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*is paper investigates the distributed consensus problem of general linear multiagent systems (MASs) with communication
noises under fixed and Markovian switching topologies, respectively. Each agent can obtain full state of itself and receive its
neighbors’ state with noises, where intensities of noises are vector functions of relative states of agents. Bearing in mind the above
constrains, a consensus protocol is proposed, where the gain matrix is obtained by the algebraic Riccati equation and the coupling
strength is restricted in a given interval. By using the stochastic stability theorem, we show that mean square consensus is achieved
in fixed topology case and switching topologies case, respectively. Furthermore, an estimation of the exponential convergence rate
of consensus is given explicitly. Finally, simulation examples are given to show the correctness of the proposed results.

1. Introduction

In system and control community, the coordination prob-
lem of MASs is one of the most concerned hotspots in the
past decade, which has shown its potential in real-world
applications, such as distributed sensor networks, smart
grids, and multirobot formation [1–4]. Consensus is a
fundamental issue in the control problem of MASs, which
refers to designing a protocol such that all agents converge to
a common value. Research results on the consensus problem
can be extended to solve many coordination problems of
MASs, including flocking, swarming, and rendezvous for-
mation [5–7].

In real world, agents and their connections are often
affected by noises, which could sometimes affect the per-
formance or even destroy the stability of systems [8, 9].
Generally, noises can be divided into two categories: additive
noise and multiplicative noise, and both kinds of noises have
been considered in the study of MASs [10]. For additive
noise, which destroys the signal in the form of superposition,
its intensity is determined by external factors, such as

lightning, and pulse. In 2009, Huang and Manton intro-
duced the stochastic approximation technique to design a
decreasing nonnegative gain function c(t), which could
attenuate the impact of additive noise while letting theMASs
achieve consensus [11]. *e idea of nonnegative gain
function was then utilized by some scholars to investigate
MASs with additive noise. For example, Li et al. proposed
sufficient and necessary conditions for the decreasing
nonnegative gain function to achieve asymptotic unbiased
mean square average consensus [12]. Based on these results,
leader-following consensus problem was solved in [13],
containment control problem was studied in [14], and bi-
partite consensus problem was concerned in [15]. For
multiplicative noise, its intensity depends on states of the
system, e.g., measuring relative states through analog fading
channels [16]. In [17], by using the small gain theorem,
Zhang et al. developed necessary and sufficient conditions
for mean square consensus and almost sure consensus for
MASs. By using the stochastic stability theorem, heteroge-
neous MASs were studied in [18], and MASs with non-
identical channel fading were analyzed in [19]. In practical
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applications, the two kinds of noise may coexist in MASs
[20]. Motivated by this phenomenon, MASs with both
additive and multiplicative noises were considered in [10]
for the consensus problem, and in [21], for the containment
control problem. However, in the above studies, the con-
cerned MASs were in first- or second-order dynamics under
fixed topology.

Typically, agents are connected through a network,
which is not only affected by noises, but also has problems
of link failure or abrupt change, etc. [22–25]. Many sig-
nificant results on MASs under switching topologies have
been addressed [26–29]. It can be found that the switching
signals in many existing results were subject to deter-
ministic time sequences [30–32]. However, due to un-
predictable changes in the communication networks, it is
more significant to study the case that topologies switch
randomly [33]. In [34], consensus problem of double-in-
tegrator MASs was studied under Markovian switching
topologies. In [35, 36], consensus problems were investi-
gated for MASs with semi-Markovian switching topologies.
In addition, there are reports involving Markovian
switching topologies and communication noises at the
same time. For example, in [13], Wang et al. considered the
mean square and almost sure consensus problem for MASs
with Markovian switching topologies and additive noises.
*e results in [13] were then extended in [37], where
sufficient and necessary conditions were obtained for
single-integrator MASs with Markovian switching topol-
ogies and additive noises.

