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Statistical distributions have great applicability for modeling data in almost every applied sector. Among the available classical
distributions, the inverse Weibull distribution has received considerable attention. In the practice of distribution theory, nu-
merous methods have been studied and suggested/introduced to increase the flexibility level of the traditional probability
distributions. In this paper, we implement different distribution methods to obtain five new different versions of the inverse
Weibull model. (e new modifications of the inverse Weibull model are called the logarithm transformed-inverse Weibull, a
flexible reduced logarithmic-inverse Weibull, the weighted TX-inverse Weibull, a new generalized-inverse Weibull, and the alpha
power transformed extended-inverse Weibull distributions. To illustrate the flexibility and applicability of the new modifications
of the inverse Weibull model, a biomedical data set is analyzed. (e data set consists of 108 observations and represents the
mortality rate of the COVID-19-infected patients. (e practical application shows that the new generalized-inverse Weibull is the
best modification of the inverse Weibull distribution.

1. Introduction

In the practice of distribution theory, one of the important
tasks is to devise an efficient statistical model for real
phenomena of nature. Generally, the statistical distributions
are implemented to analyze real-life situations that are
uncertain and endangered. For example, the probability
distributions are frequently applied to analyze data in (i)
engineering and related sectors [1], (ii) healthcare engi-
neering [2], (iii) the economic and financial sector [3], (iv)
hydrology [4], (v) education [5], (vi) metrology [6], (vii)
biological sector [7], and (viii) sports [8].

Due to the applicability of the probability distributions
in applied areas/sectors, numerous approaches (probability
models) have been proposed and studied. For example, Afify
et al. [9] proposed the MOPG-Weibull distribution for
analyzing the engineering data set. For further studies re-
lated to the engineering sector (i.e., data modeling in the
engineering-related area), we refer to studies by Almarashi
et al. [10] and Strzelecki [11].

Klakattawi [12] implemented a new extended Weibull
(NE-Weibull) model for statistical analysis of the data sets
related to cancer patients. For more studies related to the
biomedical/healthcare data sets (i.e., data modeling in the
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biomedical-related area), we refer to studies by Ahmad
et al. [13]; Plana et al. [14]; Xin et al. [15]; and Martinez
et al. [16].

Tung et al. [17] proposed the arcsine-Weibull (ASin-
Weibull) distribution for analyzing data sets in the business
and financial sectors. For more studies related to the fi-
nancial data sets (i.e., data modeling in the financial-related
area), we refer to studies by Zhao et al. [18]; Alfaro et al. [19];
Abubakar and Sabri [20]; and Rana et al. [21].

Bakouch et al. [22] implemented the Gumbel model for
analyzing the hydrology data set. Singh et al. [23] provided
the assessment of groundwater quality data in Nigeria.
Hassan et al. [24] implemented the truncated power Lomax
(TP-Lomax) distribution for analyzing the flood data set. For
other studies related to the hydrology data sets, we refer to
studies by Karahacane et al. [25]; Dodangeh et al. [26]; and
Tegegne et al. [27].

Among the above fields (engineering, education,
hydrology, and healthcare sectors), statistical distribu-
tions are frequently implemented to analyze the bio-
medical data sets. Since December 2019, researchers
have proposed and implemented new probability models
for analyzing and predicting the COVID-19 events
(Baleanu et al. [28]; Özköse and Yavuz, M. (2022), Khan
et al. [29]; Lella and Pja [30]; Mohan et al. [31]; and Singh
et al. [32]).

