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(e problem of rationalizing denominators for two types of fractions is discussed in the paper. By using the theory and algorithms
of Gröbner bases, we first introduce a method to rationalize the denominators of fractions with square root and cube root, and
then, for the denominators with higher radical of the general form, the problem of rationalizing denominators is converted into
the related problem of finding the minimal polynomials. Some interesting results and an executable algorithm for rationalizing the
denominator of these type fractions are presented. Furthermore, an example is also established to illustrate the effectiveness of
the algorithm.

1. Introduction

A typical topic in algebra is rationalizing denominators [1].
Rationalizing the denominator avoids the problem known as
“subtrative cancellation,” deals with the problem of recog-
nizing equivalent expressions, and is commonly used in
many of computer algebra systems. Also, rationalizing ex-
pression has applications in calculus [2]. More importantly,
by rationalizing the denominator, mathematical operations
and practical problems can be approximated more accu-
rately [3]. (us, there are circumstances in which it is ad-
vantageous to rationalize an expression.

(e general method of denominator rationalization is to
seek the rationalized factor of the denominator first and then
multiply the numerator and denominator by this factor at
the same time [4]. Using this method, the denominator
rationalization of quadratic radical fraction has been solved.
However, it is difficult to find the rationalized factor for an
expression which contains a root higher than a square root
[5]. (erefore, a lot of literatures tend to deal with some
special case of this problem. In 1929, Paradiso [6] showed
that theoretically, in all cases, and practically, in many cases,
a rationalizing factor may be found by the method of un-
determined coefficients. In 1970, Fateman presented an
algorithm named RADCAN that is implemented in
MACSYMA for the simplification of expressions containing

radicals [7]. Zhou rationalized the denominator for a class of
fractions 1/g(u) by theory of minimal polynomials in 1986,
where g(u) is a polynomial whose coefficient are rational
and u is a complex root of a nonzero rational polynomial [8].
In 1989, Ma showed the possibility of denominator’s
rationalization of the irrational expressions: A/
(a1

��
b1

n1


+ a2
��
b2

n2


+ · · · + am

���
bm

nm


+ c), where A is the
combination of radical and rational addition, subtraction,
and multiplication and a1

��
b1

n1


+ a2
��
b2

n2


+ · · · + am

���
bm

nm


+ c

is an algebraic element in the field of rational numbers [9]. In
2000, Liu rationalized the denominator for a class of alge-
braic fractions as follows 1/f(

�
cn+1

√
) � 1/(a0 + a1

�
cn+1

√
+ · · · +

an

��
cnn+1

√
) (where f(x) � a0 + a1x + · · · + anxn, c, a1, a2,

. . . , an ∈ Q, c> 0) using the knowledge of determinants [10].
In 2002, using polynomials, Tang also discussed the algebraic
fractions whose denominator is the same with the above
fraction [11]. And in 2015, Berele and Catoiu produced an
exact formula for rationalizing any fraction whose de-
nominator is a linear combination with rational coefficients
of square roots of rational numbers [1].

Existing results mentioned above mainly deal with
several kinds of denominators rationalization of radical
fractions by using related theory of polynomials. And many
other kinds of denominators of irrational fraction are un-
solved, such as 1/(x + 5

�
87

√
+ 6

�
94

√
). (is kind of fraction is a

very common form in mathematical calculation, so it is of
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high application value to study a general method to ratio-
nalize the denominator. In this paper, we will investigate this
by the theory of Gröbner bases as it is an important tool to
solve many problems in polynomial ideal [12, 13]. And it has
been implemented in many computational softwares in-
cluding Singular, Maple, CoCoA, Mathematica, Macaulay 2,
etc. Many fundamental problems in commutative algebra,
computational algebraic number theory, algebraic geometry,
graph theory, image processing, cryptography and encoding,
and science and engineering can be solved by it algorith-
mically [13–23]. And the minimal polynomial can be ob-
tained by the reduced Gröbner basis algorithm easily. Based
on this and results mentioned above, we consider using the
theory of Gröbner bases to explore the relationship between
minimal polynomials and denominator rationalization and
discuss mainly denominator rationalization of the fraction
with the form as

1
x + c1 ·

��
am

√
+ c2 ·

�
b

n
√ , (1)

where m, n ∈ N+, m, n≥ 2, a, b, c1, c2 ∈ Q, a, b> 0. We hope
to establish a simplified method for rationalizing the de-
nominator of this type fraction.

(e rest of the paper is organized as follows. We present
some preliminary knowledge, basic concepts, and a special
method to rationalize the denominators with square root
and cube root in Section 2. Main results on rationalizing the
denominator of a type fraction are shown in Section 3. A
simplified algorithm and an example established to illustrate
the algorithm are given in Section 4. Section 5 concludes the
paper.

