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Order picking, which is collecting a set of products from different locations in a warehouse, has repeatedly been described as one of
the most laborious and time-consuming internal logistic processes. Each order is issued to pick some products located at given
locations in the warehouse. In this paper, we consider an order picking problem, in which a number of orders with different
delivery due dates are going to be retrieved by a limited number of order pickers in multiperiods such that the total tardiness is
minimized. ,e aim is to determine a retrieval plan in terms of order batching and order picker multitrip routing as decision
variables. Besides, products are arrived and replenished at the predetermined locations at different periods. ,erefore, products
sitting in those locations should be delivered soon to provide empty rooms for replenishment. A mixed integer linear pro-
gramming formulation is proposed for this new problem. ,e model is optimally solved for small-size problems. For larger
instances, grouping metaheuristic algorithms are proposed based on particle swarm optimization and the league championship
algorithm that use group-based operators to generate reasonable batches of orders. Improvement heuristics are designed as well.
,e performance of theMILP formulation andmetaheuristic algorithms is analyzed for different problem instances whose designs
are based on real data gathered from an auto parts warehouse. Results indicate that our algorithms can stably solve large instances
of the problem in a reasonable time.

1. Introduction

Supply chain management aims to efficiently and effec-
tively handle all logistics functions and business activities
between companies, as well as meet important supply chain
goals, including decreasing costs, improving customer
satisfaction, optimal usage of resources, and expanding
income/profit and production value. ,erefore, the

objectives of warehouses and distribution centers are im-
portant because they are one of the main parts of the supply
chain [1, 2]. Warehouses are required to improve the ability
of advanced logistics to meet the responsiveness expected
by customers [3]. On the other hand, warehouses are
important components of logistics systems, and among the
logistic costs, 20% of the total operational costs are due to
warehouse operations [4, 5]. ,e main activities related to a
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warehouse are purchasing, inventory and storage man-
agement, picking, distribution processing, shipping, and
delivery. Among these activities, picking is considered as
one of the basic operations with the highest labor cost [6].
,e decision happens in the picking system at three levels,
such as strategic, tactical, and operational [5, 7]. Order
picking deals with the retrieval of products from their
storage locations to respond to customer requests [8].
Furthermore, it is often analyzed at the operational level,
and the main issues at this level are batching, routing,
workforce level, workforce allocation, and job assignment.
,erefore, the development of efficient picking methods
and the optimization of picking operations have special
effects on the overall operational efficiency of the ware-
house. Most of the order picking operations are practically
operated according to the picker-to-parts principle and
with the most share of manual work, mainly because
humans can more simply react to changes happening in the
order picking process compared to automated machines
due to their cognitive and motor skills [9]. Two aspects are
important in order picking, namely, storage optimization
(for picking) and picking optimization, which occurs by
responding to customer orders by simulating batching
routes and intended times in this regard.

Nowadays, researchers seek to combine the operational-
level activities of the warehouse with each other and other
levels [7]. On the other hand, maintenance is an important
subject in the production industry. Most papers assume
pickers are available at all times while this action does not
happen. Pickers during planning periods for various factors
such as preventive maintenance, random failure, and va-
cation are unavailable for working. ,erefore, the possibility
of picker unavailability should be considered during the
planning. ,is fact constitutes one of our assumptions when
describing the intended problem.

,e warehouse operational planning should be in such
a way that it considers the products’ entrance and leave
the warehouse over time. ,us, the plan is a kind of a
multiperiod type in practice. To our best knowledge, this
issue, which frequently happens in warehouses, has not
been investigated in the literature. In this research, we
investigate the multiperiod planning of an order picking
system, in which each order can be picked up in one of the
operating periods, and products should be delivered by
their due date. Warehouses should have replenishment
capability and a holding place for the delivered orders that
would be filled with other orders as time goes by. Ac-
cordingly, for the first time, this study pays attention to
the replenishment issue in the field of operational deci-
sion-making in order-picking systems (OPSs).

,e problem has an application in auto parts ware-
houses, for which

(i) Multitrip picker routing is enforced due to the
limitation in the number of pickers;

(ii) Multiperiod planning makes sense due to the ex-
istence of lag times (in days) to pick, pack, and
deliver the orders;

(iii) Shelve management is a crucial task because the
delivery timeline of the orders should be in such a
way that it provides shelve space for the arriving
products;

(iv) Order management should be in such a way that it
prohibits the assembly line stops and the cost im-
posed. For such a system, tardiness-based objective
functions make more sense than cost-based ob-
jective functions.

A new mathematical model is developed for the OPS
problem under multiperiod and multitrip assumptions, with
the possibility of product replenishment (MPMTR). To solve
larger-scale problems, grouping metaheuristic algorithms
are proposed based on the problem structure, and their
effectiveness is investigated using numerical experiments.
Two metaheuristic algorithms, namely, the league cham-
pionship algorithm (LCA) [10–18] and particle swarm op-
timization (PSO), are heavily modified and applied to the
problem.,en, the solutions of these methods are compared
with the solutions obtained using Gams/Cplex software for
small-, medium-, and large-scale problems in terms of time
and optimality.

,e contribution of this research can be bulletized as
follows:

(i) Integration of the order batching and multitrip
picker routing decisions with the possibility of
product replenishment in a multiperiod order
picking system to minimize total order tardiness.
,e notion of product replenishment planning in
a multiperiod order picking system is introduced
for the first time in the current study. Besides,
minimizing total order tardiness has not been
used in the previous research carried out on OPS
planning.

