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In this study, a new mathematical model is presented to solve the flexible flow shop problem where transportation is reliable and
there are constraints on intermediate buffers, budgets, and human resource learning effects. Firstly, the model is validated to
confirm the accuracy of its performance. )en, since it is an NP-hard one, two metaheuristic algorithms, namely, MOSA and
MOEA/D, are rendered to solve mid- and large-scale problems. To confirm their accuracy of performance, two small-scale
problems are solved using GAMS exact solution software, and the obtained results have been compared with the output of the
algorithms. Since the problem in this study is multiobjective, five comparative indices are used to compare the performance of
algorithms. )e results show that the answers achieved using the metaheuristic algorithms are very close to the ones achieved via
the GAMS exact program.)erefore, the proposed algorithms are validated, and it is proved that they are accurately designed and
useable in solving the real-world problems (which have mid- and large-scale) in logical calculation time. By comparing the
obtained results, it can be seen that theMOEA/D algorithm performs better in terms of computational time (CPU time) andMean
ideal distance (MID).)eMOSA algorithm also performs better according to the index Spread of nondominated solutions (SNS),
diversity metric (DM), and number of Pareto solutions (NPS). Considering the confirmation of precision and accuracy of
performance of the proposed algorithms, it can be concluded that MOSA and MOEA/D are useful in solving the mid- and large-
scale modes of the problem in the study, which is very applicable in the real world.

1. Introduction

Scheduling is the gathering of principles, models, and
method for making decisions and determining a time
schedule. To do so, it is necessary to define the problem, its
dimensions, and objectives accurately. Resources and ac-
tivities are defined in a system in various ways. Resources
can be machinery in a production workshop, air lines in an
airport, worker in a construction project, and so on. If the
process is done only in one stage and there is only one
processor in it, the problem is a single machine mode one.
Sometimes, more than one processor is used in a parallel way
for optimizing the efficiency and speed of processing. In such

a situation, the sequence of operation problem transforms
into a problem with parallel machines [1, 2].

)e flexible flow shop problem includes a layout of
numerous machines in a linear way so that production
begins in one in the initial work stage and finishes in the last
one in the last stage. All productions must be put inside one
machine in all work stages and must be passed through
production and process stages one by one until the last stage
[3]. )e sequence of operation problem can be categorized
based on the way of processing and the placement and
characteristics of processors. If a process is done only in one
stage, and there is only one processor in it, the problem is a
single machine mode one. Sometimes, more than one
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processor is used in a parallel way for optimizing the effi-
ciency and speed of processing. In such a situation, the
sequence of operation problem transforms into a problem
with parallel machines. A more complicated mode occurs
when data must be processed in numerous consecutive
stages. In this mode, machines are placed in a series way, and
each activity must be performed on all machines, respec-
tively. )e sequence is the same for all activities. Such a
problem is called a flexible flow shop one [4, 5]. Sometimes,
in flow shop problems, check points occur, decreasing their
efficiency. It is because processing takes a lot of time in some
stages. As a result, numerous processors are used in a parallel
way instead of just one to fasten and facilitate processing.
Such problems with such characteristics (numerous pro-
cessing stages in a series way, many processors in a parallel
way in each stage, and the identical processing for all ac-
tivities) are called flexible flow shop ones. )e flexible flow
shop problem includes a layout of numerous machines in a
linear way so that production begins in one in the initial
work stage and finishes in the last one in the last stage. All
productions must be put inside one machine in all work
stages and passed through production and process stages
one by one until the last stage. )e objective of such
problems is the quantification of the time of processing all
jobs on machinery, so that all jobs are processed in the
shortest time. As mentioned earlier, in this study, the main
problem is studied under the assumption that parameters
and data were predetermined. Figure 1 shows a compre-
hensive categorization of the sequence of operations and the
current flexible flow shop problem position.

In this study, a scenario-based multiobjective problem is
focused on in a production system based on the flexible flow
shop. )e probabilities of each scenario are determined. In
each of them, the costs of each machine work and the rate of
transportation failures are different in every stage. In the
model, the flexible flow shop is presupposed. In all stages of
the flow shop, a lot of transportation is done for transporting
products and processing on machines. Each time the work is
moved by the transporter between each station, it has its own
transportation time. )e preparation times of each job at
each station depend on the previous work done at that
station. Performing preventive maintenance and repair
operations is another operation that can be carried out on

work transport devices between workstations. In this situ-
ation, each transportation device becomes defective based
on its relative failure distribution function and need for
fixing. At this time, operations or productions remain on
transportation devices until transformation operations fin-
ish and the device becomes available. Afterwards, trans-
portation continues. Repairing the transportation devices is
done randomly, and each problematic device will be repaired
based on a probability distribution function. Regarding the
constraints in the number of transportation devices among
stages, intermediate buffers with limited capacities are
specified for each work stage. Also, each human resource has
a learning rate regarding each machine. In addition, the time
of processing and preparing decreases based on human
resource learning rates. )e objective is the quantification of
the mean of completion time value at the end of stages and
the penalty of waiting time in buffer and also the cost of
processing based on jobs’ specification. )e number of
works performed in intermediate buffers is fewer than the
maximum capacity of the relative accumulator. Another
constraint affecting the proposed flexible flow shop problem
is the budget. )e budget limit in this issue is applied in such
a way that the total budget available for the maintenance
costs and staying of the works in the in intermediate buffers
before the workstations is a limited and specific budget. Each
work waiting for processing on work shop stages’ previous
machines in intermediate buffers has a certain cost per time
units in the problem, and for all works in the intermediate
buffers of each work stage, a maintenance cost is determined
for the model. )e total cost must be less than the total
budget of the project.