2. Denominators with Square Root and
Cube Root

In what follows, K[x1, x2, . . . , xn] will denote the polyno-
mial ring in n variables x1, x2, . . . , xn with coefficients in a
field K, L/K will be an algebraic extension of the field K, and
[L: K] will denote the extension times of the extension field
L/K. Q will denote the rational number field, N will be the
set of integers, and lcm(m, n) will denote the least common
multiple of m and n. For a nonzero polynomial
f(x) ∈ K[x1, x2, . . . , xn], we use lt(f), lc(f), and lp(f) to
denote the leading term, the leading coefficient, and the
leading monomial of f(x), respectively. For a set
F ⊂ K[x1, x2, . . . , xn], we denote lt(F) � lt(f)|f ∈ F .
(en, we introduce several related definitions and algorithm.

Definition 1. Let I be an ideal in K[x1, x2, . . . , xn]. A finite
subset G of I is called a Gröbner basis of I if

〈lt(G)〉 � 〈lt(I)〉. (2)

Definition 2 (see [13]). Let f, g ∈ K[x1, x2, . . . , xn], f, g≠
0, and L � lcm(lp(f), lp(g)), and the S-polynomial of f

and g is defined as (Algorithm 1)

S(f, g) �
L

lt(f)
f −

L

lt(g)
g. (3)

(is section focuses on the problem of rationalizing the
denominator with square root and cube root. For the sake of
convenience in researching the problem, we put the coef-
ficient in the radical sign, and then, the fraction can be
reduced to one of the following forms:

(1)
1

x +
��
a2

√
+

�
b

3
√ (a> 0, and a, b ∈ Q),

(2)
1

x −
��
a2

√
+

�
b

3
√ (a> 0, and a, b ∈ Q).

(4)

We first consider the denominators rationalization of
form (1).

Lemma 1 (see [13]). Let G � g1, g2, . . . , gs  be a subset of
an ideal I ∈ K[x1, x2, . . . , xn], and then, G is a Gröbner bases
for I if and only if S(gi, gj)⟶

G
0, for all i≠ j, 1≤ i, j≤ s.

Theorem 1. Let I be an ideal in K[x1, x2, . . . , xn], and then,
fg − 1 ∈ I⟺1 ∈ 〈I, f〉.

Proof. If fg − 1 ∈ I, then there exists h ∈ I, such that
fg − 1 � h, that is, 1 � fg − h ∈ 〈I, f〉.

In turn, if 1 ∈ 〈I, f〉, then there exists
g ∈ K[x1, x2, . . . , xn] and h ∈ I, such that 1 � fg + h, that is,
fg − 1 � − h ∈ I.

Next, we introduce how to rationalize the denominator
of fraction as form (1). First, consider the following ideal:

I �〈y2
1 − a, y

3
2 − b〉 ⊆Q(x) y1, y2 , (5)

where Q(x)[y1, y2] denotes the polynomial ring in variables
y1 and y2 on Q(x) and Q(x) is an extension of the field Q

with x as a variable. Let

f1 y1, y2(  � y
2
1 − a, f2 y1, y2(  � y

3
2 − b. (6)

In the following, multivariate polynomials h(x, y) are
denoted as h for convenience. And the term order of the
multivariate polynomial ring is the lexicographical ordering,
which is defined by y1 >y2.

Note that

S f1, f2(  � by
2
1 − ay

3
2⟶

f2
by

2
1 + ab⟶

f1 0. (7)

By Lemma 1, we have that f1, f2  is a Gröbner basis of
I. Let
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f3 y1, y2(  � x + y1 + y2, (8)

y1 �
��
a

√
, y2 �

�
b

3
√

, and then, f3(
��
a

√
,

�
b

3
√

) � x +
��
a

√
+

�
b

3
√

,
which is the denominator we want to deal with. Replace f by
f3 in (eorem 1, and then, the condition f3 · g − 1 ∈ I is
equivalent to f3(

��
a

√
,

�
b

3
√

) · g(
��
a

√
,

�
b

3
√

) � 1, where
g(

��
a

√
,

�
b

3
√

) ∈ Q[
��
a

√
,

�
b

3
√

] is the polynomial we need.
So, the key issue is whether 1 ∈ 〈I, f3〉, that is, whether

1 ∈ 〈f1, f2, f3〉. If true, we can rationalize the denominator
of 1/(x +

��
a2

√
+

�
b

3
√

) by using this method.
Now, we use Buchberger algorithm to obtain the

Gröbner basis of J � 〈f1, f2, f3〉 and then determine
whether 1 ∈ 〈f1, f2, f3〉.