Maurya et al. [33] proposed a new method called the
logarithm transformed (LT) family for introducing flexible
probability distributions. Let X has the LT family, if its DF
(distribution function) R(x;ψ) is

R(x;ψ) � 1 −
log[2 − M(x;ψ)]

log 2
, (1)

where x ∈ R and M(x;ψ) is a baseline DF.
Liu et al. [34] introduced a useful method, namely, a

FRL-X (flexible reduced logarithmic-X) family for obtaining
the modified versions of the existing distributions. Let X has
the FRL-X distributions, if its DF R(x; β,ψ) is

R(x;ψ, β) � 1 −
log[1 − βM(x;ψ) + β]

log(β + 1)
, (2)

where β ∈ R+ is an additional parameter.
Ahmad et al. [35] proposed another new class of

probability distributions, called the weighted T-X (WT-X)
family of distributions. (e DF R(x;ψ) of the WT-X dis-
tributions is

R(x;ψ) � 1 −
1 − M(x;ψ)

e
M(x;ψ)

, (3)

with PDF r(x;ψ) given by

r(x;ψ) � [2 − M(x;ψ)]
m(x;ψ)

e
M(x;ψ)

, (4)

where m(x;ψ) � d/dxM(x;ψ).
Wang et al. [36] studied a NG-X (new generalized-X)

family with DF R(x;ψ, θ), provided by

R(x;ψ, θ) � 1 − e
− M(x;ψ)

[1 − M(x;ψ)]
θ
, (5)

where θ ∈ R+ is the additional parameter.
Bo et al. [37] proposed another useful method, namely,

the APTEx-X (alpha power-transformed extended-X)
family of distributions. (e DF R(x;ψ, α1) of the APTEx-X
family is

R x;ψ, α1(  �
α 1− 1−M(x;ψ)/eM(x;ψ)( )( )
1 − 1

α1 − 1
, (6)

where α1 ≠ 1, α1 ∈ R+ is an additional parameter.
In the next section, we obtain different modifications of

the inverse Weibull (IW) distribution by implementing the
approaches defined in Eqs. (1)–(6). For every new modified
form of the IWmodel, the plots of the PDF are also obtained.

2. Some New Modifications of the Inverse
Weibull Distribution

(is section offers some new different extensions of the IW
distribution by incorporating the well-known approaches
described in Section 1. Consider the DF M(x;ψ), PDF
m(x;ψ), SF (survival function) S(x;ψ), HF (hazard func-
tion) h(x;ψ), and cumulative HF H(x;ψ) of the IW dis-
tribution (with parameters α ∈ R+ and ψ ∈ R+) given by

M(x;ψ) � e
−ψ/xα

,

m(x;ψ) �
αψ

x
α+1e

− ψ/xα( ),

S(x;ψ) � 1 − e
− ψ/xα( ),

h(x;ψ) �
αψ/xα+1

 

e
− ψ/xα( ) 1 − e

− ψ/xα( ) 

,

(7)

H(x;ψ) � −log 1 − e
− ψ/xα( ) , (8)

respectively, where ψ � (α,ψ).

2.1. >e Logarithm Transformed-Inverse Weibull
Distribution. Here, we implement the LT family approach
(see (1)) to introduce a new version of the IW model. (e
new version of the IW model is called the logarithmic
transformed-inverse Weibull (LT-IW) distribution. (e DF
of the LT-IW distribution is obtained by using (7) in (1). Let
X has the LT-IW model, if its DF is expressed by

R(x;ψ) � 1 −
log 2 − e

− ψ/xα( ) 

log 2
, x ∈ R+

, α, δ ∈ R+
. (9)

Associating to Eq. (9), the PDF r(x;ψ), SF R(x;ψ), and
HF h(x;ψ) of the LT-IW model are given by
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r(x;ψ) �
αψ/xα+1

 e
− ψ/xα( )

(log 2) 2 − e
− ψ/xα( ) 

,

R(x;ψ) �
log 2 − e

− ψ/xα( ) 

log 2
,

(10)

h(x;ψ) �
αψ/xα+1

 e
− ψ/xα( )

log 2 − e
− ψ/xα( )   2 − e

− ψ/xα( ) 

, (11)

respectively.
(e PDF plots of the LT-IW model are provided in Fig-

ure 1. (e plots of the LT-IW model in Figure 1 are obtained
for α � 0.2,ψ � 0.5 (red line), α � 3.4,ψ � 0.4 (green line),
α � 2.5,ψ � 0.5 (black line), and α � 2.1,ψ � 1.5 (blue line).