(ii) Developing a mixed integer linear programming
(MILP) formulation for the problem via introducing
new constraints enforced by the notion of the
multiperiod order retrieval and replenishment
planning and the new objective function, i.e., the total
order tardiness.

(iii) Adapting the particle swarm optimization (PSO)
and league championship algorithms (LCA) and
equipping them with constructive heuristic to
generate feasible solutions. ,ese algorithms have
been heavily adapted to be responsive to the
structure of the grouping problems to which the
problem under consideration belongs.

,e remaining sections of the paper are organized as
follows: Section 2 reviews the related research. ,e
MPMTR problem is described and mathematically for-
mulated in Section 3. ,e proposed metaheuristic algo-
rithms are presented in Section 4. Section 5 is devoted to
evaluating the efficiency of the algorithms and compu-
tational experiments. Conclusions and future research
directions are provided in Section 6.
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2. Literature Review

2.1. Strategic, Tactical, and Operational Decision in OPSs.
Supply chain management consists of several key concepts
such as raw materials, suppliers, production, warehousing,
transportation, and correctly identifying its boundaries for
efficient management, which is a necessary stage.Warehouse
management is an initial matter for logistics companies.
,erefore, warehouses are one of the main parts of the
supply chain. Various decisions help obtain better yield in a
warehouse and are divided into three strategic, tactical, and
operational levels [7]. In strategic decisions, the focus should
be on the layout of the warehouse, the positioning of every
zone, the storage, and policy picking. Tactical decisions can
consist of the location of products based on their predicted
demands in the storage and picking zone. At the operational
level, the batches of orders and order-picking routes must be
solved optically [7, 19]. In the literature, it talks more about
two kinds of warehouses: manual and automated ware-
houses [20]. ,e manual warehouse is of superiority
worldwide because it requires low cost for investment. For
example, nearly 80% of all OPSs in western Europe are
manual types [5, 20–22]. Order picking is the mechanism for
recovering order items from their storage locations to ac-
complish customer orders [5]. It has been named as one of
the most labor- and time-comprehensive actions in ware-
houses, typically consisting of more than 50% of the op-
erating costs of warehouses [21–23]. ,e OPS can be
classified into five basic categories by empirical research, and
De Koster et al. [5] accepted this issue with a different view.
Figure 1 shows a categorization path map of this system
[5, 24].

In manual order picking, various subjects exist, in-
cluding batching, routing, sequencing, congestion, and
different layouts for the warehouse. For example, there are
high- and low-level warehouses [4, 5, 7]. ,us, this study
mainly aims to analyze problems that are related to picking
optimization and to combine operational-level decisions for
replying optimization to customer demands in manual order
picking.

2.2.Decision inLow-Level Picker-to-Parts. ,erefore, the rest
of the literature review consists of themain subjects in order-
picking decisions in low-level picker-to-parts because in-
vestigators have approximated that nearly 80% of all order-
picking warehouses are managed by a human [5, 22].
Petersen [25] investigated six heuristics strategies for routing
pickers in a warehouse, including transversal strategy, return
strategy, midpoint strategy, the largest gap, composite, and
optimal routing. Optimal routing is the best strategy for
routing. Petersen and Schmenner [26] indicated that order
picking has a vital role in the supply chain, and warehousing
has the highest cost in this process. ,ey analyzed the in-
teraction between order-picking policies (OPP) and storage
assignment strategies. Petersen and Aase [27] evaluated
three main actions in the warehouse (e.g., picking, routing,
and storage policies) and found that the batching of orders
results in the best savings, particularly when smaller order

sizes are common. Various criteria affect the optimal de-
cision in the warehouse, including the type, size, number of
depot locations, order picking equipment, picklist size, and
the storage rules of the warehouse [27, 28]. ,e layout is one
of the basic factors that affect order picking. Jan and De
Koster [28] first attempted to analyze the order routing
picker problem in a three-aisled warehouse and inform a
dynamic programming algorithm for solving the order-
picking tour of minimal length. Most studies in picker-to-
parts regarding the layout have focused on low-level picking,
although some efforts exist concerning high-level picking.
For example, Chabot et al. [29] defined a mathematical
model to respond to customer orders in a real three-di-
mensional warehouse and solve this capacity vehicle routing
problem using large neighborhood search along with Branch
and Bound algorithms, and then compared these algorithms
against each other to pick orders in that company.