Initialize
f1 � y2

1 − a, f2 � y3
2 − b, andf3 � x + y1 + y2, and using

the algorithm, we get the Gröbner basis of J is

f1, f2, f3, f4, f5, f6 , (9)

where

f4 � y
2
2 − xy1 + xy2 − a,

f5 � a + 3x
2

 y2 + 2x
3

− 2ax − b,

(10)

f6 �
− 2x

3
− 2ax − b 

3

3x
2

+ a 
3 − b. (11)

Observe f6, and it is easy to find that f6 is independent
of y1 and y2, and thus, f6 ∈ Q(x). Note that Q(x) is a field,
and thus, f− 1

6 � 1/f6 ∈ Q(x). Consequently, 1 � f6 · 1/
f6 ∈ J. (erefore, we can calculate the rationalizing result of
1/(x +

��
a

√
+

�
b

3
√

).
(en, express f6 as the combination of f1, f2, f3, f4, f5:

f6 � f2 −
y
2
2

3x
2

+ a
+

− 2x
3

+ 2ax + b

3x
2

+ a 
2 +

2x
3

− 2ax − b 
2

3x
2

+ a 
3

⎛⎜⎝ ⎞⎟⎠ · f5, (12)

that is,

f2 − y
2
2/ 3x

2
+ a  + − 2x

3
+ 2ax + b / 3x

2
+ a 

2
+ 2x

3
− 2ax − b 

2
/ 3x

2
+ a 

3
  · f5

f6
� 1. (13)

Hence, divide both sides of equation (13) by x+
��
a

√
+

�
b

3
√

,
and substitute the value of f2, f5 and y1 �

��
a

√
, y2 �

�
b

3
√

into
the equation, and then, we obtain

Input: F � f1, f2, . . . , fs.
Output: G � g1,2, . . . , gs, G is a Gröbner basis of 〈f1, f2, . . . , fs〉.
Initialization: G ≔ F,Ω ≔ fi, fj |fi ≠fj ∈ G .

When Ω≠∅
select f, g ∈ Ω

Ω ≔ Ω/ f, g  

S(f, g)⟶G +h, h is reductive with respect to G.
If h≠ 0, then
Ω ≔ Ω∪ u, h{ }|∀u ∈ G{ }

G ≔ G∪ h{ }

ALGORITHM 1: Buchberger algorithm [14].
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1
x +

��
a

√
+

�
b

3
√ �

2x
3

− 2ax − b 
2

· 2x
2

+ bx · 3x
2

+ a 
2

+ b 2x
3

+ 2ax + b  · 3x
2

+ a 

2x
3

− 2ax − b 
3

+ b 3x
2

+ a 
3

+
b 3x

2
+ a 

2
− 2x · 2x

3
− 2ax − b 

2

2x
3

− 2ax − b 
3

+ b 3x
2

+ a 
3 ·

��
a

√

+
− b 3x

2
+ a 

2
+ 2x

2
· − 2x

3
+ 2ax + b  · 3x

2
+ a  + x 2x

3
− 2ax − b 

2

2x
3

− 2ax − b 
3

+ b 3x
2

+ a 
3 ·

�
b

3
√

+
2x

2
· 3x

2
+ a 

2
+ x · 3x

2
+ a  · − 2x

3
+ 2ax + b  − 2x

3
− 2ax − b 

2

2x
3

− 2ax − b 
3

+ b 3x
2

+ a 
3 ·

��

b
23



+
2x · 2x

3
− 2ax − b  · 3x

2
+ a  + 2x

3
− 2ax − b 

2

2x
3

− 2ax − b 
3

+ b 3x
2

+ a 
3 ·

��
a

√
·

�
b

3
√

+
− 2x · 3x

2
+ a 

2
+ − 2x

3
+ 2ax + b  · 3x

2
+ a 

2x
3

− 2ax − b 
3

+ b 3x
2

+ a 
3 ·

��
a

√
·

��

b
23



.

(14)

Using Matlab to simplify the equation above, we obtain

1
x +

��
a

√
+

�
b

3
√ �

1
x
6

− 3ax
4

+ 2bx
3

+ 3a
2
x
2

+ 6abx + b
2

− a
3 x

5
− 2ax

3
+ bx

2


+ a
2
x + ab + − x

4
+ 2ax

2
+ 2bx − a

2
  ·

��
a

√
+ − x

4
− bx + a

2
 

·
�
b

3
√

+ x
3

+ 3ax + b  ·

��

b
23



+ 2x
3

− 2ax − b  ·
��
a

√
·

�
b

3
√

+ − 3x
2

− a  ·
��
a

√
·

��

b
23



.