2.2. A Flexible Reduced Logarithmic-Inverse Weibull
Distribution. Here, we use the FRL-X approach (see (2)) to
introduce a novel generalized version of the IW distribution.
(e new updated form of the IW distribution is called the
FRL-IW distribution. (e DF of the FRL-IW model is ob-
tained by using Eq. (7) in (2). Let X has the FRL-IW dis-
tribution, if its DF is given by

R(x;ψ, β) � 1 −
log 1 − βe

− ψ/xα( ) + β 

log(β + 1)
,

x ∈ R+
, α,ψ, β ∈ R+

.

(12)

Corresponding to Eq. (12), the PDF r(x; β,ψ), SF R(x;

β,ψ), and HF h(x; β,ψ) of the FRL-IW model are given by

r(x; β,ψ) �
β αψ/xα+1

 e
− ψ/xα( )[log(1 + β)]

− 1

1 + β − βe
− ψ/xα( ) 

,

R(x; β,ψ) � log 1 + β − βe
− ψ/xα( ) [log(1 + β)]

− 1
,

(13)

h(x; β,ψ) �
β αψ/xα+1

 e
− ψ/xα( )

log 1 + β − βe
− ψ/xα( )   1 + β − βe

− ψ/xα( ) 

,

(14)

respectively.
Different plots of r(x; β,ψ) of the FRL-IW distribution

are presented in Figure 2. (e plots of r(x; β,ψ) in Figure 2
are obtained for α � 1.2,ψ � 0.4, β � 1.2 (red line), α � 3.4,

ψ � 0.7, β � 2.5 (green line), α � 2.5,ψ � 0.9, β � 2.8 (black
line), and α � 3.1,ψ � 0.3, β � 0.9 (blue line).

2.3. >e Weigted TX-Inverse Weibull Distribution. In this
section, we apply the WT-X distribution approach to
propose a modified version of the IW distribution, called the
weighted TX-inverse Weibull (WT X-IW) distribution. (e

DF of theWT X-IW distribution is obtained by using Eq. (7)
in (3). Let X has the WT X-IW model, if its DF is

R(x;ψ) � 1 −
1 − e

− ψ/xα( )

e
e− ψ/xα( )

, x ∈ R+
, α,ψ ∈ R+

. (15)

In link to (15), the PDF r(x;ψ), SF R(x;ψ), and HF
h(x;ψ) of the WT X-IW model are given by

r(x;ψ) � 2 − e
− ψ/xα( ) 

αψ/xα+1
 e

− ψ/xα( )

e
e− ψ/xα( )

,

R(x;ψ) �
1 − e

− ψ/xα( )

e
e− ψ/xα( )

,

(16)

h(x;ψ) � 2 − e
−ψ/xα

 
αψ/xα+1

 e
− ψ/xα( )

1 − e
− ψ/xα( )

, (17)

respectively.
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Figure 1: PDF plots of the LT-IW distribution.
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Figure 2: Different plots r(x; β,ψ) of the FRL-IW distribution.
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Some possible plots for the PDF of the WTX-IW model
are sketched in Figure 3. (e plots in Figure 3 are sketched
for α � 1.5,ψ � 1.8 (red line), α � 1.2,ψ � 2.7 (green line),
α � 1.2,ψ � 4.4 (black line), and α � 1.4,ψ � 0.8 (blue line).

2.4. A New Generalized-Inverse Weibull Distribution. In this
section, we incorporate a NG-X method and introduce
another extended form of the IW distribution. (e new
extended form of the IW model is called a NG-IW (new
generalized-inverse Weibull) model. (e DF of the NG-IW
model is obtained by using Eq. (7) in (5). Let X has the NG-
IW model, if its DF is given by

R(x; θ,ψ) � 1 −
1 − e

− ψ/xα( ) 
θ

e
e− ψ/xα( )

, x ∈ R+
, α,ψ, θ ∈ R+

.