In the second section, the review of literature is pre-
sented. In the third section, the mathematical model is
introduced, and the results will be presented in the fourth
section. At the end, conclusions and suggestions are
mentioned.

2. Literature Review

)e first research regarding the flexible flow shop problem
was presented in 1970s by [6], in which the modeling of the
production system in a textile supplying factory is studied.
After the introduction of this branch of sequence of
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Figure 1: )e categorization of the position of the flexible flow shop problem.
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operation, researchers became gradually interested in it and
published numerous articles [7].

Johnson [8] proved that the problem of flexible flow shop
in which the function of the quantification of the make span
is under the set of NP-hard ones. As a result, researchers
were encouraged to render various heuristic and meta-
heuristic methods to approximately solve problems.
Tavakkoli-Moghaddam et al. [9] proposed a two-way model
of the work flow problem of parallel machines considering
independent initial set up times and the precedence con-
straint and used a genetic algorithm to solve it.

Naderi et al. [10] presented two algorithms based on
electromagnetic one and simulated annealing one to solve
the two-objective problem of job shop flow. )e objectives
were quantifying the completion total time of jobs and the
whole delays. )e results show that the electromagnetic
algorithm had better answers compared with other methods.
Wang and Choi [11] presented a multiobjective model of
parallel machine problem considering the maintenance
operation and preventive multi fixings. )e objective
function included the quantification of the completion time
of all jobs; the first case is the unreliability of machines and
the second case is the unreliability of preventive mainte-
nance and repairs. To solve the problem, they used a
nondominance sorting genetic algorithm (NSGA). Shahi-
dizadeh et al. [12] presented a two-objective model of a job
shop flow with parallel machine, in which the process was a
group production one. )e objective function included the
quantification of the completion time of all jobs, the re-
duction of delay, and the cost of purchasing machinery.
Since their problem was NP-hard and had large-scale, they
used a multiobjective harmony search algorithm to solve it.
)e results showed that their proposed method rendered
more qualified answers compared with other algorithms.
Liao et al. [13] presented a multiobjective model of the group
scheduling problem in the job shop flow system considering
the maintenance operation and preventive repairing. )e
objective function included the quantification of the com-
pletion time of all jobs, maintenance costs, and preventive
repairing. Zandieh et al. [14] presented a multi objective
model of hybrid job shop flow considering the maintenance
operation and preventive repairing. )eir solution included
a hybrid dominance sorting genetic algorithm with two
approaches. )e results showed that their proposed method
was very efficient in hybrid job shop flow problems. Mollaei
et al. [15] presented a two-objective model for multistage
problems in production systems. To solve it, they used a
hybrid of Taguchi and Monte Carlo methods. )eir study
was about an automotive company in France. )e results
proved the quality of their solution in the mentioned study.
Ozsoydan and Sagir [16] proposed an integrated Greedy
algorithm enhanced by metaheuristic-based learning for
flexible flow shop problem, considering independent initial
set up times. Cheng et al. [17] presented a group scheduling
problem in a job shop flow one. )ey presented two algo-
rithms of multistage simulated annealing and local search-
based variance ones. Also, by solving the problem in the
previous literature and studies using their method, they
indicated that most local search-based variant algorithms

render better results, both considering the objective function
and computational time. Shen et al. [18] presented a two-
objective model for the flexible flow shop problem in the
macaroni production industry in Belgium. )e objective
function of his study included quantifying the time of job
completion and the energy and human resources costs. )ey
proposed a customized two-phase genetic algorithm. )e
results of solving their proposed problem indicated that their
algorithm renders better results compared with the Pareto
power-based evolutionary one. Pagnozzi and Stuzle [19]
rendered a hybrid probability local optimization algorithm
to solve their proposed job shop flow problem.)e objective
function included quantifying the time of job completion
and the total of delays.

Lotfi et al. [20] have researched renewable energy. )e
most important innovations in their study included the use
of robust two-level programming techniques and game
theory (Stackelberg Competition) for locating renewable
energy sites. )e results show that the combination of un-
certainties can increase energy production and supplier
profits. In addition, the objective functions of the proposed
model are compared with those under uncertain conditions.
)e sensitivity analysis of the main parameters is performed
to validate the proposed model. As uncertainty increases, the
energy produced decreases, and the supplier’s profit in-
creases. Supplier profits gradually decrease as the discount
rate increases. In addition, as the scale of the problems
increases, the energy produced and the profit of the supplier
increase.

According to the above-mentioned studies, a compre-
hensive categorization of studies on the flexible flow shop is
summarized in Figure 2. )e problem in this study is a
scenario-based flexible flow shop one in which reliable
transportation devices and intermediate limited buffers are
considered in addition to budget constraints, dependent set-
up time, the learning effect, and also the objective functions
of “the mean of completed time weight value,” “the mean of
the penalty of waiting time in buffer,” and the total specified
processing costs. Reviewing the literature showed that the
problem in this study has not yet been focused on in any
research and is completely new.

3. Methodology

In this study, a multiobjective scenario-based problem that
exists in a production system is presented. )e system is
based on a flexible flow shop. In this model, the flexible flow
shop problem is presupposed, and inside each job stage,
there are some devices for transportation, each having its
own specific times. Preventive repairing and maintenance is
one of the other operations performed on transportations
used in transporting productions. In this situation, each
transportation device breaks down based on its relative
distribution failure function and need for fixing. At this time,
operations remain on transportation devices until trans-
formation operations finish and the instrument becomes
available. Afterwards, transportation continues. Repairing
the transportation devices is done randomly, and each
problematic device will be repaired based on a probability
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distribution function. Regarding the constraints in the
number of transportation instruments among stages, in-
termediate bu
ers with limited capacities are speci�ed for
each work stage. �e objective is the quanti�cation of the
mean of completion time value at the end of stages, so that all

productions are transported by transportation devices in job
stages and are put on the machinery of all stages. �e
number of jobs performed in intermediate bu
ers is lesser
than the maximum capacity of the relative accumulator.
Another constraint a
ecting the proposed �exible �ow shop
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Figure 2: �e categorization of studies on �exible �ow shop problem.
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problem is regarding the �nances. �is kind of constraint is
applied in this problem in the following manner: the total of
�nances is limited and de�nite for maintenance and
remaining productions and operations in intermediate
bu
ers. Each job operation waiting for processing on work
shop stages’ previous machines in intermediate bu
ers has a
certain cost per time units in the problem, and for all jobs in
the intermediate bu
ers of each job stage, a maintenance
cost is determined in the model. �e total cost must be less
than the total budget of the project.