Inspired by the above discussions, mean square con-
sensus of general linear MASs with communication noises
under Markovian switching topologies is investigated in this
paper. Consensus protocol will be designed by combining
the stochastic stability theory, the Riccati equation, and some
theories on matrix. *e contributions of this paper are
summarized as follows:

(i) Consensus problem of general linear MASs with
communication noises is studied. *e considered
noises are induced by the communication among
agents, which is a distinct feature of networked
systems. Moreover, the general linear MASs include
some results concerned with first-order MASs as
special cases [37].

(ii) To capture the time-varying communication among
agents in real, we extend the consensus problem by
studying the switching topologies case. We assume
that the switching signals are subject to a Markovian
process, under which we merely require the com-
bined topology rather than each underlying topology
being connected.

We organize the rest of the paper in the following way.
Section 2 contains some useful preliminaries and a for-
mulation of the problem. In Sections 3 and 4, consensus
results for fixed and Markovian switching topologies under
communication noises are provided. Section 5 is devoted to
simulation examples. Finally, a conclusion of the paper is
given in Section 6.

*e following notations will be used.We define a column
vector that is all ones as 1, the N-dimensional column vector
with the i th element being 1 and others being zero as ηN,i,
the matrix (1/N)11T as JN, and the N-dimensional identity
matrix as IN. For any given square matrix A ∈ RN×N, define
λmin(A) � min1≤i≤N |λi(A)| . Denote Ib

a � a, a + 1, . . . , b{ }

for a< b. E[·] denotes the mathematical expectation.

2. Problem Formulation

2.1. Graph /eory. Let G � (V,E,A) be an undirected
graph, where V � 1, 2, . . . , N{ } is the set of nodes; E⊆V ×

V is the set of edges. Node i means agent i. An edge of G is
denoted by (i, j), and it implies that the information can be
exchanged between node j and node i. *e adjacency matrix
A � [aij] ∈ RN×N represents the structure of the graph,
where aij � 1 if (i, j) ∈ E, otherwise, aij � 0. Assume that
there are no self-loops, i.e., aii � 0 for all i ∈ V. *e set of
neighbors of agent i is denoted as Ni � j|(i, j) ∈ E . Let
D � diag d1, d2, . . . , dN , where di � j∈Ni

aij is the degree
of agent i. *e Laplacian matrix L � [lij] ∈ RN×N of G is
defined to be L � D − A.

For a positive integer m, the union of m graphs G1 �

(V,E1,A1), . . . ,Gm � (V,Em,Am) is denoted by
∪mr�1G

r � (V, ∪mr�1E
r, ∪mr�1A

r). Let G(σ(t)) � (V, E(σ(t)),

A(σ(t))) be the interaction topology of agents at time t,
where the edge set E(σ(t)) and the adjacency matrix
A(σ(t)) are time varying.

Lemma 1 (see [26]). If G is a connected graph that is un-
directed, L ∈ RN×N is the corresponding Laplacian matrix,
and its eigenvalues can be ordered in ascending order as

0 � λ1(L)< λ2(L)≤ · · · ≤ λN(L), (1)

and

min
1Tx�0,x≠ 0

x
T
Lx

‖x‖
2 � λ2(L), (2)

where λ2(L) is called the algebraic connectivity of G.

2.2.ProblemFormulation. In this section, we considerMASs
with the following dynamics:

_xi(t) � Axi(t) + Bui(t), i ∈ IN1 , (3)

where xi(t) ∈ Rn is the state of the i th agent and ui(t) ∈ Rn

is the control input. A and B are given constant matrices
with appropriate dimensions satisfying that (A, B) is
controllable.

Remark 1. Comparing with first-order systems, states in
general linear system (3) are coupled through matrix A and
the control ui is not placed on the state xi directly. It can be
found that the general linear MASs (3) include the first-
order MASs in [37] as special cases. *erefore, in this paper,
we require (A, B) to be controllable and employ the Riccati
equation to obtain a feasible gain matrix. *en, a kind of
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Lyapunov function, which differs from that in integrator
cases, will be designed to prove the stability of the consensus
error.