(18)

In link to (8), the PDF r(x; θ,ψ), SF R(x; θ,ψ), and HF
h(x; θ,ψ) of the NG-IW model are, respectively, given by

r(x;θ,ψ) �
αψe

− ψ/xα( )

x
α+1 1− e

− ψ/xα( ) 
θ−1 (1+θ) − e

− ψ/xα( ) 

e
e− ψ/xα( )

,

R(x;θ,ψ) �
1− e

− ψ/xα( ) 
θ

e
e− ψ/xα( )

,

(19)

h(x;θ,ψ) �
αψe

− ψ/xα( )

x
α+1 1− e

− ψ/xα( ) 
(1+θ) − e

− ψ/xα( ) . (20)

Some possible PDF r(x; θ,ψ) plots of the NG-IW dis-
tribution are sketched in Figure 4. (e plots of r(x; θ,ψ) in
Figure 4 are sketched for α � 1.2,ψ � 0.4, θ � 0.2 (red line),
α � 3.4,ψ � 4.7, θ � 0.5 (green line), α � 2.7,ψ � 1.2,

θ � 0.8 (black line), and α � 3.5,ψ � 6.7, θ � 0.1 (blue line).

2.5. >e Alpha Power-Transformed Extended-Inverse Weibull
Distribution. (is section offers another new extension/
generalization of the IW model called the alpha power
transformed extended-inverse Weibull (APTE-IW)
model. (e DF of the APTE-IW distribution is obtained
by using Eq. (7) in (6). Let X has the APTE-IW model, if
its DF is

R x; α1,ψ(  �
α

1−1−e− ψ/xα( )/ee
− ψ/xα( ) 

1 − 1
α1 − 1

,

x ∈ R+
, α1 ≠ 1, α1, α, δ ∈ R+

.

(21)

In link to (21), the PDF r(x; α1,ψ), SF R(x; α1,ψ), and
HF h(x; α1,ψ) of the APTE-IW model are given by

r x;α1,ψ(  �
(log α)αψ/xα+1

e
− ψ/xα( )α

1− 1−e− ψ/xα( )/ee
− ψ/xα( )  

1

α1 −1(  2− e
− ψ/xα( ) 

−1 ,

R x;α1,ψ(  �
α1 −α

1− 1−e− ψ/xα( )/ee
− ψ/xα( )  

1
α1 −1

,

(22)

h x;α1,ψ(  �
(log α) αψ/xα+1

 e
− ψ/xα( )α

1−1−e− ψ/xα( )/ee
− ψ/xα( ) 

1

α1 −α
1−1−e− ψ/xα( )/ee

− ψ/xα( ) 
1

⎛⎝ ⎞⎠ 2− e
− ψ/xα( ) 

−1
,

(23)

respectively.
Some possible PDF r(x; α1,ψ) plots of the APTE-IW

distribution are provided in Figure 5.(e plots of r(x; α1,ψ)

in Figure 5 are sketched for α � 1.2,ψ � 2.1, θ � 2.2 (red
line), α � 1.5,ψ � 0.8, θ � 3.2 (green line), α � 1.7,ψ � 1.2,

θ � 3.8 (black line), and α � 1.8,ψ � 2.1, θ � 2.1 (blue line).
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Figure 4: Some possible PDF plots of the NG-IW distribution.
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3. Data Analysis

Here, we demonstrate the applicability of the updated
versions of the IW distribution. All the proposed updated
versions of the IW distribution are applied to a data set
concerned with the COVID-19 pandemic. (ese data are
recorded between March 4, 2022, and July 20, 2020 [38].