In the following section, the mathematical model and all
its parameters and variables will be explained in detail.
Considering Figure 3 of the model, suppose that the job j is
being processed in the stage S. In each stage, Ns number
stages are placed in a parallel way, and all jobs must be
processed on one machine in each of job stages. Preventive
maintenance and repairing operation can be performed on
all machineries in job stages. Also, there is an intermediate
limited bu
er where jobs have zero start time or end time.
According to Figure 3, which is a proposed Gantt Chart
sample of the problem with three job stages and 5 productive
machines, jobs 1, 2, and 3 are in the work stages 1, 2, and 3,
respectively, with machines. As observed, on machine 1 in
work stage 1, the preventive maintenance operation is done
after the processing of job 3 was completed. Another pre-
ventive maintenance operation was done on job stages 2 and
3. Job 2 was done in the job stage 1 between times 2 and 3. It
started from time 6 in the job stage 2. �erefore, this job
remains in the intermediate bu
er of job stage 1 until the
process in job stage 2 begins. If there is no capacity to accept
job 2 in the intermediate bu
er, this job will remain in the

machine, and as a result, it will block. In some cases, it is
possible that more than one job is stored in the intermediate
bu
ers. For instance, in the intermediate bu
er of job stage
2, jobs 4 and 5 are stored between times 13 and 14.

�e mathematical model used in this study is derived
from the one in Zabihzadeh and Rezaeian [21].�is model is
developed here. �is model includes two objective functions
and 17 constraints. �e variables in this study are of positive
and binary types. �ere are 6 positives and 2 negatives. All
indices, parameters, and variables (whether dependent, in-
dependent, or control) are de�ned in the basic model.

Assumptions and constraints in this study are as follows:

(i) All jobs j that are indicated by J� {j|j� 1, 2, . . ., J}
are available at the start of jobs (time-zero) and no
job stops before �nal production.

(ii) �e job stage groups are indicated by S, de�ned as
S� {s|s� 1, 2, . . ., S}. In each job stage, there are
some parallel machineries shown by M, de�ned as
M� {m|m� 1,2, . . ., M} and j ∈ J.

(iii) �e machinery group shown by j is placed in a
parallel way in each job stage to be processed and
used for producing materials.

(iv) All productions must be put on all job stages and
speci�ed on each of the stages for processing and
producing to be done on them. In other words,
when processing begins on a job in one job stage, it
must continue onstage by stage until the last one.

(v) Each job has a preparation time depending on the
previous one.

St
ag

e

M
ac

hi
ne

Bu
ffe

r

Buffer

1 1 1 2 3 4 5

1 2 4 Preventive
maintenance

2 1 1 2

2 3 4

3 5

2 3 4,5 4,5 4

3 1 1 3

2 2 5 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 3: A sample of the Gantt chart of the proposed �exible �ow shop problem.
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(vi) Each human resource has a learning rate regarding
each machine, based on which the processing and
preparing time decreases.

(vii) Inside each job stage, there are some trans-
portation devices to transport jobs. All of them are
available at the start of the project. In other words,
all of them work perfectly to begin with.

(viii) �e failure of the transportation devices occurs
randomly after the �rst job begins and based on the
probability distribution function.

(ix) Each job stage has an intermediate limited bu
er,
which is indicated by K, de�ned as K� k|k� 1, 2,
. . ., K }

(x) Each production machine only does one job in a
speci�ed time.

(xi) Each job is de�ned only once on a certain machine
for production and process. It means that the
repetition of jobs is impossible.

(xii) �e processing of jobs in the next stage occurs
when production and process are �nished in the
previous one.

(xiii) �e storage capacity of jobs in each intermediate
bu
er does not depend on job types.

�e schema of the problem of �exible �ow shop in this
study can be seen in Figure 4.

3.1. Sets. J: the set of jobs (productions)
O: the set of sequences
S: the set of stages (stages)
T: the set of time
K: the set of scenarios
R: the set of transportation devices
M: the set of machines
W: the set of human resources

3.2. Indices. j ∈ J: index of the set of jobs
o ∈O: index of the set of sequences
s ∈ S: index of the set of stages (stages)
t ∈T: index of the set of time
k ∈K: index of the set of scenarios
r ∈R: index of the set of transportation devices
m ∈M: index of the set of machines
w ∈W: index of the set of human resources

3.3. �e Parameters

β j: the importance coe�cient of the completion of the
jth job
P k: the probability of the occurrence of kth scenario
c jmk: the penalty (cost) of the jth job for the mth

machine under the kth scenario
RR jmst: the cost of jth job by mth machine during t
period in the s stage
M s: if machines belong to stage s, they are equal to 1, if
not, they are equal to 0
F: the budget constraint (maximum of investment) in
each t time period
ws ws: if human resource w belongs to stage s, it is equal
to 1, if not, it is equal to 0
α wm: the coe�cient of human resource w learning for
the mth machine
e− t.αwm : the coe�cient of the decrease of processing and
preparation time based on the human resources
learning rate
μ rsk: the amount of breakdown of the r transportation
device in s stage under the k scenario
λ rs: the amount of repairing of transportation devices
in the s stage
TT jrst: the time needed for transportation in rmachine
from the starting point (the previous stage machine or
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Figure 4: Schema of the problem of �exible �ow shop.