(15)

For form (2), we just need to change f3(y1, y2) � x +

y1 + y2 to f3(y1, y2) � x − y1 + y2, and the other steps are
the same. □

3. Denominators with Higher Radical

In this section, we focus on rationalizing the denominator of
general form as

1
x + c1 ·

��
am

√
+ c2 ·

�
b

n
√ , (16)

where m, n ∈ N+, m, n≥ 2, a, b, c1, c2 ∈ Q, a, b> 0.
By the method in Section 2, we first construct the ideal

J � <f1, f2, f3 >∈ Q(x)[y1, y2], where f1 � ym
1 − a,

f2 � yn
2 − n, andf3 � x + c1y1 + c2y2. (en, compute the

Gröbner basis G and the reduced Gröbner basis G0 of J. If
G0 � 1{ }, then calculate fs � G∩Q(x). Finally, express fs as
a combination of G/ fs .

However, there are two important uncertainties, one is
whether G0 � 1{ } and the other is whether fs is a combination
of G/ fs . So, this method can only solve the case when

c1, c2, m, n are specific values. Because of this limitation, we
hope to find another method for the general form.

First, we introduce several related definitions and
lemmas.

Definition 3 (see [24]). Let L/K be an algebraic extension of
the field K, [L: K] � n. Suppose σi: L⟶ C(1≤ i≤ n) is n
K-insertion of L, whereC is the complex field. For α ∈ L, define

TL/K(α) � 
n

i�1
σi(α), (17)

as the trace of α to the expansion L/K.

Definition 4 (see [24]). Let L/K be an algebraic extension of
the field K. Suppose σ1, . . . , σn is the K-insertion of L and
α1, . . . , αn ∈ L, and we define

dL/K α1, . . . , αn(  � det2 σi αj  , 1≤ i≤ n, 1≤ j≤ n, (18)

as the discriminant of α1, . . . , αn  for the expansion L/K.
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Definition 5. Let K be a field, u ∈ K, and f(x) ∈ K[x] be a
polynomial. We call f(x) is the minimal polynomial of u in
K if f(x) satisfies the following:

(1) f(x) is monic and f(u) � 0
(2) If g(x) ∈ K[x] and g(u) � 0, then f(x)|g(x)

Lemma 2 (see [24]). Let L/K be the expansion of number
field and [L: K] � n. Suppose α ∈ L, f(x) � xm − c1x

m− 1 +

· · · + (− 1)mcm is the minimal polynomial of α in K, where
m � [K(α): K], and then, TL/K(α) � nc1/m.

Lemma 3 (see [23]). Let dL/K(α1, . . . , αn) be the discrimi-
nant of element α1, . . . , αn  for the expansion L/K, and then,
dL/K(α1, . . . , αn)≠ 0 if and only if α1, . . . , αn is K-linearly
independent.

Lemma 4 (see [25], Eisenstein criterion). Let f(x) � anxn +

an− 1x
n− 1 + · · · + a1x + a0 be an integral coefficient univariate

polynomial. If there is a prime number p such that

(1) p ∤ an

(2) p | an− 1, an− 2, . . . , a0

(3) p ∤ a2
0

(en, f(x) is irreducible over the rational number field
Q.

Using the lemmas above, we can prove the following
results.

Theorem 2. If p is prime number, then f(x) � xm − p is the
minimal polynomial for ��

pm
√ in rational number filed Q,

where m ∈ N+ and m≥ 2.

Proof. It is straightforward that ��
pm

√ is a root of
f(x) � xm − p � 0. In the following, we prove that f(x) is
irreducible.

Let g(x) � f(x + p) � xm + mpxn− 1 + · · · + Ci
mpixm− i+

· · · + pm − p, where Ci
m � m!/(i!(m − i)!). It is obvious that

p∤1, p|Ci
mpi(1≤ i≤m − 1), and p|(pm − p). In fact, we can

prove that p2∤(pm − p). Suppose p2|(pm − p), and then,
p|(pm− 1 − 1). Combining p|pm− 1(m ∈ N+, m≥ 2), we have
that p|(pm− 1 − (pm− 1 − 1)), that is, p|1, and this is a con-
tradiction. So, p2∤(pm − p). By the Eisenstein criterion, g(x)

is irreducible, so f(x) is irreducible, and it is the minimal
polynomial for ��

pm
√ in Q. □

Theorem 3. If p1, p2, . . . , ps are different prime numbers,
then

���

p
t1
1

m1


·

���

p
t2
2

m2


, · · ·

���

p
ts

s

ms



, ti <mi, ti, mi ∈ N
+
, i � 1, 2, . . . , s( ,

(19)

is an irrational number.