2.3. Integrated Decisions at the Operational Level in the
Warehouse. Wäscher [30] considered picker-to-parts sys-
tems for reducing costs in the warehouse and analyzed
operational decisions such as item location, order batching,
and picker routing, especially in order and batching. He
presented some solutions in this regard (e.g., priority rule-
based, seed, and savings algorithms). Traditional ware-
housing focuses on improving efficiency operational deci-
sions within the warehouse separately, while Won and
Olafsson [31] considered both issues of batching and picking
for optimally answering customer requests and showed these
issues use the bin-packing problem (BPP) and the TSP since
they are both NP-hard problems, thus order picking is an
NP-hard problem. ,ere are some efforts to separately at-
tend to the operational-level decisions. For instance, Ho and
Tseng [32] presented some rules such as seed- and ac-
companying-order selection for batching by constant
routing policies. Moreover, Tsai et al. [23] used the multiple-
genetic algorithm (GA) method consisting of GA_BATCH
and GA travelling salesman problem (TSP) algorithms. ,e
optimal batch picking system is established by considering
travel distance costs and the earliness and tardiness penalty.
Similarly, Henn et al. [33] introduced two metaheuristic
approaches for solving order batching, including iterated
local search and ant colony optimization. ,ey reached
optimal batching by paying attention to theminimum length
of the tour, so the focus was on batching rather than routing.
Likewise, Henn et al. [34] especially analyzed order batching
as one main action in order picking and reviewed some
solutions among metaheuristic algorithms (local and tabu
search and population-based approaches). ,ey further
studied dynamic (time window batching) and static (due
dates) batching. Kulak et al. [35] also integrated order
batching and routing for multi-aisle warehouses (rectan-
gular, two-block, and low level) and used a novel tabu search
algorithm integrated with a novel clustering algorithm to
solve this joint at the operational level of the warehouse. Pan
et al. [36] reported that most studies refer to warehouses
with one picker, while one encounters several pickers in real
issues, creating the issue of congestion, which raises the
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waiting time. ,us, they thought to minimize the waiting
and travel time for order picking. To solve an integrated
sequencing and batching model, Henn [8] used variable
neighborhood descent and variable neighborhood search by
focusing on the multipicker in a warehouse. Oncan [37] first
introduced mixed-integer linear programming for three
routing policies (i.e., traversal, return, and midpoint poli-
cies) and solved them by the local search algorithm with the
Tabu threshold, the accuracy and correctness of which have
been proven previously. Chen et al. [38] provided an in-
tegrated nonlinear and mixed-integer linear model for
categorizing, batching, sequencing, and routing orders in
order-picking problems that solve these three issues si-
multaneously. To solve this model, a heuristic method was
used, including an integrated heuristic algorithm based on
genetic (for batching and sequencing) and ant colony for the
routing problem. In another study, Scholz andWäscher [20]
evaluated iterated local search for joint batching and routing.
Similarly, Valle et al. [39] optimally solved the joint order
batching and picker routing problems for small size prob-
lems (means the number of orders) by valid inequalities
(cut), and it was noticeable that up to 5000 orders, batching
was solved by the heuristic method but the routing was
solved optimally. Chen et al. [40] are among the ones who
attempted to accept the assumption of split-off orders and
introduced a nonparametric heuristic method (i.e., green
area) for online order batching. Additionally, Menéndez
et al. [41] applied variable neighborhood descent for

integrating batching and routing. However, Scholz et al. [42]
were the first to integrate all decisions at the operational level
by composition batching, job assignment, and routing and
to use a variable neighborhood descent algorithm for large
instances. Žulj et al. [43] also applied tabu search algorithms
in combination with an adaptive large neighborhood search.
,ey reported that order batching is a nondeterministic
polynomial (NP)-hard problem. ,eir hybrid algorithm was
able to solve large-scale instances. Van Gils et al. [44] first
examined and described the relations among the storage,
batching, zone picking, and routing planning problems and
indicated that warehouses can reach notable yields by si-
multaneously considering storage, batching, zone picking,
and routing decisions. Furthermore, Moons et al. [45] found
that integrated order picking by the vehicle routing problem
leads to increased service levels (e.g., it allows for decreasing
the time between placing an order and receiving the
products or goods). To outline the main contributions and
approaches of order picking systems with attention to op-
erational decisions, an overview of the operational-level
decisions in the OPS; Table 1 summarizes the relevant re-
search studies.

2.4. 5e Review Research Gap. From the literature review, it
can be concluded that most OPSs related researches mainly
target a picker-to-parts in the manual OPS in the static
picking environment. Moreover, routing methods, limited

Who picks goods?

Who moves in the picking
area? 

Use of conveyor to connect
picking zones 

Policy picking

OPS

Humans Machines

Pickers Goods

No

Pick by
orders/items 

Pickers-to-
parts

Pick by orders Pick by items

Yes

Pick-to-
box

Pick-and-
sort

Parts-to-
picker

Automated
picking

Automation level
Picker-to-parts: pickers move around the warehouse to pick the items.

Parts-to-picker:an automated device brings loads to pickers that are in charge of picking the right quantity required by the orde

Picker-to-box: pickers are assigned to different zones and boxes containing customer orders are movedby means of a 
conveyor through different zones in order to be filled.

Pick and sort: orders are batched and pickers collect items of a certain product to satisfy theorders of a batch, then a conveyor 
brings all items to the sorting area wherethe orders are formed. 

Completely automated: Where humans do not intervene in the process of picking.

Figure 1: Categorization of the OPS.
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Žu
lj
et

al
.

[4
3]

O
BP

—
IP

—
—

A
da
pt
iv
e
la
rg
e

ne
ig
hb

or
ho

od
se
ar
ch

an
d
ta
bu

se
ar
ch

—
✓

—
—

—
—

—

C
he
n
et

al
.

[4
0]

O
O
BA

—
IL
P

H
om

Re
ct
an
gu
la
r,

tw
o
bl
oc
ks
,

lo
w
-le

ve
l

N
on

pa
ra
m
et
ri
c

he
ur
ist
ic

m
et
ho

d,
gr
ee
n
ar
ea

—
—

—
—

—
—

—

M
oo

ns
et
al
.

[4
5]

I-
O
P-
V
RP

—
M
IL
P

H
et

—
Re

co
rd
-t
o-
re
co
rd

tr
av
el

al
go
ri
th
m

✓
✓

—
—

—
—

—

6 Complexity



Ta
bl

e
1:

C
on

tin
ue
d.