6 Complexity



buffer) to the final point (the previous stage machine or
buffer)
Tr rs: the time for preventive repairing of the r trans-
portation device in s stage
P jms: the time for processing of the jth job by the mth

machine in the s stage
ST jjrs: the time needed for the preparation of j job done
after jth one in s stage
CAPDEt: the time capacity of waiting in buffer in t
period

3.4. +e Positive Variables

Ct jmstk: the time of completion of the jth job in the mth

machine in s stage in the t time period under the k
scenario.
DEjmstk: the waiting time of the jth job, which is sup-
posed to be processed by the themth machine in s stage
in the t time period under the k scenario.
SSTjmstk: the time of start of the jth job in the mth

machine in s stage in the t time period under the k
scenario.
TTArjstk: the expected time for the transportation of the
jth job based on the availability of the rth transportation
device in the t period in the s stage under k scenario.
CTSjstk: the time of completion of the jth job in the
previous s stage in the t time period under the k
scenario.
A rstk: the availability of r transportation devices in the s
station in the tth time period under the kth scenario.

3.5. Binary Variables

X jomswt: if the jth job in the o sequence is specified to the
mth machine and the w human resources in the s stage
in the tth time period, it equals 1. Otherwise, it is zero.
U jrtk: if the rth transportation device is specified to the
jth job in the tth time period under the k scenario, it is 1.
Otherwise, it is zero.

3.6.+eObjectiveFunctionand theConstraints of theProblem.
In this section, the suggested mathematical model is pre-
sented as follows:

of2 � 
j∈J


m∈M


s∈S


t∈T


k∈K

βj ∗ ctjmstk

j′∈Jβj′
⎛⎝ ⎞⎠∗Pk. (1)

)e first objective function calculates the mean of the
time weight value at the end of a stage as follows:

of2 � 
j∈J


m∈M


s∈S


t∈T


k∈K

Pk ∗ cjmk ∗DEjmstk 

+ 
j∈J


s∈S


m∈M


t∈T


w∈W

RRjmst ∗Xjomswt . (2)

)e second objective function shows the penalty of
waiting time on buffer and the cost of the jth job (production)
process based on its specification.

Subject to


o∈O


m∈Ms


w∈Ws

Xjomwst � 1∀j ∈ J · s ∈ S · t ∈ T, (3)


j∈J


m∈Ms


w∈Ws

Xjomwst � 1∀o ∈ O · s ∈ S · t ∈ T, (4)


o∈O


m∈Ms

Xjomwst ≤ 1∀j ∈ J · s ∈ S · t ∈ T, w ∈Ws, (5)


j∈J

Xj(o+1)mswt≤
j∈J

Xjomswt∀o ∈O · m ∈Ms · s ∈ S · t ∈T · w ∈Ws, (6)

Arstk �
μrsk

μrsk +λrs

+
λrs

μrsk +λrs

∗e− μrsk+λrsk∗ t−Trrs( )[ ]∀r ∈R · s ∈ S · t ∈T · k ∈K, (7)

TTArjstk≥TTjrst∗Arstk − M 1− ujrtk ∀r ∈R · j ∈ J · s ∈ S · t ∈T · k ∈K, (8)
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r∈R

ujrtk � 1∀j ∈ J · t ∈T · k ∈K, (9)


o∈O


j∈J


m∈M


s∈S

RRjmst · Xjomswt≤F∀t ∈T, (10)

ctjmstk≥Pjms∗e
−t∗αwm + 

r∈R
TTArjstk − M 1− Xjomswt ∀j ∈ J · m ∈M · s ∈ S · t ∈T · o ∈O · w ∈W · k ∈K;O � 1 · S � 1, (11)

ctjmstk≥Pjms∗e
−t∗αwm +SSTjmstk − M 1− Xjomswt 

∀j ∈ J · m ∈Ms · s ∈ S · t ∈T · o ∈O · w ∈W · k ∈K; O � 1 · S>1,
(12)

SSTjmstk≥ctsj(s−1)tk + 
r∈R

TTArjstk − M 1− 
w∈W

Xjomswt)∀j ∈ J · m ∈Ms · s ∈ S · t ∈T · o ∈O · k ∈K; S>1,⎛⎝ (13)

SSTj′mstk ≥
r

TTArj′stk + ctjmstk

−M 1− 
w∈W

Xj(o−1)mswt +1− 
w∈W

Xj′omswt)∀j′ · j ∈ J · m ∈Ms · s ∈ S · t ∈T · o ∈O · k ∈K; O>1,⎛⎝
(14)

SSTjmstk≤M∗
o∈O


w∈W

Xjomswt∀j ∈ J · m ∈Ms · s ∈ S · t ∈T · k ∈K, (15)

ctsjstk � 
m∈M

ctjm(s−1)tk∀j ∈ J · s ∈ S · t ∈T · k ∈K, (16)

ctj′mstk≥ Pj′ms + 
j∈J



w′∈W

STjj′s∗Xj(o−1)w′mst] e
−t.αwm  +SST

j′
mstk − M 1− Xj′omswt ⎡⎢⎢⎣

∀j′ ∈ J · m ∈Ms · s ∈ S · t ∈T · o ∈O · k ∈K · w ∈W; o>1, (17)

ctj′mstk≤ Pj′ms + 
j∈J


w′∈W

STjj′s
∗Xj(o−1)w′mst] e

−t.αwm  +SST
j′

mstk + M 1− Xj′omswt 
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∀j′∈ J · m ∈Ms · s ∈ S · t ∈T · o ∈O · k ∈K · w ∈W; o>1. (18)
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DEjmstk≥ SSTj′mstk − ctjm(s−1)t,k  − M 1− 
o∈O