In real MASs, each agent receives information from its
neighbors with random perturbations. Hence, when agent i

communicates with its neighbor agent j, agent i receives the
state of agent j in the following form:

yji(t) � xj(t) + gij xi(t) − xj(t) ξij(t), (4)

where yji(t) ∈ Rn denotes the measurement of xj(t) by
agent i and ξij(t) ∈ R denotes the communication noises.
*e noise intensity function gij(·) is a mapping from Rn to
Rn. *ere exists a constant ε> 0, such that ‖gij(x)‖≤ ε‖x‖,
i � 1, . . . , N, andj ∈ Ni, for any x ∈ Rn. *e noise process
ξij(t), i, j � 1, . . . , N satisfies 

t

0 ξij(s)ds � wij(t), t≥ 0,
where wij(t), i, j � 1, . . . , N is an independent Brownian
motion.

Due to the existence of communication noises, the
consensus protocol is designed as

ui(t) � cK 
N

j�1
aij yji(t) − xi(t) , (5)

where c is the coupling strength and K is the gain matrix to
be designed later.

In this work, we also consider the consensus of MASs (3)
over randomly switching topologies and the consensus
protocol is modified as follows:

ui(t) � cK 
N

j�1
aij(σ(t)) yji(t) − xi(t) , (6)

where aij(σ(t)) is the element of A(σ(t)) and G(σ(t)) �

V,E(σ(t)),A(σ(t)) will randomly switch among m dis-
tinct topologiesG(σ(t)) ∈ G1, . . . ,Gm , andG(σ(t)) � Gr,
if and only if the random variable σ(t) � r ∈ M � 1, . . . , m{ }.
*e switching process σ(t), t≥ 0{ } is governed by a time-
homogeneous Markov process, whose state space corre-
sponds to all possible topologies.

For MASs (3) and distributed control protocols (5) or
(6), the following questions need to be addressed. (i) Under
what conditions can the mean square consensus be
achieved? (ii) How to design the control gain matrix K and
coupling strength c?

In this paper, the common probability space for all
random variables is denoted by (Ω, F ,P), where Ω is the
sample space of elementary events. F is the σ-field of subsets
of the sample space andP is the probability measure on F . Let
the infinitesimal generator of the continuous-time Markov
process σ(t), t≥ 0{ } be Ξ � [qrs]m×m, which is given by

P σ(t + h) � s|σ(t) � r{ }

�

qrsh + o(h), if σ(t)jumps from r to s,

1 + qrrh + o(h), otherwise,

⎧⎪⎨

⎪⎩

(7)

where qrs is the transition rate from state r to state s with
qrs ≥ 0, if r≠ s, qrr � − s≠rqrs, and o(h) denote an infini-
tesimal of a higher order than h, that is,
limh⟶0(o(h)/h) � 0. Note that Ξ is a transition rate matrix,
whose row summation is zero and all off-diagonal elements
are non-negative.

Definition 1. *eMASs (3) with proper designed consensus
protocol are said to achieve mean square consensus if for any
given xi(0)

lim
t⟶∞

E xi − xj

�����

�����
2

� 0, ∀i, j. (8)

Remark 2. Mean square stable is generally used to reflect the
stability of a stochastic system. Due to the existence of
noises, the overall MASs become stochastic systems.
*erefore, the mean square consensus defined above is
suitable to describe the consensus of the concerned MASs
with noises.

3. Consensus on Fixed Topology

Substituting consensus protocol (5) into (3), we get

dx(t) � IN ⊗A(  − (cL⊗BK)( x(t)dt

+ c 
N

i,j�1
aij × ηN,i ⊗ BKgij xi(t) − xj(t)   dwij(t).