(e considered data set has one hundred eight obser-
vations and is given by 1.041, 1.205, 1.402, 1.800, 1.815,
1.923, 2.058, 2.065, 2.070, 2.077, 2.326, 2.352, 2.438, 2.500,
2.506, 2.601, 2.926, 2.988, 3.027, 3.029, 3.215, 3.218, 3.219,
3.228, 3.233, 3.257, 3.286, 3.298, 3.327, 3.336, 3.359, 3.395,
3.440, 3.499, 3.537, 3.632, 3.751, 3.778, 3.922, 4.089, 4.120,
4.292, 4.344, 4.424, 4.557, 4.648, 4.661, 4.697, 4.730, 4.909,
4.949, 5.143, 5.242, 5.317, 5.392, 5.406, 5.442, 5.459, 5.854,
5.985, 6.015, 6.105, 6.122, 6.140, 6.182, 6.327, 6.370, 6.412,
6.535, 6.560, 6.625, 6.656, 6.697, 6.814, 6.968, 7.151, 7.260,
7.267, 7.486, 7.630, 7.840, 7.854, 7.903, 8.108, 8.325, 8.551,
8.696, 8.813, 8.826, 9.284, 9.391, 9.550, 9.935, 10.035, 10.043,
10.158, 10.383, 10.685, 10.855, 11.665, 12.042, 12.878, 13.220,
14.604, 14.962, and 16.498.

(e summary values of the COVID-19 data are given by
minimum� 1.041, maximum� 16.498, range� 15.457,
mean� 5.822, variance� 10.56173, standard derivation-
� 3.249882, skewness� 0.9732453, 1st quartile� 3.289, 2n d

quartile ormedian� 5.279, 3r d quartile� 7.594, interquartile
range� 4.305, and kurtosis� 3.666136. Furthermore, some
summary plots of the data set are presented in Figure 6.

Here, we consider four frequently used analytical
measures (statistical tests or statistical procedures) to show
which probability distribution better fits the biomedical
data. (ese measures are given by the following:

(i) (e AIC:

AIC � 2p − 2π(υ). (24)

(ii) (e BIC:

BIC � p log(m) − 2π(υ). (25)

(iii) (e CAIC:

CAIC �
2mp

m − p − 1
− 2π(υ). (26)

(iv) (e HQIC:

HQIC � 2p log(log(m)) − 2π(υ). (27)

In a general sense, the above-mentioned analytical
measures are used for comparative analysis. A
statistical model that has smaller values of the
statistical tests is considered themost suitable model
among other competing statistical models.

Table 1 gives the MLEs (αMLE, ψMLE, βMLE, θMLE, α1MLE)

of the competitive probability models using the COVID-19
data set. (e analytical measures for the COVID-19 data
using the considered probability models are presented in
Table 2.

Based on the reported results in Table 2, it is obvious that
the NG-IW model provides the best fit to the biomedical
data. For the NG-IWmodel, the values of the considered test
statistics are AIC� 531.7657, CAIC� 532.0010,
BIC� 539.7561, and HQIC� 535.0043. Based on the nu-
merical results in Table 2, the second appropriate model is
the FRL-IW distribution. For the FRL-IW model, we have
AIC� 546.7329, CAIC� 546.9682, BIC� 554.7232, and
HQIC� 549.9714. (e 3r d best model is the LT-IW dis-
tribution. For the LT-IW model, AIC� 549.0155,
CAIC� 549.1321, BIC� 554.3424, and HQIC� 551.1746.
(e 4th best model is the WTX-IW distribution. For the
WTX-IW model, AIC� 551.7866, CAIC� 551.9032,
BIC� 557.1135, and HQIC� 553.9457. (e 5th best model is
the APTE-IW distribution. For the APTE-IW model,
AIC� 553.3800, CAIC� 553.6043, BIC� 561.5085, and
HQIC� 556.6775.

As we have seen that the NG-IW model provides a close
fit to the biomedical data. (erefore, we provide the profiles
of the log-likelihood function (LLF) of the NG-IW distri-
bution. Based on the αMLE, ψMLE, and θMLE, the LLF profiles
of the NG-IW distribution are obtained in Figure 7. (e
graphs in Figure 7 confirm the unique values of the
αMLE, ψMLE, and θMLE.