Xjomswt)∀j ∈ J · m ∈Ms · s ∈ S · t ∈T · k ∈K; s>1,⎛⎝ (19)

DEjmstk≤ SSTj′mstk − ctjm(s−1)t,k  − M 1− 
o∈O

Xjomswt)∀j ∈ J · m ∈Ms · s ∈ S · t ∈T · k ∈K; s>1,⎛⎝ (20)

DEjmstk≤M 
o∈O


w∈W

Xjowmst)∀j ∈ J · m ∈Ms · s ∈ S · t ∈T · k ∈K; s>1,⎛⎝ (21)


j∈J


m∈M


s∈S

DEjmstk≤CAPDEt∀t ∈T, k ∈K. (22)

)e constraint (3) specifies each job (production) to one
sequence and one machine of each stage. Constraint (4)
guarantees that each sequence must be specified to one job
in each stage. Constraint (5) guarantees that each human
resource can only be specified to one machine. )e con-
straint (6) guarantees that the next sequence can only be
specified only when the previous one is done. Constraint (7)
calculates the availability of the transportation device of
each time period under any scenario. Constraint (8) cal-
culates the mean of transportation time based on the
availability of transportation devices. Constraint (9) de-
termines the type of the transportation device in order to
transport the jth job in the tth time period. Constraint (10)
determines the maximum of investment for each time
period. Constraint (11) calculates the time of completion of
each job in the first stage and for the first sequence.
Constraint (12) calculates the time of completion of each job
in the stages, except the first one, and for the first sequence.
Constraint (13) calculates the time of starting of the jth job as
soon as it is completed in the previous stage. Constraint (14)
calculates the time of j′th job start based on the completion
of the previous one in the previous stage and the previous
stage in the samemachine. Constraint (15) guarantees that if
Xjomswt becomes zero, the time of completion will become
zero too. Constraint (16) calculates the time of completion
of the jth job in the previous stage. Constraints (17) and (18)
calculate the completion times of jobs in the same machine
in each stage, except for sequence 1. Constraints (19)–(21)
calculate the waiting time of the jth job in the buffer before
the s station under k scenario in t time period. Finally,

constraint (22) controls the limitation of the waiting time in
the buffer.

4. The Numerical Results

Since the mathematical model in this study is an NP-hard
one, to solve problems of the real world, two metaheuristic
algorithms, namelyMOSA andMOEA/D, are used to in this
section, and the results will be analyzed and compared. To
evaluate the quality and data sparsity of the multiobjective
metaheuristic algorithms, there are various metrics, which
are different from the ones of the one objective meta-
heuristic ones. )e reason is that there are answers with no
priority over each other. )e metrics used in this study are
as follows: the number of Pareto solutions (NPS), diver-
sification metric (DM), mean ideal distance (MID), spread
of nondominance solutions (SNS), and computational time
(time). To make these comparisons, 10 experimental
problems are made, which are small, medium, and large-
scale, and the results of their solutions via algorithms are
mentioned in tables. Based on Table 1, the parameters of the
problem are randomly made and used as primary data for
problems.

)e primary data of the problem are as follows: process
time, transportation time, probability of each scenario,
preparation time, the job costs, the amount of breakdown
and repairing of the transportation devices, the learning
coefficient of human resources, the penalty (cost) of jobs, the
coefficient of the importance of jobs, the maximum in-
vestment in each time period, and the time for preventive

Table 1: )e function of random distribution of parameters amounts.

cjmk � U(25, 40) μrsk � U(0.1, 0.3) pjms � U(2, 4)

βj � U(0.2, 0.4) λrs � U(0.4, 0.7) TTjrst � round(U(1, 15))

CAPDEt � U(10, 20) αwm � U(0.1, 0.3) pk � U(0.1, 0.8)

Trrs � round (U(1, |T| − 1)) RRjj′t � round(U(500, 700)) STjj′t � round(U(1, 10))

F � round (U(8000, 9500))

Complexity 9



repairing. �e distribution function of each of them are
mentioned in Table 1.

4.1. Adjusting the Parameters for the Solution Algorithms.
Adjusting parameters is vital for the e�ciency of meta-
heuristic algorithms. �erefore, determining apposite pa-
rameters for metaheuristic algorithms is an important step in
making them. �erefore, a set of calibration experiments are
usually performed for �nding the optimized mode of various
amounts of control parameters of algorithms. Since the
increase in test levels and the number of factors leads to an
exponential increase in time and cost, the Taguchi method is
used to perform tests. For the two metaheuristic algorithms
used in this study, the control parameters are as follows: in
the case of the MOSA algorithm, the parameters are the
maximum of iteration (MaxIt1), maximum of internal it-
eration (MaxIt2), primary temperature (T0), the coe�cient
of heating (Alpha), the maximum capacity of answer archive
(nRep), number of grids in each dimension (nGrid), the
leading choice coe�cient (Beta), and the choice coe�cient
for deleting archive (gamma). In the case of MOEA/D,
parameters include the maximum of iteration (MaxIt),
number of population (nPop), maximum number of archive
(nArchive), and the coe�cient of creating harmony in the
intersection operator (gamma). Each parameter considered
for the proposed algorithms has a salient e
ect on the quality
of answers and time. For example, if a large number of

population is considered for MOEA/D, the algorithm will
have a long range of answers, and consequently, it can take a
long time to achieve them. If a small number of populations
is considered, the optimized answer could be locally opti-
mized. Regarding the experiments and results, the e
ective
range of each control parameter of algorithms has been
determined.