Re
fe
re
nc
e

A
bb

re
vi
at
io
n

C
as
e

st
ud

y
M
at
he
m
at
ic
al

m
od

el

H
et
er
og
en
eo
us
/

ho
m
og
en
ou

s
pi
ck
er
s

La
yo
ut

So
lu
tio

n
m
et
ho

d
Ro

ut
in
g

Ba
tc
hi
ng

Jo
b

as
sig

nm
en
t

M
ul
ti-

pe
ri
od

Li
m
ite
d

ac
ce
ss

to
pi
ck
er

M
ul
ti-

tr
ip

ro
ut
in
g

C
on

ge
st
io
n

K
uh

n
et

al
.

[5
2]

IO
BV

RP
G
R
✓

—
—

Re
ct
an
gu
la
r,

th
re
e
bl
oc
k,

lo
w
-le

ve
l

G
en
er
al

ad
ap
tiv

e
la
rg
e

ne
ig
hb

or
ho

od
se
ar
ch

(G
A
LN

S)

✓
✓

—
—

—
—

—

Br
ia
nt

et
al
.

[1
9]

JO
BP

R
✓

—
—

Re
ct
an
gu
la
r,

tw
o
bl
oc
ks
,

lo
w
-le

ve
l

C
ol
um

n
ge
ne
ra
tio

n
✓

—
—

—
—

—
—

,
e
cu
rr
en
t

st
ud

y
M
PM

TR
✓

M
IL
P

H
et

Re
ct
an
gu
la
r,

tw
o
bl
oc
ks
,

lo
w
-le

ve
l

G
ro
up

in
g

al
go
ri
th
m
s

✓
✓

—
✓

✓
✓

—

O
PR

P:
or
de
rp

ic
ki
ng

ro
ut
in
g
po

lic
ie
sO

PP
P:

or
de
rp

ic
ki
ng

po
lic
ie
sp

ro
bl
em

O
pr
m
a:
or
de
rp

ic
ke
rr
ou

tin
g
w
ith

m
id
dl
e
ai
sle

PR
SP

O
P:

pi
ck
in
g
ro
ut
in
g
st
or
ag
e
po

lic
ie
so

rd
er

pi
ck
in
g
O
P:

or
de
rp

ic
ki
ng

Jo
bo

p:
jo
in
t

or
de
rb

at
ch
in
g
an
d
or
de
rp

ic
ki
ng

O
B:

or
de
rb

at
ch
in
g
M
G
-O

B:
a
m
ul
tip

le
-G

A
m
et
ho

d
to

so
lv
e
or
de
rb

at
ch
in
g
D
O
PS

:d
es
ig
n
of

or
de
rp

ic
ki
ng

sy
st
em

M
O
BP

:m
et
ah
eu
ri
st
ic
fo
ro

rd
er

ba
tc
hi
ng

pr
ob

le
m

TS
PH

O
RP

:
tr
av
el
sa
le
sm

an
pr
ob

le
m

he
ur
ist
ic
fo
r
or
de
r
ro
ut
in
g
pr
ob

le
m

O
BS

P:
or
de
r
ba
tc
hi
ng

se
qu

en
ci
ng

pr
ob

le
m

JO
BP

R:
jo
in
to

rd
er

ba
tc
hi
ng

an
d
pi
ck
er

ro
ut
in
g
SA

P-
TD

A
BC

:s
to
ra
ge

as
sig

nm
en
tp

ro
bl
em

w
ith

tr
av
el

di
st
an
ce

an
d
bl
oc
ki
ng

co
ng

es
tio

n
O
PB

_P
C
:o

rd
er

pi
ck
in
g
ba
tc
hi
ng

_
pi
ck
er

co
ng

es
tio

n
O
BS

PM
P:

or
de
r
ba
tc
hi
ng

se
qu

en
ci
ng

pr
ob

le
m

w
ith

m
ul
tip

le
pi
ck
er
s
Io
bs
rp
:i
nt
eg
ra
te
d
or
de
r
ba
tc
hi
ng

,s
eq
ue
nc
in
g,
an
d

ro
ut
in
g
pr
ob

le
m

C
A
N
-O

PP
:c
ap
ac
ity

na
rr
ow

ai
sle

or
de
rp

ic
ki
ng

pr
ob

le
m

O
RP

_M
C
:o
rd
er

ro
ut
in
g
pr
ob

le
m
_
m
ul
ti
pi
ck
er

co
ng

es
tio

n
O
PR

P_
FS

:o
rd
er

pi
ck
in
g
ro
ut
in
g
pr
ob

le
m
-f
uz
zy

se
tO

S-
_J
O
BR

P:
op

tim
al
ly

so
lv
e_

jo
in
to

rd
er

ba
tc
hi
ng

an
d
ro
ut
in
g
pr
ob

le
m

O
BI

RP
:o
rd
er

ba
tc
hi
ng

an
d
in
te
gr
at
ed

ro
ut
in
g
pr
ob

le
m

JO
BA

SR
P:

th
ej
oi
nt

or
de
rb

at
ch
in
g,
as
sig

nm
en
t,
se
qu

en
ci
ng

an
d
ro
ut
in
g
pr
ob

le
m

IS
BZ

PR
PD

:i
nt
eg
ra
tin

g
st
or
ag
e
ba
tc
hi
ng

,z
on

e
pi
ck
in
g,

an
d
ro
ut
in
g
po

lic
y
de
ci
sio

ns
O
O
BA

:o
nl
in
e
or
de
r
ba
tc
hi
ng

an
d
as
sig

ni
ng

I-
O
P-
V
RP

:i
nt
eg
ra
te
d
or
de
r
pi
ck
in
g-
ve
hi
cl
e
ro
ut
in
g
pr
ob

le
m

M
PM

TR
:m

ul
ti-
pe
ri
od

,m
ul
ti-
tr
ip

as
su
m
pt
io
ns

w
ith

th
e
po

ss
ib
ili
ty

of
pr
od

uc
tr

ep
le
ni
sh
m
en
t
IP
:i
nt
eg
er

pr
og
ra
m
m
in
g
M
IP
:m

ix
ed

in
te
ge
r
pr
og
ra
m
m
in
g
N
M
LI
P:

no
nl
in
ea
r
m
ix
ed

in
te
ge
r
pr
og
ra
m
m
in
g.