(9)

As (A, B) is controllable and let matrices Q ∈ Rn×n be
positive definite. *e control gain matrix K is designed as

K �
1
2
B

T
P, (10)

where P is the unique positive definite solution to the fol-
lowing algebraic Riccati equation (ARE)

0 � A
T
P + PA + Q − PBB

T
P. (11)

Theorem 1. For the undirected connected graph, the MASs
(3) with communication noises achieve mean square con-
sensus under consensus protocol (3), if K is designed as (10)
and c satisfies

1
λ22(L)
≤ c

2 <
Nλmin(Q)

2(N − 1)ε2λmax(L)λmax K
T
B

T
PBK 

. (12)

Proof. Denote e(t) � ((IN − JN)⊗ In)x(t); we have

de(t) � IN ⊗A(  − (cL⊗BK)( e(t)dt

+ c 

N

i,j�1
aij IN − JN( ηN,i ⊗ BKgij ei(t) − ej(t)   dwij(t).

(13)
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According to the definition of ηN,i and JN, we can get
ηT

N,i(IN − JN)ηN,i � (N − 1)/N. Let V(t) � eT(t)(IN ⊗
P)e(t). Using It o’s formula [38], we have

dV(t) � e
T
(t) IN ⊗A(  − (cL⊗BK)( 

T
IN ⊗P( 

+ IN ⊗P(  IN ⊗A(  − (cL⊗BK)( e(t)dt

+ M1(t) +
N − 1

N
c
2



N

i,j�1
a
2
ijg

T
ij ei(t) − ej(t) 

× K
T
B

T
PBKgij ei(t) − ej(t) dt

≤ e
T
(t) IN ⊗A(  − (cL⊗BK)( 

T
IN ⊗P( 

+ IN ⊗P(  IN ⊗A(  − (cL⊗BK)( e(t)dt

+ M1(t) +
N − 1

N
c
2λmax K

T
B

T
PBK 

× 

N

i,j�1
a
2
ijg

T
ij ei(t) − ej(t) gij ei(t) − ej(t) dt,

(14)

where M1(t) � 2eT(t)c 
N
i�1 

N
j�1 aij((IN − JN)ηN,i ⊗

PBKgij(ei(t) − ej(t)))dwij(t).
By using K in (10) and the inequality in (12), we have

e
T
(t) IN ⊗A(  − (cL⊗BK)( 

T
IN ⊗P( 

+ IN ⊗P(  IN ⊗A(  − (cL⊗BK)( e(t)dt

� e
T
(t) IN ⊗ A

T
P + PA  − cL⊗ PBB

T
P  e(t)dt

≤ e
T
(t) IN ⊗ A

T
P + PA  − cλ2IN ⊗PBB

T
P e(t)dt

≤ e
T
(t) IN ⊗ A

T
P + PA − PBB

T
P  e(t)dt

� − e
T
(t) IN ⊗Q( e(t)dt.

(15)

Combining (14) and (15), we have

dV(t) � − e
T
(t) IN ⊗Q( e(t)dt + M1(t)

+
N − 1

N
c
2λmax K

T
B

T
PBK 

× 
N

i,j�1
a
2
ijg

T
ij ei(t) − ej(t) gij ei(t) − ej(t) dt

≤ − λmin(Q)‖e(t)‖
2
dt + M1(t)

+ 2
N − 1

N
c
2ε2λmax(L)λmax K

T
B

T
PBK ‖e(t)‖

2
dt

� − ρ‖e(t)‖
2
dt + M1(t),

(16)

where

ρ � λmin(Q) − 2
N − 1

N
c
2ε2λmax(L)λmax K

T
B

T
PBK > 0.

(17)

Finally, we have

d‖Ee(t)‖
2

dt
≤

− ρ
λmin(P)

‖Ee(t)‖
2
. (18)

*en by the comparison theorem [39], we get

E‖e(t)‖
2 ≤ ‖e(0)‖

2 exp
− ρ

λmin(P)
t , (19)

leading to limt⟶∞E‖xi(t) − xj(t)‖2 � 0. *is completes the
proof. □

Remark 3. Comparing with existing works concerning with
noises, general linear MASs with communication noises are
considered in this paper. For MASs with additive noises,
stochastic approximation technique was widely adopted,
which resulted in time-varying coupling strengths [12, 21].
In this paper, by employing Riccati equation and It o’s
formula, the coupling strength in the consensus protocol is
time-invariant, but restricted in a given interval. For some
works dealt with communication noises, the concerned
MASs were in first-order dynamics, which were special cases
of this paper [37].