Proof. It is straightforward that
���

p
t1
1

m1


·

���

p
t2
2

m2


· · ·

���

p
ts
s

ms



is a
real number. In the following, we prove that it is an irrational
number. Suppose it is a rational number, and set
f(x) � xm1m2 ···ms − p

t1m2 ···ms

1 p
m1t2 ···ms

2 · · · p
m1m2 ···ts
s . (en,���

p
t1
1

m1


·

���

p
t2
2

m2


· · ·

���

p
ts
s

ms



is a positive rational root of f(x) � 0.
Note that f(x) is an integral coefficient polynomial and
lc(f) � 1, and then, the positive rational root of f(x) must
be a factor of its constant term. So, it has the form as
p

n1
1 p

n2
2 · · · p

ns
s , where 0≤ ni ≤m1 · · · mi− 1timi+1 · · · ms, ni ∈ N,

i � 1, 2, . . . , s. (en, we have that
���

p
t1
1

m1


·

���

p
t2
2

m2


· · ·

���

p
ts

s

ms



� p
n1
1 p

n2
2 · · · p

ns

s . (20)

From the equation above, we see that some of ni must be
0. Without loss of generality, we denote the elements whose
power exponents are nonzero as p1, p2, . . . , pq, and equation
(20) turns into the following:

���

p
t1
1

m1


·

���

p
t2
2

m2


· · ·

���

p
ts

s

ms



� p
n1
1 p

n2
2 · · · p

nq

q , (21)

that is,

p
n1− t1/m1
1 p

n2− t2/m2
2 · · · p

nq− tq/mq

q � p
tq+1/mq+1
q+1 p

tq+2/mq+2
q+2 · · · p

ts/ms

s .

(22)

Multiply both sides of equation (22) by the m1m2 · · · ms

power, and then,

p
l1
1 p

l2
2 · · · p

ls
s � p

lq+1
q+1p

lq+2
q+2 · · · p

ls
s , (23)

where li ∈ N+, i � 1, 2, . . . , s. Hence, p1 ∣ p
lq+1
q+1p

lq+2
q+2 · · · p

ls
s ,

and this contradicts p1, p2, . . . , ps are different prime
numbers. So, the conclusion is correct. □

Theorem 4. If p1, . . . , ps are different prime numbers and
m1, . . . , ms are positive integers and no less than 2, then the
finite extension times of Q(

��
p1

m1
√

, . . . ,
��
ps

ms
√

)/Q is no more
than m1m2 . . . ms.

Proof. Let Fi � Q(
��
p1

m1
√

,
��
p2

m2
√

, . . . ,
��
pi

mi
√

), 1≤ i≤ s and
i ∈ N+, and then, Fi+1 � Fi(

����
pi+1

mi+1
√

), that is, Fi+1 can be
viewed as the single extension of Fi. So, [Fi+1: Fi] � z(gi),
where z(gi) denotes the degree of the polynomial gi(x), and
gi(x) is the minimal polynomial of ��

pi
mi
√ in the field Fi.

Obviously, ��
pi

mi
√ is a root for fi(x) � xmi − pi, 1≤ i≤ s. By

the definition of minimal polynomial, we see that
z(gi)≤ z(fi), 2≤ i≤ s, i ∈ N+. From (eorem 3, we see that
f1(x) is an irreducible polynomial in Q. By the property of
domain extension, we have [F1: Q] � m1. Hence,
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Q
��
p1

m1


,
��
p2

m2


, . . . ,
��
ps

ms


 : Q  � Fs : Fs− 1  Fs− 1 : Fs− 2  · · · F2 : F1  F1 : Q 

� z gs(  · z gs− 1(  · · · z g2(  · m1

≤m1m2 · · · ms.

(24)

□
Theorem 5. If p1, p2, . . . , ps are different prime numbers
and m1, m2, . . . , ms are positive integers and no less than 2,
then xms − ps is the minimal polynomial of ��

ps
ms
√ in the field

Q(
��
p1

m1
√

,
��
p2

m2
√

, . . . ,
����
ps− 1

ms− 1
√

).

Proof. Let bi �
��
pi

mi
√

,1≤ i≤s,M � Q(
��
p1

m1
√

,
��
p2

m2
√

, . . . ,
��
ps

ms
√

),
and in the following, we prove that all the m1 · m2 · · ·ms

elements in set

A � b
n1
1 b

n2
2 · · · b

ns

s | 0≤ ni

≤mi − 1, ni ∈ N, i � 1, 2, . . . , s⊆M,
(25)

are linearly independent. First, sort the elements in A. It is
easy to observe that each element in A corresponds to such
an array (n1, n2, . . . , ns). So, we can turn the problem into
sorting the exponents (n1, n2, . . . , ns), where the term order
is lexicographic order. We denote the element that

corresponds to the largest exponential as c1, the element that
corresponds to the second largest exponential as c2, . . ., and
the element that corresponds to the smallest exponential as
cm1m2 ···ms