4.2. �e Design of Experiments Using the Taguchi Method.
After determining the e
ective range of the control pa-
rameters, a set of design experiments (DOE) is designed
using the Taguchi approach to �nd the e
ects of these
parameters on the performance of the proposed algorithm
and achieving their optimized mode.

In this study, the number of Pareto solutions (NPS),
diversi�cation metric (DM), mean ideal distance (MID),
spread of nondominance solutions (SNS), and time (Time)
are used to compare the performance of the suggested al-
gorithms. �e necessary experiments for analyzing the
various modes of parameters and relative answers are
presented in Table 2 of each algorithm. �e data were an-
alyzed using MINITAB20, and the results are shown in
Figures 5 and 6 and Table 3.

Subsequently, the same procedure is repeated for
MOEA/D. Table 4 indicates the test level of each parameter,
and Figures 7 and 8 and Table 5 shows the results.

Table 2: �e levels of experiments on parameters in the MOSA algorithm.

Algorithm parameters First level Second level �ird level
Maximum of iteration MaxIt1 90 100 120
Maximum of internal iteration MaxIt2 40 60 80
Primary temperature T0 10 20 30
�e coe�cient of heating Alpha 0.89 0.9 0.98
�e maximum capacity of answer archive nRep 10 15 20
Number of grids in each dimension nGrid 4 8 10
�e leading choice coe�cient Beta 1 2 3
�e choice coe�cient for deleting archive Gamma 2 3 4
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Figure 5: �e solution of means for MOSA algorithm.
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4.3. Evaluating the Performance of Multiobjective Algorithms.
To measure the quality and diversity of multiobjective
metaheuristic algorithms, there are various comparison
metrics. In multiobjective optimization, evaluating the al-
gorithm performances could be di�cult since there are
di
erences presented in the �nal answers and paradoxes in
objectives. When the visual analysis of results is very dif-
�cult, it is vital to have various metrics to evaluate the
performances to recognize the best set of nondominance
solutions.

To compare the capability of various algorithms in
solving multiobjective problems, various methods and in-
struments are used. Some of them, which were used more in
the multiobjective literature, will be discussed in the fol-
lowing session;

Number of Pareto solutions (NPS): this metric calcu-
lates the number of nondominance solutions achieved
in every run of algorithm. According to it, the more the
number of nondominance solutions, the better the
algorithm performance.
Diversi�cation metric (DM): this metric is about the
range of Pareto solutions of algorithms. It can be
calculated by the equation (23). �e more the DM, the
better the algorithm’s performance.

DM �

��������������������������������������

maxf1i −minf1i

fmax
1·total − f

min
1·total

( )
2

+
maxf2i −minf2i

fmax
2·total − f

min
2·total

( )
2

√√

.

(23)
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Figure 6: �e answer to S/N propositions for MOSA algorithm.

Table 3: �e best parameters for MOSA algorithm.

Algorithm parameters Amounts
Maximum of iteration MaxIt1 100
Maximum of internal iteration MaxIt2 40
Primary temperature T0 20
�e coe�cient of heating Alpha 0.89
�e maximum capacity of answer archive nRep 20
Number of grids in each dimension nGrid 8
�e leading choice coe�cient Beta 1
�e choice coe�cient for deleting archive Gamma 2

Table 4: �e experiment levels of parameters for MOEA/D.

Algorithm parameters First level Second level �ird level
Maximum of iteration MaxIt 90 100 120
Number of populations nPop 40 60 80
Maximum number of archive nArchive 10 20 30
�e coe�cient of creating harmony in the intersection operator Gamma 0.5 0.6 0.7
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Mean ideal distance (MID): the closeness of the
achieved Pareto set is calculated by the algorithm to the
optimized Pareto edge. Since achieving the Pareto edge
is impossible for most problems, the distance between
Pareto points and the ideal ones, (0,0), is calculated via
this metric. �e equation is as follows:

MID � ∑
n
i�1 ci
n

,

ci �
������������
f2
1i + f

2
2i + · · ·

√
.

(24)
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Figure 7: �e answers to means for MOEA/D.
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Figure 8: �e answer of propositions of S/N for MOEA/D algorithm.

Table 5: �e best parameters for MOEA/D algorithm.

Algorithm parameters Amounts
Maximum of iteration MaxIt 100
Number of populations nPop 40
Maximum number of Archive nArchive 30
�e coe�cient of creating harmony in the intersection operator Gamma 0.6
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In the above-mentioned equation, n is the number of
achieved nondominance solutions, and i� 1,2, . . ., n
RegardingMID, themore it is, the farther the algorithm
is from the ideal Pareto edge.
Spread of nondominance solution (SNS): the spread
among the solutions in the nondominance solutions
achieved by the algorithm is calculated by this. )e
equation is follows:

SNS �

��������������


n
i�1 MID − ci( 

2

n − 1



. (25)

)emore SNS in the algorithm, the more the algorithm
spreads, which is more favorable.
Computational time (time): the time for the perfor-
mance of an algorithm. )e lesser time the algorithm
takes, the better.

In the following sessions, examples are categorized as
small-, medium-, and large-scale ones regarding the model
nature. For this purpose, two small scale examples, four
mid-dimensional, and 4 high-dimensional ones were
randomly made to evaluate the model when its design is real
and parameters are random. )ese problems are listed in
Table 6.

)e examples one and two are solved using
metaheuristic algorithms, and their results will be compared
with the ones achieved using the GAMS exact program to

validate the answers. )e purpose is to confirm whether to
continue with metaheuristic algorithms. Also, the Pareto
front chart of each problem is presented, and the five metrics
(MID, DM, SNS, NPS, and CPU time) are considered in it.
)e results are shown in Tables 7 and 8 and Figures 9–14. F1
is the weight objective function of the completion time, and
F2 is the objective one of the total specification cost and
waiting time for jobs.