4. Consensus on Markovian
Switching Topologies

In this section, we will analyze consensus of MASs (3) on
Markovian switching topologies.

Theorem 2. Assume that the union graph of Gr, 1≤ r≤m{ }

is connected, the MASs (3) achieve mean square consensus
under consensus protocol (6), if K is designed as (9) and c

satisfies

1
λ22 Lun( 

≤ c
2 <

Nλmin(Q)

2(N − 1)ε2λmax Lun( λmax K
T
B

T
PBK 

. (20)

Proof. *e dynamics of error system in switching topologies
case is

de(t)

dt
� IN ⊗A(  − (cL(σ(t))⊗BK) e(t)

+ c 
N

i,j�1
aij(σ(t)) IN − JN( ηN,i

⊗ BKgij ei(t) − ej(t)  ξij(t).

(21)

In this case, we choose a Lyapunov function for σ(t) � r

as

Vr(t) � E e
T

(t) IN ⊗P( e(t)1 σ(t)�r{ } , ∀r ∈ M, (22)
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where σ(t) admits a unique stationary distribution
π � [π1, . . . , πm]T. *en the Lyapunov function V(t) for the
overall system can be expressed as V(t) � 

m
r�1 Vr(t).

By using the stationary distribution π, the expectation of
V(e(t), σ(r)) becomes

E[V(e(t), σ(r))] � 
m

r�1
E Vr(e(t), σ(r)) πr. (23)

By employing the It o’s formula, we have

dV(t)

dt
� 

m

r�1
πr

dVr(t)

dt
� 

m

r�1
E e

T
(t) IN ⊗ A

T
P + PA  e(t) πr − 2c 

m

r�1
E e

T
(t) Lr ⊗PBK( e(t) πr

+ c
2N − 1

N


m

r�1
E 

N

i,j�1
a
2
ij(σ(r))g

T
ij ei(t) − ej(t)  × K

T
B

T
PBKgij ei(t) − ej(t) ⎡⎢⎢⎣ ⎤⎥⎥⎦πr

+ 
m

r,s�1
πsqrsVs(t)≤E e

T
(t) IN ⊗ A

T
P + PA  e(t)  − 2cE e

T
(t) Lun ⊗PBK( e(t) 

+ 2c
2N − 1

N
λmax K

T
B

T
PBK ε2

× E e
T
(t) Lun ⊗ In( e(t) ,

(24)

where Lun � 
m
r�1 πrLr. Similar to (10), we have

e
T
(t) IN ⊗ A

T
P + PA   − 2c Lun ⊗PBK(  e(t)

≤ e
T
(t) IN ⊗ A

T
P + PA   − 2cλ2 Lun(  IN ⊗PBK(  e(t)

≤ e
T
(t) IN ⊗ A

T
P + PA   − 2 IN ⊗PBK(  e(t)

� e
T
(t)IN ⊗ A

T
P + PA − PBB

T
P e(t)

� − e
T
(t) IN ⊗Q( e(t).

(25)

By (24) and (25), it yields

dV(t)

dt
� − E e

T
(t) IN ⊗Q( e(t)  + 2c

2ε2
N − 1

N

× λmax K
T
B

T
PBK E e

T
(t) Lun ⊗ In( e(t) 

≤ − λmin(Q) + 2c
2ε2

N − 1
N

λmax Lun( 

× λmax K
T
B

T
PBK E‖e(t)‖

2

� − ϱE‖e(t)‖
2
,

(26)

where ϱ � λmin(Q) − 2c2ε2N − 1/Nλmax(Lun)λmax
(KTBTPBK)> 0.