After the numerical illustration of the NG-IW model
using the COVID-19 data set (see Table 2), next we show
visually that the NG-IW model provides the best fit to the
COVID-19 data set. For the visual illustration of the NG-IW
model, the plots of the fitted PDF r(x; θ, ψ), DF R(x; θ, ψ),
SF R(x; θ, ψ), HF h(x; θ, ψ), cumulative HF H(x; θ, ψ),
probability-probability (PP), and QQ (quantile-quantile) are
obtained in Figure 8. (e plots of r(x; θ, ψ), R(x; θ, ψ),
R(x; θ, ψ), h(x; θ, ψ), and H(x; θ, ψ) are obtained using the
following expressions:

α=1.2, δ=2.1, α1=2.2
α=1.5, δ=0.8, α1=3.2
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Figure 5: Some possible PDF plots of the APTE-IW distribution.
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Table 1: (e values of the maximum likelihood estimators of the fitted models using the COVID-19 data set.

Distributions α ψ β θ α1
LT-IW 1.829195 8.721454 — — —
FRL-IW 2.291612 8.003594 11.582096 — —
WTX-IW 1.339224 9.164487 — — —
NG-IW 0.705908 8.586715 — 9.655237 —
APTE-IW 0.633391 8.119927 — — 12.65028

Table 2: (e values of the analytical measures of the fitted models using the COVID-19 data set.

Distributions AIC CAIC BIC HQIC
LT-IW 549.0155 549.1321 554.3424 551.1746
FRL-IW 546.7329 546.9682 554.7232 549.9714
WTX-IW 551.7866 551.9032 557.1135 553.9457
NG-IW 531.7657 532.0010 539.7561 535.0043
APTE-IW 553.3800 553.6043 561.5085 556.6775
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Figure 7: (e profiles of the log LF of the NG-IW distribution using the COVID-19 data set.
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Figure 8: Visual illustration of the NG-IW distribution using the COVID-19 data set.

r(x; θ, ψ) �
6.061430 e

− 8.586715/x0.705908

x
1.705908 1 − e

− 8.586715/x0.705908
 

8.655237
×

(10.655237) − e
− 8.586715/x0.705908

 

e
e−8.586715/x0.705908 ,

R(x; θ, ψ) � 1 −
1 − e

− 8.586715/x0.705908
 

9.655237

e
e−8.586715/x0.705908 ,

R(x; θ, ψ) �
1 − e

− 8.586715/x0.705908
 

9.655237

e
e−8.586715/x0.705908 ,

h(x; θ,ψ) �
6.061430 e

− 8.586715/x0.705908

x
1.705908 1 − e

−8.586715/x0.705908
 

(10.655237) − e
− 8.586715/x0.705908

 ,

(28)

H(x; θ, ψ) � −log
1 − e

− 8.586715/x0.705908
 

9.655237

e
e−8.586715/x0.705908

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (29)

respectively.
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(e empirical and fitted plots in Figure 8 reveal that the
NG-IW distribution provides a close fit to the COVID-19
data set.

4. Concluding Remarks

In recent times, statistical models have been frequently used
to analyze data in applied sectors, such as engineering,
hydrology, education, finance, and biomedical sectors. To
provide the best description of the phenomena under
consideration, a number of statistical models have been
introduced and implemented. Among these models, the IW
distribution has received considerable attention. (erefore,
numerous modifications of the IW distribution have been
proposed and applied. In this paper, we introduced five
different modifications of the IW distribution for modeling
real-life data sets. Finally, the new modified forms of the IW
distribution were applied to real-life data taken from the
biomedical sector. (e practical application showed that the
NG-IW distribution was the best candidate model for an-
alyzing the COVID-19 data set.

In the future, we are motivated to implement the LT-IW,
FRL-IW, WTX-IW, NG-IW, and APTE-IWmodels in other
applied sectors. Furthermore, the bivariate extensions of the
LT-IW, FRL-IW, WTX-IW, NG-IW, and APTE-IW models
can also be introduced to deal with the bivariate data sets.
Bayesian estimation of the LT-IW, FRL-IW, WTX-IW, NG-
IW, and APTE-IW models using different types of censored
samples can be discussed [39].
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