, and then, we have sorted out all the elements in A.
Now, we calculate det (TM/Q(cicj)). Suppose

ci � b
ni1
1 b

ni2
2 · · · b

nis
s and cj � b

nj1
1 b

nj2
2 · · · b

njs
s . If one of the fol-

lowing two situations is true,

(1) ∀k � 1, 2, . . . , s, nik
+ njk

� mk

(2) ∀k � 1, 2, . . . , s, nik
� njk

� 0

We obtain that cicj ∈ Q by (eorem 3. Hence,
TM/Q(cicj) � ncicj ≠ 0, where n � [M: Q]. Otherwise, there
exists k ∈ 1, 2, . . . , s{ } does not satisfy either of the above two
cases, and we can calculate TM/Q(cicj) by Lemma 2. We first
want to obtain the minimal polynomial of cicj in rational
number field Q. Set

l � lcm
m1

gcd m1, ni1
+ nj1

 
,

m2

gcd m2, ni2
+ nj2

 
, . . . ,

ms

gcd ms, nis
+ njs

 
⎛⎝ ⎞⎠. (26)

Obviously, l> 1. Let q � (cicj)
l and

B � m ∈ N+|(cicj)
m ∈ Q , and by (eorem 3, we have that

mk|(nik
+ njk

)m, for any m ∈ B, where k � 1, 2, . . . , s. Hence,
p is the smallest element in B.

In the following, we prove that f(x) � xl − q is the
minimal polynomial of cicj in the rational number field Q.

It is straightforward that f(cicj) � (cicj)
l − q � 0. We

factorize f(x) in the complex field C as

f(x) � x −
�
ql

√
(  x − ε

�
ql

√
(  · · · x − εl− 1 �

ql
√

 , (27)

where ε � e2πi/l � cos(2π/n) + i sin(2π/n).
Suppose f(x) is reducible in Q, and then, some constant

terms of the linear factor in the decomposition above are
rational numbers, that is, there is a t ∈ N+ and k ∈ N such
that (− 1)tεkqt/l ∈ Q⊆R, i.e., e2kπi/l � cos(2kπ/l) + i sin(2kπ/
l) ∈ R. So, sin(2kπ/l) � 0, that is, k � ln/2, n ∈ Z. Hence,
εk � cos(2kπ/l) � cos(nπ) � ± 1, n ∈ Z, and there is an
r ∈ Q such that qt/l � r. Note that q � (cicj)

l, and then,
(cicj)

t � r ∈ Q (t< l), and this contradicts the selection of l.
(us, f(x) � xl − q is irreducible in Q, and then, f(x) is the
minimal polynomial of cicj in rational number field Q.
Combined with Lemma 2, we see that TM/Q(cicj) � 0.

Based on the discussion above, we obtain that
dM/Q(c1, c2, . . . , cm1m2 ···ms

) � det(TM/Q(cicj))≠ 0. (en, all
elements in set A are linearly independent in Q by Lemma 3.
Combined with (eorem 4, we see that

Q
��
p1

m1


,
��
p2

m2


, . . . ,
��
ps

ms


 : Q  � m1m2 · · · ms. (28)

So, xms − ps is the minimal polynomial of ��
ps

ms
√ in the

field Q(
��
p1

m1
√

, . . . ,
����
ps− 1

ms− 1
√

).
Based on the results above, we can present the steps for

rationalizing denominators of the following form:
1

x + c1
��
am

√
+ c2

�
b

n
√ , (29)

where m and n are integers and a, b ∈ Q+ and c1, c2 ∈ Q.

Step 1: write a and b as fractions in the lowest term,
a � d1/e1 and b � d2/e2. (en, decompose d1, e1, d2, e2
into power product of different prime factors, re-
spectively. We use p1, p2, . . . , pt to denote the common
prime factors of d1 and d2, q1, q2, . . . , qk to denote the
different prime factors in d1, e1, and v1, v2, . . . , vs to
denote the different prime factors in d2, e2.
Step 2: let l � lcm(m, n), and

α1 �
��
p1

l


, α2 �
��
p2

l


, . . . , αt �
��
pl


t,

αt+1 �
��
q1

m
√

, αt+2 �
��
q2

m
√

, . . . , αt+w �
���
qw

m
√

,

αt+w+1 �
��
r1

n
√

, αt+w+2 �
��
r2

n
√

, . . . , αt+w+s �
��
rs

n
√

.

(30)

We construct the rational extension field:

M � Q α1, . . . , αt, αt+1, . . . , αt+w, . . . , αt+w+s( . (31)
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Let α � c1
��
am

√
+ c2

�
b

n
√

, and there are f(x1, . . . ,

xt+w+s), g(x1, . . . , xt+w+s) ∈ Q[x1, . . . , xt+w+s] such that

α � f α1, . . . , αt+w+s( /g α1, . . . , αt+w+s( . (32)

According to (eorem 2, we have that h1 � xl
1−

p1 ∈ Q[x1] is the minimal polynomial of α1 in the rational
number field Q. It is also known, by (eorem 5, hi � xl −

pi ∈ Q(α1, . . . , αi− 1)[xi] is the minimal polynomial of αi in
Q(α1, . . . , αi− 1) for 2≤ i≤ t, hi � xm − qi− t ∈ Q(α1, . . . ,

αi− 1)[xi] is the minimal polynomial of αi in Q(α1, . . . , αi− 1)

for t + 1≤ i≤ t + s, and hi � xn − vi− t− w ∈ Q(α1, . . . , αi− 1)[xi]

is the minimal polynomial of αi in Q(α1, . . . , αi− 1) for
t + w + 1≤ i≤ t + w + s.