Complexity 7



capacity of pickers, and, recently, joint order batching with
routing are commonly assumed in these studies. Few studies
have addressed nontypical assumptions/constraints in joint
order batching and routing. Among these assumptions is the
allowance of multitrips for pickers. However, none of them
has assumed multiperiod picking or product replenishment
at an integrated operational level. Accordingly, the current
study attempts to contribute to the following issues:

(i) Unlike most researchers that assume an unlimited
number of pickers, the case of limited pickers, which
is realistic for auto parts warehouses considered
here, enforces multitrip picker routing.

(ii) Multiperiod planning of order picking systems has
not been addressed seriously in the literature.,is is
where, in auto part warehouses, there would be a lag
time (in days) to pick, pack, and deliver the orders.

(iii) When the multiperiod planning comes into prac-
tice, delivery due dates of the orders become crucial.
Specially, auto parts order management should be in
such a way that it prohibits the assembly line stops
and the cost imposed. For such a system, tardiness-
based objective functions make more sense than
cost-based objective functions. In this sense, min-
imizing total order tardiness is assumed rather than
minimizing total costs, which has been considered
in the majority of research studies.

(iv) ,ere is no research effort to consider product
replenishment in multiperiod planning. When or-
ders are delivered, product shelves become empty
and ready to be nested by new products that con-
stitute future orders. Shelve management is a crucial
task in warehousing because the delivery timeline of
the orders should be in such a way that it provides
shelve spaces for the arriving products. ,is issue is
addressed as a product replenishment and is con-
sidered for the first time in the order picking
planning in this research.

We propose a mathematical model and algorithms for
solving the joint order batching and order routing problem
(referred to as order picking in general) under the above
considerations. Given the computational complexity of the
problem, which is forced by the combination of various sub-
problems, we propose two metaheuristic algorithms that do
not only a simple searching mechanism but also fit the
structure of the problem via employing heuristic methods
for the generation of the new solutions.

3. Problem Description and Formulation

As shown in Figure 2, most studies in the literature on the
manual picker-to-part warehouse with a narrow pick aisle
have used a special layout [5]. ,is layout is commonly
investigated in the related literature and practically used by
changing the number of blocks, the length and width of
aisles, cross aisles, depots, and low-and high-level picking,
e.g., [19, 29, 37, 39–41, 48, 51]. ,e warehouse layout
considered in this research is the one typically used in the

auto parts industry. It has been demonstrated in Figure 6.
Order pickers can traverse pick aisles in both directions and
can change the orientation inside the pick aisles. ,e
warehouse is available in cellular form, and all orders
reaching the warehouse are planned for taking place in a
storage position. Pickers use batching policies for order
picking.

Every order constitutes delivery of parts/products pal-
lets, each of which has a certain number and specified
weight. Each picker b picker has a unique capacity. Identical
pickers have an identical weight capacity. It is assumed that
there are multipickers that are available at certain time
intervals within the planning period. Orders have a due date
on which their inclusive products should be delivered. Any
delivery delay is counted in the objective function, which is
minimizing total order tardiness. At the same time, new
products that will arrive are stored in their planned location.
,erefore, the order delivery planning should be in such a
way that there exists empty room for the arrived product. In
other words, the product sitting in the same place should be
delivered as soon as possible, such that their location is being
replenished with the arrived products. Pickers can provide
service multitimes (as a multitrip) when they are present in
the warehouse. ,us, the problem is considered as a mul-
tiperiod-multitrip order picking problem. ,is problem
integrates order batching and picker multitrip routing with
additional constraints on picker availability, picker capacity,
and product replenishment.

3.1. Assumptions. ,e following conditions should be
considered in the model:

(i) ,e objective function is minimizing total tardi-
ness of all picked orders.

(ii) Each order is a parts pallet whose weight may differ
from other pallets.

depot
Length and number
of aisles? 

Cross aisle: Yes or
no? If yes: How
many and where?

Storage blocks:
How many?

Location of
the depot? 

Figure 2:,e layout used in manual order picking systems. Source:
De Koster et al. [5].
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(iii) Order picking planning is of multiperiod type. In
auto part warehouses, there would be a lag time (in
days) to pick, pack, and deliver the order contents.
In this sense, the multiperiod planning is
inevitable.

(iv) ,e number of pickers is limited and given.
(v) ,e picker capacity is limited.
(vi) ,ere is no continuous access to pickers and they

may not be available at some times during the
planning period. ,e availability interval of picker
b in period t is [Sbt, Fbt].

(vii) Pickers serve in a multitrip picking system when
they are available.

(viii) Warehouse cells are capable of being replenished
by new products during the periods.

