 0.01, x2(0) � 0.02, x3(0) � 0.01,
and x4(0) � 0.02, the four-dimensional chaotic se-
quences of the driving system, which are denoted as
x � [x1, x2, x3, x4]

T, can be obtained. To eliminate the
transient effects for more random effects, the top 1000
items generated iteratively were removed. Each element
(c(i)) in the chaotic sequences was processed by the
following equation, and the chaotic sequences were
converted into an integer between 0 and 255:

c(i) � c(i)∗ 103􏼐 􏼑mod256􏼐 􏼑. (21)

Step 2: Generate scrambled sequences. .ree chaotic
sequences of x1, x2, and x3 were arranged in ascending
order with the sort function to obtain the scrambled
matrices R′, G′, and B′.
Step 3: .e chaotic sequence x4 obtained by iteration is
transformed into a two-dimensional matrix C, whose
size is M × N. .e XOR operation [16] (Table 3) was
performed on matrices R′, G′, and B′, and matrix C is
obtained according to number 1 in Table 4 (binary code
for DNA coding rules [16]) at corresponding positions
to conceal plaintext information. .e diffusion ma-
trices R′′, G′′, and B′′ are obtained.
Step 4: Reconstruct the matrices R′′, G′′, and B′′ to
obtain the encrypted image.

.e detailed steps of the image decryption are as follows:

Step 1. Preprocessed sequences. Input the initial values
of the adaptive parameters system as the keys to obtain
the 4-dimensional mixture of the response system. It is
denoted as y � [y1, y2, y3, y4]

T. Similarly, the first 1000
items are eliminated, and then each element in the
chaotic sequences is processed by equation (21) to
convert the chaotic sequences into an integer between 0
and 255.
Step 2. Read the 3-color ciphertext matrices R′′, G′′,
and B′′ of the encrypted image.
Step 3. .e resulting chaotic sequence y4 is converted
to a two-dimensional matrix C′ with a size of M × N.
.e XOR operation (Table 3) is performed on the ci-
phertext matrices R′′, G′′, and B′′, and matrix C′ at the
corresponding positions according to number 1 in
Table 4 (binary rules for DNA encoding [14]). .e R′,
G′, and B′ matrices of the ciphertext image are
obtained.
Step 4. .e R′, G′, and B′ matrices of the ciphertext
image are restored by using x1, x2, and x3 chaotic
sequences as ascending obfuscations. .e R, G, and B

matrices are obtained.
Step 5. Reconstruct two-dimensional matrices R, G,
and B. .e decrypted image is obtained.

6.2. Experimental Simulation. In this study, the classic image
Lena is used as the representative for encryption. .e
adaptive parameter system selects the above parameters and
conducts encryption according to the above steps.

Figure 14 shows the experimental results. It can be seen
that the encrypted image has no similar information to the
original image, and it can be visually determined that the
encryption and decryption are successful.

6.3. Histogram Analysis. .e histogram intuitively sees the
encryption effect. Figure 15 is a histogram comparison of
original and encrypted images in the RGB channels.

Figure 15 shows that the histograms of the encrypted
image are completely different from those of the original
image. .e pixel values of ciphertext images are evenly
distributed by diffusion, and it is difficult to analyze the
relationship with the original image. .e hiding effect of the
pixel values of the original image is better.

6.4. Correlation Analysis. .e adjacent pixels of the original
image have large correlations in the horizontal, vertical, and
diagonal directions because of the coherence of the picture.
Image encryption destroys the correlation between the pixel
values of the original image. .erefore, correlation analysis
can be used as an index of image encryption effect analysis. N
pairs of adjacent pixels, which are (ui, vi), from the image are
chosen. .e correlation coefficient [37] is calculated by
equation (22)..e correlation curves are shown in Figure 16,
and the correlation coefficients are listed in Table 5.
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rxy �
cov(u, v)

�����
D(u)

􏽰 �����
D(v)

􏽰 ,

cov(u, v) �
1
N

􏽘

N

i−1
ui − E(u)( 􏼁 yi − E(v)( 􏼁,

D(u) �
1
N

􏽘

N

i−1
ui − E(u)( 􏼁

2
,

E(u) �
1
N

􏽘

N

i−1
ui.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

.e correlations of the original image and the ciphered
image show that the pixel correlation can be reduced to zero

or close to zero after encryption. After encrypting adjacent
pixels, it is concluded that the algorithm has a secure en-
cryption effect. .is means that the attacker cannot use
correlation to crack the encrypted image.

6.5. Information Entropy Analysis. Information entropy
reflects the uncertainty of image information [26] and can be
calculated by the following equation [37]:

H � − 􏽘
L

i�0
p(i)log2p(i), (23)

where L is the number of gray levels of the image and p(i) is
the probability of the pixel value in the entire picture. .e
theoretical value of the information entropy is 8. It is
generally believed that the information entropy of all the
encrypted images is quite close to the ideal value of 8, which
implies that the encrypted images have good randomness.