Next, we construct the following homomorphic maps:
φi: Q x1, x2, . . . , xi ⟶ Q α1, α2, . . . , αi− 1(  xi , 2≤ i≤ t + w + s.

(33)

For any f � 
β
λβx

β1
1 x

β2
2 . . . x

βi

i ∈ Q[x1, x2, . . . , xi− 1],
where λβ ∈ Q, β � (β1, β2, . . . , βi) ∈ Ni. Define

φi(f) � 
β
λβα

β1
1 α

β2
2 · · · αβi− 1

i− 1 x
βi

i . (34)

Under this map, the corresponding preimage of
hi ∈ Q(α1, α2, . . . , αi− 1)[xi] is itself, where 2≤ i≤ t + w + s.

Step 3: we find the minimal polynomial of α in Q

according to [26].

(e term order ≺ in Q[x1, . . . , xt, xt+1, . . . , xt+w+s, y] is
the lexicographical ordering defined by
y≺xt+w+s≺ · · ·≺xt+1≺xt≺ · · ·≺x1. Under this term order, we
calculate the reduced Gröbner basis G of the ideal

I �〈h1, h2, . . . , ht+w+s, g · y − f〉, (35)

where

hi �

x
l
− pi, 1≤ i≤ t,

x
m

− qi− t, t + 1≤ i≤ t + w,

x
n

− ri− t− w, t + w + 1≤ i≤ t + w + s.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(36)

(en, we compute h(y) � G∩Q[y] and take

m(y) �
h(y)

λ
, λ � lc(h(y)). (37)

Hence, m(y) is the minimal polynomial of α in Q. And
then we can rationalize the denominator by applying the
minimal polynomial.

Set n(y) � x + y (x is a parameter) and divide m(y) by
n(y) such that

m(y) � q(y)n(y) + r(y) , z(r(y)) < z(n(y)). (38)

(en, z(r(y)) � 0 and r(y)≠ 0, otherwise, it contradicts
that n(y) contains x. Correspondingly, equation (38) can be
rewritten as

m(y) � q(y)n(y) + r(x), r(x) ∈ Q[x]. (39)

Substitute y � α into the equation above, and then,
0 � (x + α)q(α) + r(x), that is,

1
x + α

� −
q(α)

r(x)
, (40)

which is the desired result of rationalizing
denominators. □

4. Algorithm and Example

According to the theorems and discussion in Section 3, we
obtain an algorithm for rationalizing the denominators of
fractions with the form as 1/(x + c1 ·

��
am

√
+ c2 ·

�
b

n
√

). We
describe this algorithm in more detail in Figure 1.

In the following, we construct an example to show the
effectiveness of the algorithm.

Example 1. Rationalizing the denominator of

1
x +

�
6

√
+

�
43

√ . (41)

Step 1: we know a� 6 and b� 4, and the command
“format rat” can be omitted here. Carry out the prime
factorization of 6 and 4 by using the function “fac-
torization,” and we obtain

6 � 2 × 3, 4 � 2 × 2. (42)

It is easy to see that p1 � 2 is a common prime factor of 6
and 4. In addition, 6 also contains the factor q1 � 3.

Step 2: note that m � 2 and n � 3, and then, using the
function “min_GBS,” we obtain

l � lcm(m, n) � 6. (43)

Let

α1 �
�
26

√
, α2 �

�
3

√
. (44)

We construct the extension field Q(α1, α2) of the rational
number field Q. Set α �

�
6

√
+

�
43

√
, and then, α � f(α1, α2)

� α31α2 + α41.

Step 3: hence, h1 � x6
1 − 2 ∈ Q[x1] is a minimal poly-

nomial of α1 on Q and h2 � x2
2 − 3 ∈ Q(α1)[x2] is a

minimal polynomial of α2 on Q(α1).

Set

I �〈x6
1 − 2, x

2
2 − 3, y − x

3
1x2 − x

4
1〉, (45)

take the lexicographical ordering y≺x2≺x1 as the term order
in Q[x1, x2, y], and calculate the reduced Gröbner basis G of
ideal I in the software singular using the built-in function
“groebner.” (en, the calculation results are as follows:

G � f1, f2, f3 , (46)

where

Complexity 7



f1 � y
6

− 18y
4

+ 108y
2

− 144y − 200,

f2 � x
2
2 − 3,

f3 � 7128x1 + 18x
3
2y

4
− 144x

3
2y

3
− 294x

3
2y

2
+ 4756x

3
2y + 64x

3
2 − 3x2y

5
− 30x2y

2
− 14904x2y + 4536x2.