3.2. Notations andMILP Formulation. ,e sets, parameters,
and decision variables used in the proposed MILP formu-
lation are as follows:

3.2.1. Sets

O Set of orders/products o, opϵO􏽮 􏽯 whit cardinality n.
B Set of pickers {b ϵB}.
L Set of storage location {i, jϵL}. i� 1 indicates the
pickers initial position from which they always start
their trip for picking.
R Set of trips {r, rp ϵR}.
T Set of time periods {t ϵT}.

3.2.2. Parameters

ni ,e number of times that storage location i is
replenished by products.
cb Picker weight capacity.
pb Picker capacity in terms of the number of pallets.
wo Weight of order o.
do Delivery due date of order o.
eij Travel time between location i and j.
sbt Work start time of picker b in period t.
fbt Work finish time of picker b in period t.
Bbt Takes value equal to 1 if picker b is available (even
partly) in period t. Otherwise, it takes 0.
to ,e first time by which order o arrives to the
warehouse.
lo Location of order/product o.
MA positive integer.

3.2.3. Decision Variables

Xobtr Takes value equals to 1 if order o is assigned to
picker b in period t in trip r. Otherwise, it takes 0.

Yijbtr Takes value equal to 1 if picker b in period t
traverses from location i to j in trip r. Otherwise, it takes
0.
Zibtr Takes value equal to 1 if location i is met by picker
b at period t in trip r. Otherwise, it takes 0.
Rbtr Takes value equal to 1 if picker b in period t
traverses trip r. Otherwise, it takes 0.
Wbtri ,eweight carried by picker b in period t and trip
r after leaving location i.
Sbtr Start time of trip r by picker b in period t.
Fbtr Finish time of trip r by picker b in period t.

Based on the problem statement and taking the pa-
rameters and variables definition, the proposed mathe-
matical formulation of the problem is as follows:

min􏽘
0
max 􏽘

b

􏽘
t,t≥to

􏽘
r

tXobtr − do, 0⎛⎝ ⎞⎠. (1)

Subject to

Zibtr ≤Bbt,∀i, b, t, r, i≠ 1, (2)

Xobtr ≤Zibtr,∀o, b, t, r, i � lO, t≥ to, (3)

Zibtr � 0, ∀i, b, t, r, ni � 0, (4)

􏽘
b

􏽘
t

􏽘
r

zibtr � ni,∀i, i≠ 1, (5)

􏽘
b

􏽘
t,t≥to

􏽘
r

Xobtr � 1, ∀o, (6)

Xobtr � 0, ∀o, b, t, r, t< to, (7)

􏽘
j,j≠i

Yijbtr � Zibtr, ∀b, t, r, i, i≠ 1, (8)

􏽘
i,i≠j

Yijbtr � Zjbtr,∀b, t, r, j, j≠ 1,
(9)

Wbtri + 􏽘

O,t≥to,

j�Lo

wO ∗Xobtr ≤Wbtrj

+M 1 − Yijbtr􏼐 􏼑, ∀b, t, r, i, j, i≠ j, j≠ 1,

(10)

Wbtri ≤ cb ∗Bbt,∀i, b, t, r, (11)

􏽘
0

Xobtr ≤pb, ∀b, t, r, (12)

Sbtr + 􏽘
i

􏽘
j

eij ∗Yijbtr ≤Fbtr, ∀b, t, r, (13)

Sbtr ≥Fbt,r− 1, ∀b, t, r, r≠ 1, (14)
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Sbt1 � sbt,∀b, t, (15)

Fbtr ≤fbt,∀b, t, r, (16)

􏽘
b

􏽘
t,t≥to

􏽘
r

t∗Xobtr ≤ top
− 1, ∀i, o, oP, i � lo, i � lop

, top
> to,

(17)

Zibtr ≤Rbtr,∀i, b, t, r, (18)

Rbtr ≥Rbtrp,
∀b, t, r, rp, r< rp, (19)

􏽘
i,i≠1

Zibtr ≥Rbtr,∀b, t, r, (20)

􏽘
b

􏽘
rp

Rbtrp
� 􏽘

j

􏽘
b

􏽘
r

Y1jbtr,∀t, (21)

􏽘
b

􏽘
rp

Rbtrp
� 􏽘

i

􏽘
b

􏽘
r

Y1jbtr,∀t, (22)

Xobtr, Yijbtr, Zibtr, Rbtr ∈ 0, 1{ }Wbtri, Sbtr, Fbtr ≥ 0. (23)

,e objective function in (1) is the total tardiness, which
is to be minimized. Constraint (2) indicates that a picker can
visit a storage location only when it is available. Constraints
(3) and (4) force that when an order is picked, its location
should be visited.

Constraint (5) indicates that a location should be visited
multiple times in the case of replenishment. ni> 1 indicates
that replenishment occurs. Constraint (6) guarantees that all
received orders must be picked up. Constraint (7) guarantees
the elimination of picking for orders that have not arrived at
the warehouse. Constraints (8) and (9) are used to enforce
one-time arrival and departure from a storage location in a
given trip in a given period by a given picker. Constraint (10)
avoids subtours and updates the total weight carried by the
picker after leaving an order location. Constraint (11) is the
picker’s capacity constraint. Constraint (12) is the picker’s
capacity in terms of the number of orders it can pick in each
trip. Constraint sets (13)–(16) are used to plan the picker’s
operation within its available time. Recall that picker b can
be available within [Sbt, Fbt] in a given period t. ,e start
and finish time of each trip is controlled by Constraint sets
(13)–(16). Constraint (17) allows multiple replenishment of a
storage location. An order should be picked before the ar-
rival of the order, which will take its place. Constraints (18)
and (19) arrange the trip counter for each picker in each
period. Constraint (20) forces the visit of at least one location
during a trip. Constraints (21) and (22) manage the number
of departures and arrivals from the pickers’ initial location.
,e statement of variables and their types are provided in
(23).