4.4. +e Comparison of Algorithm Results for Small-Scale
Problems. Each algorithm was run for five times, and the
best results were considered. )e results of comparison
between the proposed algorithms and one of the GAMS
exact programs used for low-dimensional problems are
mentioned in Table 9.

As mentioned earlier, the more DM, SNS, and NPs and
the fewerMID and time, themore efficient the algorithmwith
respect to the metric. According to the results mentioned in
Table 9 for problems 1 and 2, for time and SNS, the results of
GAMS are better. In case of MID and DM, GAMS and
MOEA/D have proved more fruitful. Regarding the NPS
metric, the results achieved from GAMS and MOSA are
relatively better. Nevertheless, since there is not much dif-
ference between results achieved from the GAMS and the
ones of the proposed algorithms regarding any metrics, it can
be concluded that they are well-designed and efficient, and
thus, they are useable in solving problems with high
dimensions.

Table 6: )e randomly made problems.

No.
Sets

|S| |J| |M| |R| |T| |O| |K| |W|

1 2 3 3 2 2 3 2 3
2 2 4 3 3 3 4 3 3
3 4 5 3 3 3 5 4 4
4 5 6 4 4 4 6 4 4
5 6 7 4 5 5 7 4 4
6 7 8 4 6 5 8 5 5
7 8 9 5 6 6 9 5 6
8 8 12 5 7 7 12 6 7
9 9 15 6 7 8 15 6 8
10 10 18 6 8 12 18 6 9

Table 7: )e results of the first example.

Solver F1 F2 ci MID DM SNS NPS CPU time

GAMS
3.9 6846.397 6846.398

6833.279 196.2954 69.49664 3 8.3193.265 6931.123 6931.124
18.375 6735.41 6735.435

MOSA

16.79092 7107.18 7107.038

7125.3481 57.354102 10.74361 6 21.438

15.50293 7122.977 7122.994
15.01459 7153.992 7154.008
15.90668 7097.138 7097.155
15.7337 7116.395 7116.413
15.73039 7154.464 7154.481

MOEA/D
16.0243 6793.523 6793.535

6989.0047 301.463869 47.93552 3 20.86215.95949 7094.987 7095.005
16.15406 7078.449 7078.468
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4.5. �e Comparison between Algorithms for Mid- and High-
Dimensional Problems. �e results of the proposed algo-
rithms used on mid- and high-dimensional problems after

�ve times of running are shown in Table 10 and
Figures 15–19. �ese results are based on the best answers
achieved from algorithms.

Table 8: �e results of the second example.

Solver F1 F2 ci MID DM SNS NPS CPU time

GAMS

96.687 17083.71 17083.99

16316.24 2975.562 510.3927 7 53.866

96.954 16364.31 16364.6
93.629 16275.86 16276.13
11.918 14512.08 14512.08
101.701 17486.18 17486.48
105.125 16964.74 16965.07
95.016 16292.83 16293.1

MOSA

83.29856 16175.07 16175.29

15846.64 1811.04972 297.0425 6 50.040

83.86166 15761.25 15761.47
83.60755 16997.18 16997.38
87.97861 15654.26 15654.51
9331055 15304.49 15304.77
94.26282 15186.16 15186.46

MOEA/D

85.18027 16962.28 16962.49

16337.45 1582.83487 305.2107 6 49.029

85.52582 15986.74 15986.97
85.66592 15900.14 15900.37
90.99155 15899.48 15899.74
84.44851 17428.74 17428.95
92.54549 15845.93 15846.2
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Figure 9: �e Pareto front chart for the results of GAMS: the �rst example.

7090

7100

7110

7120

7130

7140

7150

7160

14.5 15.5 16.5 17.5

F2

F1

Figure 10: �e Pareto front chart for the results of MOSA: the �rst example.
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Figure 11: �e Pareto front chart for the results of MOEA/D: the �rst example.
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Figure 12: �e Pareto front chart for the results of GAMS: the second example.
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Figure 13: �e Pareto front chart for the results of MOSA: the second example.
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Figure 14: �e Pareto front chart for the results of MOEA/D: the second example.

Table 9: �e results of metrics for each algorithm run in small-scale problems.

No.
Time MID SNS DM NPS

MOSA MOEAD Gams MOSA MOEAD Gams MOSA MOEAD Gams MOSA MOEAD Gams MOSA MOEAD Gams
1 21.438 20.862 8.319 7125.348 6989.004 6833.279 10.74361 47.93552 69.49664 57.3541026 301.4638625 196.2954 6 3 3
2 50.040 49.02 53.86 16846.6 16337.454 16316.2 297.04 305.2107 510.3927 1811.04972 1582.834 2975.562 6 6 7

Table 10: �e results of metrics for each algorithm used in mid- and high-dimensional problems.