(47)

(erefore, G∩Q[y] � y6 − 18y4 − 8y3 + 108y2 − 144y

− 200}. Hence, the minimal polynomial of α in the rational
number field Q is m(y) � y6 − 18y4 − 8y3 + 108y2 −

144y − 200.
Next, divide m(y) by x + y in the software Matlab using

the built-in function “polynomialReduce.” (en,

m(y) � q(y) · (x + y) + r(x), (48)

where

q(y) � y
5

− xy
4

+ y
3

x
2

− 18  + y
2

− x
3

+ 18x − 8  + y x
4

− 18x
2

+ 8x + 108  + − x
5

+ 18x
3

− 8x
2

− 108x − 144 ,

r(x) � x
6

− 18x
4

+ 8x
3

+ 108x
2

+ 144x − 200.
(49)

Substitute α �
�
6

√
+

�
43

√
into

1
x + α

� −
q(α)

r(x)
, (50)

then

1
x +

�
6

√
+

�
43

√ �
x
5

− 12x
3

+ 4x
2

+ 36x + 24
r(x)

+
− x

4
+ 12x

2
+ 8x − 36

r(x)

�
6

√
+

− x
4

− 4x + 36
r(x)

�
43

√

+
2x

3
+ 36x + 8
r(x)

�
23

√
+
2x

3
− 12x − 4
r(x)

�
6

√ �
43

√
+

− 6x
2

− 12
r(x)

�
23

√ �
6

√
.

(51)

Figure 1: Denominator rationalized algorithm.
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Remark 1. Note that m � 2 and n � 3, and we can use the
method in Section 2 to do this example. Replace

a � 6 and b � 4 and do all the steps as in Section 2, and we
obtain

1
x +

�
6

√
+

�
43

√ �
1

x
6

− 18x
4

+ 8x
3

+ 108x
2

+ 144x − 200
x
5

− 12x
3

+ 4x
2

+ 36x + 24 + − x
4

+ 12x
2

+ 8x − 36 

·
�
6

√
+ − x

4
− 4x + 36  ·

�
43

√
+ 2x

3
+ 36x + 8  ·

�
23

√

+ 2x
3

− 12x − 4  ·
�
6

√
·

�
43

√
+ − 6x

2
− 12  ·

�
6

√
·

�
23

√
.

(52)

(rough the two examples above, it is easy to find that
the results obtained by both methods are the same, which
proves that the algorithm we designed is correct and the
application scope is wider.

Remark 2. Using the method in Section 2 or the method of
undetermined coefficients, the problem of denominator
rationalization of fractions with the form as 1/(x + c1 ·

��
am

√
+

c2 ·
�
b

n
√

) may not be solved or can be solved but will take a
long time. However, from Example 1, it is straightforward
that this problem can be solved efficiently and simply
according to the three steps of Denominator rationalized
algorithm by using the software Matlab and Singular.

5. Conclusion

In this paper, using theory of Gröbner bases, we have
achieved in rationalizing denominators for two types of
fractions, especially rationalizing the denominator of the
fraction with the form as

1
x + c1 ·

��
am

√
+ c2 ·

�
b

n
√ , (53)

where m, n ∈ N+, m, n≥ 2, a, b, c1, c2 ∈ Q, a, b> 0. We have
presented some interesting results and an executable algo-
rithm on rationalizing the denominators for this type
fractions. Furthermore, we have established an example to
illustrate the effectiveness of the algorithm.

(e method that we proposed on rationalizing de-
nominators can be realized in computer system such as
Maple and Singular, which makes the related computation
more quick. Furthermore, it can improve the performance of
the related algorithms. For example, we find that, for some
new swarm intelligence algorithms proposed in recent years,
such as monarch butterfly optimization (MBO) [27],
earthworm optimization algorithm (EWA) [28], elephant
herding optimization (EHO) [29], etc. the fraction of the
form 1/(x + c1 ·

��
am

√
+ c2 ·

�
b

n
√

) occurs during the imple-
mentation of these algorithms. (e denominator rational-
ized algorithm we proposed can rationalize the denominator
of this type fraction, which can improve the accuracy of these
algorithms on calculation.

Future work will investigate in rationalizing denomi-
nators of more general forms of radical fraction. (e type of
fractions discussed in the paper is unnested radical

expressions, and the problem of the nested radical fractions
is not involved here, which is also what we will do.
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tational Approach to Commutative Algebra, Vol. 141, GTM
Springer, , New York, 1993.

[16] B. Buchberger and F.Winkler,Gröbner Bases and Application.
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