Since the total tardiness as the objective function is a
nonlinear function, its linear form can be simply given by
replacing (1) with (24) and adding (25) to the set of con-
straints (2)–(23).

Min􏽘
0

Zo, (24)

Zo ≥ 􏽘
b

􏽘
t,t≥to

􏽘
r

tXobtr − do, ∀o. (25)

4. The Solution Method

,eMPMTR problem consists of two sub-problems of order
batching and multitrip routing, both of which are NP-hard
problems [6]. ,erefore, the MPMTR problem is also
classified into the category of NP-hard problems, and
finding efficient methods is necessary for solving it.

Only small-size instances of theMPMTR problem can be
solved efficiently using the proposed mathematical model,
and suitable algorithms are needed for real-world problems.
,eMPMTR problem resembles grouping problems where a
number of orders are up picked in every trip by the picker
and grouped into one group. In grouping problems, the aim
is to group items into disjoint groups. ,e structure of
grouping problems is such that it admits to developing more
effective operators for metaheuristic methods. Because the
building blocks that should be preserved in an evolutionary
or swarm intelligence method should be the groups or the
group segments, focusing on items isolated may have little
impact during the search. ,e most well-adapted grouping
evolutionary algorithms for grouping problems are the
grouping genetic algorithm and the grouping evolution
strategy algorithm [53–56].

Given the grouping nature of the problem, in this study
we seek to develop a solution method for solving large-size
problems via developing the grouping versions of two well-
established algorithms, e.g., particle swarm optimization
(PSO) and the league championship algorithm (LCA).,ese
algorithms are called the grouping particle swarm optimi-
zation (GPSO) and grouping the league championship al-
gorithm (GLCA) and are described in the next sessions.

We have used the LCA and PSO algorithms in the sense
that they have proven effective in many contexts because of
the clever rationale behind their mechanisms designed for
managing intensification and diversification. ,e PSO is a
classic and popular algorithm for solving optimization
problems. To include a relatively new and modern algo-
rithm, we used the LCA. ,e LCA has proven as an effective
algorithm. ,erefore, we think it may be useful to compare
the results of an older algorithm like the PSO with those of a
newer one. However, we heavily adapted these algorithms to
be able to solve the problem at hand. Specifically, we de-
veloped them such that they are responsive to the structure
of grouping problems to which the order picking problem
belongs.

4.1.Grouping thePSOandLCAAlgorithms. ,e PSO and the
LCA are population-based stochastic optimization tech-
niques inspired by social behaviors. ,ese algorithms were
first developed for continuous problems. ,e similarity of
the GPSO/GLCA with the PSO/LCA lies not in the fact that
it uses the same idea, followed by the PSO/LCA, but in the
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discrete search space of the grouping problems.,e building
blocks of a solution for a grouping problem are the groups to
which items are assigned. ,erefore, PSO’s/LCA’s updating
equations, which typically work in continuous space, are
modified in the GPSO/GLCA to work on groups. It is
therefore required to devise suitable mathematical operators
which are employed on groups. Before giving the mathe-
matical statements of the GPSO’s/GLCA’s equations, we first
put forward the way in which a solution to the MPMTR
problem is represented.

4.1.1. Solution Representation. ,e first step for developing
an algorithm for a discrete problem like the MPMTR is to
represent the solution. Since the MPMTR is a grouping
problem, we first give our definition of a group structure. For
each picker in each period and for each trip, a group is
assigned. ,e content of the group are the orders that the
picker in that period and in that trip is responsible for
picking them. Figure 3, represents the grouping structure of
a sample solution. In this figure, there are two pickers, two
periods, and three possible trips. ,erefore, there are at most
12 groups. Separators are depicted for periods (orange line)
and pickers (green lines). ,e structure in Figure 3 can be
translated in terms of a given solution to the problem as
follows: Picker 1 in its first trip in Period 1, picks order 1. He
is responsible for picking Orders 4 and 5 in his second trip.
,e first picker in his first trip picks orders 2 and 3 in Period
2. Orders 5 and 6 are then picked in his second trip. In
parallel, Picker 2 picks order 7 in his first trip in Period 2. For
the sake of simplicity, we use a threefold notation t/b/r to tag
the groups.

,e solution represented in Figure 3 only represents the
order batching and job assignment parts of the solution but
does not say anything about picker routing. To determine
the routing for the picker associated to each group, one
needs to solve an instance of the travelling salesperson
problem (TSP) composed of the location nodes of the orders
assigned to the group.

According to the classification of grouping problems
demonstrated by Kashan et al. [53]; the MPMTR problem is
a problem with non-identical groups. ,at is, groups differ
in their characteristics (different periods, different picker
capacity) and if we exchange the whole content of two
groups in a given solution, the resultant grouping differs
from the original grouping. In terms of the number of
groups in a given solution, the MPMTR is a variable
grouping problem in which the number of groups is not
known in advance and differs between different solutions.