Similar to (16), we get

E‖e(t)‖
2 ≤ ‖e(0)‖

2 exp
− ϱ

λmin(P)
t . (27)

*is completes the proof. □

Remark 4. In light of the assumption on the vector function
gij, the intensity of noises gets weaker while achieving
consensus. Specifically, when the norm of relative state
between two agents decreases, the intensity of noise in their
communication channel becomes smaller. *erefore,
compared with additive noises, the multiplicative noises
with intensities depending on relative states can better
describe noises in the analog fading communication
channel. If all of the communication noises gij(·) ≡
0(i, j � 1, . . . , N), our result can be degenerated into the
noise-free case [22].

Remark 5. Compared with existing studies, we consider
Markovian switching topologies and communication
noises for general linear MASs. In this case, the impact of
noises on the MASs is changing while the underlying to-
pology is switching, which brings challenges for the
analysis of the consensus problem. Compared with the
fixed topology case, we only require the combined topology
to be connected, which relax the assumption on the to-
pology at each instant.

5. Simulation Example

In this section, we present two numerical examples to verify
our theoretical results. We consider a MAS of 6 agents under
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fixed topology and under switching topology in Examples 1
and 2, respectively.

Example 1. Considering a MAS with the following
dynamics:

_xi(t) � Axi(t) + Bui(t),

A �

− 1 0 − 1

0 0 − 1

0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, B �

1 1 0

0 1 1

0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(28)

*e underlying communication topology is depicted in
Figure 1. *e corresponding Laplacian matrix is

L �

2 − 1 − 1 0 0 0

− 1 1 0 0 0 0

− 1 0 3 − 1 0 − 1

0 0 − 1 2 − 1 0

0 0 0 − 1 2 − 1

0 0 − 1 0 − 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

We choose

Q �

1 0 1

1 1 0

0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (30)

According to ARE (10), we have

K �

0.2061 − 0.07046 0.1090

0.0342 0.5317 0.3632

0.0992 0.3666 − 0.2323

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (31)

Let gij(xi(t) − xj(t)) � ε(xi(t) − xj(t)), ε � 0.2, and by
simple calculation, we have c � 2.3, which ensures the suffi-
cient condition (9) in*eorem 1.*e noises here are subject to
Brownian process and the simulation is conducted by the
Euler–Maruyama method. Under these settings, the MASs
achieve consensus as shown in Figure 2. According to Figure 2,
we find that the process of achieving consensus is chartering
due to the existence of communication noises.We generate 100
sample paths to simulate themean square average, and Figure 3
shows the system achieves mean square consensus.

Example 2. Consider a MAS of 6 agents with the interaction
topology randomly switches among G1, G2, and G3 in
Figure 4. *e Laplacian of the combined graph is
Lun � ± 

m
r�1 πrLr. *e transition rate matrix is chosen as

Ξ �

− 6 2 4

3 − 4 1

2 1 − 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (32)

Let gij(xi(t) − xj(t)) � ε(xi(t) − xj(t)), ε � 0.3, and by
simple calculation, we have c � 2, which ensures the suffi-
cient condition (19) in*eorem 2. Figure 5 shows the sample
paths of 6 agents under a known generator matrix. After a

realization of randomly switching topologies, the consensus
is reached. Figure 6 shows the switching signals, which are
subject to a Markovian process. Compared with Example 1,

1
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Figure 1: *e fixed topology of Example 1.
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Figure 2: States of 6 agents of Example 1.
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Figure 3: Mean square errors E|xi(t) − x1(t)|2 of Example 1.
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it takes much longer for the switching topologies case to
achieve consensus. We generate 100 sample paths to sim-
ulate the mean square average, and Figure 7 shows the MAS
achieves mean square consensus.

6. Conclusions

Motivated by the uncertainties in real communication
networks, in this article, we study the consensus problem
of the general linear continuous-time MASs with com-
munication noises. Each agent can obtain full state of itself
and receive its neighbors’ state information with noises,
whose intensity is a vector function of agents’ relative
states. Research is conducted on both fixed topology and
switching topologies, respectively. Mean square consen-
sus is proved by using stochastic analysis and algebraic
graph theory, and an estimation of the exponential
convergence rate of consensus is given. For future re-
search on this topic, the case of finite time consensus will
be taken into account.
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