As Table 6 shows, the encryption algorithm performs
better than the results in the listed literature, which indicates
that this encryption algorithm is competitive in this sense.

6.6. Key Sensitivity Analysis. Key sensitivity [38] means that
a small change in a designed key will lead to decryption
failure, and the original image cannot be extracted when the
same image is decrypted.

.e keys used in this study that decrypt the image are the
y1(0) � 0.01, y2(0) � 0.02, y3(0) � 0.01, and y4(0) � 0.02,
as shown in Figure 17(a). y(0) � y(0) + 10− 16 is slightly
changed and the other keys remained unchanged. .e
decrypted image is shown in Figure 17.

Figure 17(a) shows that the decryption image is com-
pletely identical to the original image. However, in

R, G, B
of original 

confusion

DNA coding

Parameter 
adaptive system

system
(X)

DNA decodingconfusionR, G, B
of decrypt

system
(Y)

x1, x2, x3

x4

R, G, B
of encryption

y1, y2, y3

y4

Decryption image

Encryption image

original image

Figure 13: .e overall structure of the image encryption and decryption.

Table 3: Xor operation.

⊕ A T C G
A T A G C
T A T C G
C G C T A
G C G A T

Table 4: Binary versus DNA coding rules.

0 1 2 3 4 5 6 7
A 00 00 11 11 01 01 10 10
T 11 11 00 00 10 10 01 01
C 10 01 10 01 11 00 11 00
G 01 11 01 11 00 11 00 11
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Figure 17(b), the decryption image is completely different,
which means that the proposed encryption method provides
a high decrypt sensitivity.

7. Discussions

.e proposed family of chaotic systems enriches the study of
chaotic systems with infinite equilibrium points, and on this
basis, we can independently study chaotic systems withmore
unique closed curve equilibrium points. .e integer-order
chaotic system can also be extended to the fractional-order
chaotic system, so that the study of chaotic system has more
practical significance. .e circuit of the new system is
designed and simulated with Multisim. .e phase diagram

of the circuit simulation is in good agreement with the result
of numerical simulation. .is proves the feasibility of circuit
realization, and chaotic systems can be realized by analog
and digital circuit construction in the future work, which
endods the value of the industrial practical application of the
chaotic system. .e designed adaptive synchronization
control can achieve synchronization quickly. However,
other synchronization control technologies can be expanded
to achieve faster synchronization for a better synchroniza-
tion effect. .e combination of synchronous control and
DNA encoding in image encryption can effectively improve
the security performance of encryption/decryption, which
has further research value. Furthermore, extending the
synchronization control of chaotic system to the application

Original image

(a)

Confusion image

(b)

Encryption image

(c)

Decryption image

(d)

Figure 14: Encryption results. (a) Original image. (b) Confusion image. (c) Encryption image. (d) Decryption image.
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Figure 15: Histograms analysis. (a–c) Histograms of the original image in the RGB channels, respectively; (d–f) histograms of the encrypted
image in RGB channels, respectively.
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Figure 16: Partial correlations of adjacent pixels. (a) Horizontal correlation of the original image in the R channel, (b) horizontal correlation
of the ciphered image in the R channel, (c) vertical correlation of the original image in the G channel, (d) vertical correlation of the ciphered
image in the G channel, (e) diagonal correlation of the original image in the B channel, and (f) diagonal correlation of the ciphered image in
the B channel.

Table 5: Comparison of correlation coefficients.

Correlation Lena Encryption image
Horizontal 0.97892 0.02025
Vertical 0.98861 0.00243
Diagonal 0.96279 −0.03036

Table 6: Information entropy comparison.

Image Lena Literature [37] Literature [38] Literature [39] Literature [40] Literature [41] .is study
Information entropy 6.9951 7.9974 7.9970 7.9979 7.9982 7.9989 7.9994
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(a)
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(b)

Figure 17: Decryption images. (a) Correct key decryption image, and (b) decrypted images with a small change in y (0).
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field can also be reflected in other fields such as fault de-
tection and secure communication. .is will give chaos
control practical application value and has the necessity of
further development research.

8. Conclusions

A family of fourth-order chaotic systems with an infinite
equilibrium point is proposed in this study. A chaotic system
is selected for theoretical analysis and numerical simulation
of the Lyapunov exponents spectrum, Poincarè cross sec-
tion, and bifurcation diagram; the results support that the
chaotic system has more complex dynamic characteristics. A
circuit schematic diagram is built to verify the circuit sta-
bility and realizability of the proposed system. .e pa-
rameter self-adaptive synchronization of the chaotic system
is designed. .e simulation results show that the synchro-
nization control of the two systems is realized and the
synchronization effects work well. .e color image en-
cryption algorithm is designed by using chaotic system
synchronization control combined with DNA coding and
operating rules. .e histogram, information entropy, cor-
relation coefficient of each channel, and key sensitivity are
analyzed. Comparing the reference for image encryption
algorithms, it is found that the algorithm has a more secure
performance.
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