No.
Time(s) MID SNS DM NPS

MOSA MOEAD MOSA MOEAD MOSA MOEAD MOSA MOEAD MOSA MOEAD
3 173.2312 171.9171 45128 45066 542.2878 1915.129 4336.2 1314.3 4 4
4 490.708 425.816 150620 142280 661.9441 11370.84 21569 1612.2 3 4
5 954.5742 846.1652 264590 230780 1619.275 13641.11 33162 3232.5 4 3
6 1693.4007 1474.5585 349960 336930 3799.9 43734.55 83724 5378 3 2
7 3456.254 3283.7964 935947.19 930970 18821.77 33256.27 74419.3722 32944 6 3
8 9167.7022 9059.0237 2405000 2436500 58758.09 54630 124940 138560 5 4
9 46908.3333 45855.676 10119000 10179000 354790 443370.4 912610 502130 4 2
10 6554.5178 6402.0004 124420000 112720000 2109300 17022889 29934000 2986800 3 2
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Figure 15: �e comparison between the proposed algorithms done on mid- and high-dimensional problems based on time.
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Figure 16: �e comparison between the proposed algorithms done on mid- and high-dimensional problems based on MID.
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Figure 17: �e comparison between the proposed algorithms done on mid- and high-dimensional problems based on SNS.
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Figure 18: �e comparison between the proposed algorithms done on mid- and high-dimensional problems based on NPS.
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Figure 19: �e comparison between the proposed algorithms done on mid- and high-dimensional problems based on DM.
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According to Table 10 and Figures 15–19, MOEAD has a
better performance regarding MID and time. On the other
and, MOSA performs more fruitfully regarding SNS, DM,
and NPS.

5. Conclusion

According to the studies on scenario-based flexible flow shop
systems, a multiobjective problem has never been considered
for the following characteristics: reliable transportation de-
vices and constraint in capacity of intermediate buffers,
intermediate limited buffers, dependent set-up time, and
learning effect and budget constraints. Considering the re-
liability constraints of transportation devices and one of the
finances has resulted the problem in becoming closer to the
ones in the real world. )e budget issues, like production
costs, which are important for most companies and pro-
duction factories, are also considered in this study. )ey can
be considered in many of such problems in the real world. In
the proposed model, scenarios are supposed with definite
probabilities in each of which the cost of jobs and the amount
of failure of transportation differ for each machine in dif-
ferent stages. In this study, it is supposed that in job stages,
there are many transportation devices on machines for
transporting and processing jobs and productions. )e
transportation of jobs and production in different stages has a
specified time. )e time of transportation of productions,
which can be done by conveyors, lift-tracks, or automatic
guided vehicles (AGV) is different. )e reliability of trans-
portation is also considered in this problem. It means that not
all transportation devices are available all the time and
preventive maintenance operations can be done on them.
Also, because of the limited number of means of trans-
portation between workstations, an intermediate limited
buffer has been considered for each workstation.)e number
of jobs in each buffer must be less than the maximum ca-
pacity of them. Each time the jobs cannot be processed on
machinery since machines being busy or under preventive
maintenance operations, they remain in buffers. For each
time unit that jobs wait to be processed in intermediate
buffers, an amount of maintenance cost is considered for the
project.)e total budget for maintaining jobs in intermediate
buffers is limited, and their total cost must be less than the
total available budget. Each job is done depending on the
previous one in each stage, and there is a preparation time for
them.)ere is a learning rate for human resources regarding
each machine, based on which processing and preparation
time decreases. According to the above-mentioned issues, it
can be concluded that parameters affecting the objective
functions in the problem are as follows: processing time on
productive machines, time of transportation using trans-
portation devices, dependent preparation times, learning
effect, waiting time of jobs in intermediate buffers, and re-
liability of transportation devices. As a result, the importance
of discovering the best sequence of jobs and optimizing the
objective functions becomes clear.

In this study, a new mathematical model with reliable
transportation and constraints in intermediate buffers re-
garding budget and the effects of human resources learning

was presented for solving the flexible flow shop problem.
Firstly, the model was validated to confirm its accuracy of
performance. )en, since it is an NP-hard one and the exact
methods are not useful in logical calculation time, two
metaheuristic algorithms, namely MOSA and MOEA/D,
were presented to solve mid- and high-dimensional prob-
lems. To ensure the proposed algorithms accuracy of per-
formance, two small-scale problems were solved by GAMS
exact solution software, and the results obtained were
compared with the output of the algorithms. Since the
problem in this study is multiobjective, five comparative
indices, nsmely the number of Pareto solutions (NPS), di-
versification metric (DM), mean ideal distance (MID),
spread of nondominance solutions (SNS), and computa-
tional time (CPU Time), were used to compare the per-
formance of algorithms. )e results show that the answers
achieved using the metaheuristic algorithms are very close to
the ones achieved via the GAMS exact program. )erefore,
the proposed algorithms were validated, and it was proven
that they were accurately designed and useable in solving the
real-world problems (which have mid- and high-dimen-
sions) in logical computational time. Comparing the answers
with the ones in the real-world, it was observed that re-
garding the time and MID indices, the MOEA/D algorithm,
SNS, DM, and MPS indices, MOSA had relatively better
performance. Considering the confirmation of the accuracy
of the proposed algorithms previously done by comparing
the answers with the ones of GAMS, it can be concluded that
bothMOSA andMOEA/D are useful in solving the mid- and
high-dimensional modes of the problem in the study, which
is very applicable in the real world.

5.1. Recommendations. )e flexible flow shop problem can
be developed considering other assumptions and parameters
in machinery, in which, among them, the following are
mentioned. )e mathematical model of the present problem
can be developed by considering assumptions, such as in-
dependent time for initial set up, failure, maintenance op-
eration, process of operations considering the constraints in
availability, preventive repairs on productive machinery
regarding maintenance and repairing costs, the time needed
for machine installation, process of operations with avail-
ability constraints to machinery, availability time the legal
change in sequence, intervals for restarting, and so on. Also,
another objective function can be considered for the
quantification of delays or time consumption in interme-
diate buffers or total time of operations. In addition, in
solving the problem, other multiobjective metaheuristic
algorithms can be used, such as neural network, ant colony,
tabu search, water flow-like, etc. Metaheuristic and heuristic
algorithms, such as branch and bound, Lagrange or a hybrid
of two or more algorithms, and a hybrid coding, can also be
used to solve such problems.

Data Availability

Data will be available upon request to the corresponding
author.
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