4.1.2. Updating Equations in GPSO and GLCA. Before
starting this section, we invite readers to refer to the lots of
papers, which introduce the original PSO and LCA algo-
rithms.,is section attempts to reform position equations of
PSO (equations (27) and (28)) and LCA (equations
(31)–(34)) to achieve comparable equations that work with
the groups of items rather than scalars. Following Kashan
et al. [57, 58], the main idea would be to use suitable op-
erators instead of arithmetic operators. Especially, the “− ”

operator is substituted with a group dissimilarity measure.
Similar to the “− ” operator, which quantifies the magnitude
of the difference between the two scalars, a group dissimi-
larity measure quantifies the distance between the two
groups. In this study, “distance” is used to show such an
operator. If G and G′ are two groups with cardinality |G| and
|G′|, the Jaccard’s coefficient is one of the best methods for
representing the degree of similarity or difference between G
and G′

Distance G, G′( 􏼁 � 1 −
G∩G′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

G∪G′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, Similarity G, G′( 􏼁 �

G∩G′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

G∪G′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
.

(26)

Given that the original PSO equations are as follows:

v
t+1
id � wv

t
id + c1r1 p

t
id − x

t
id􏼐 􏼑 + c2r2 p

t
gd − x

t
id􏼐 􏼑∀i, d, (27)

x
t+1
id − x

t
id � v

t+1
id ∀i, d. (28)

And substituting “− ” with “Distance,” the updating
equations of GPSO are obtained as follows:

v
t+1
id � wv

t
id + c1r1Distance p

t
id, x

t
id􏼐 􏼑

+ c2r2Distance p
t
gd, x

t
id􏼐 􏼑, ∀i, d,

(29)

Distance x
t+1
id , x

t
id􏼐 􏼑 ≈ v

t+1
id , ∀i, d. (30)

For LCA, given that the original equations are as follows
(please refer to [10–12]):

If both i and its opponent have won their matches at
week t, then

x
t+1
i d − b

t
i d � − ψ1r1 b

t
k d − b

t
i d􏼐 􏼑 − ψ1r2 b

t
j d − b

t
i d􏼐 􏼑, ∀i, d

(31)

Else if i has won and its opponent has lost, then

x
t+1
id − b

t
id � ψ2r1 b

t
kd − b

t
id􏼐 􏼑 − ψ1r2 b

t
jd − b

t
id􏼐 􏼑, ∀i, d. (32)

Else if i has lost and its opponent has won, then

x
t+1
id − b

t
id � − ψ1r2 b

t
kd − b

t
id􏼐 􏼑 + ψ2r1 b

t
jd − b

t
id􏼐 􏼑, ∀i, d. (33)

Else if both i and its opponent have lost their matches at
week t, then

x
t+1
id − b

t
id � ψ2r2 b

t
kd − b

t
id􏼐 􏼑 + ψ2r1 b

t
jd − b

t
id􏼐 􏼑, ∀i, d. (34)

End, and substituting “− ” with “Distance,” and taking “‒
Distance” as “Similarity” the updating equations of GLCA
are obtained as follows:

If both i and its opponent have won their matches at
week t, then

Distance x
t+1
id , b

t
id􏼐 􏼑 ≈ ψ1r1Similarity b

t
id, b

t
kd􏼐 􏼑

+ ψ1r2Similarity b
t
id, b

t
jd􏼐 􏼑∀i, d.

(35)

Else if i has won and its opponent has lost, then

Complexity 11



Distance x
t+1
id , b

t
id􏼐 􏼑 ≈ ψ2r1Distance b

t
kd, b

t
id􏼐 􏼑

+ ψ1r2Similarity b
t
id, b

t
jd􏼐 􏼑, ∀i, d.

(36)

Else if i has lost and its opponent has won, then

Distance x
t+1
id , b

t
id􏼐 􏼑 ≈ ψ1r2Similarity b

t
id, b

t
kd􏼐 􏼑

+ ψ2r1Distance b
t
jd, b

t
id􏼐 􏼑, ∀i, d.

(37)

Group
A

Group
B

Group
C

Group
D

Group
E

Group
F

Group
G

Group
H

Group
I

Group
J

Group
K

Group
L

t=1
b=1
r=1

t=1
b=1
r=2

t=1
b=1
r=3

t=1
b=2
r=1

t=1
b=2
r=2

t=1
b=2
r=3

t=2
b=1
r=1

t=2
b=1
r=2

t=2
b=1
r=3

t=2
b=2
r=1

t=2
b=2
r=2

t=2
b=2
r=3

1 4, 5 2, 3 5, 6 7

Figure 3: A sample grouping representation of the solution.

End

Sort orphaned orders
based on a given rule.
Let E be the set of
sorted orders

Yes

No

Let o be the first
order in E

Have all orders
been assigned?

Remove the first order in
E

No Yes

Finalize the assignment
of order o to group u

Begin

Consider all groups whose tag t/b/r is such 
that t≥to. Among those groups that the 
assignment of order o to their relevant picker 
has not been investigated, find the first group 
whose associated picker has enough capacity 
to pick order o. Let this group be te/be/re

Consider all groups whose tags lie between 
te/be/re to te/be/rmax (rmax is the maximum 
number of trips that can be traversed by 
picker be in period te). Let V be the set of 
these groups. Eliminate all empty groups 
from V, except the first empty one.
Let Fa be the total trip time relevant to group
a. let F
picking times by picker be in period te over
all trips formed so far by the pickerV

next v; otherwise, temporarily assign order o 
to v and solve an instance of the travelling 
salesperson problem (TSP) with the 
objective of minimizing total picking times 
given the location of the orders in group v as 
the nodes of the graph on which the picker 
rout is determined. Let fv be the TSP
objective value. Calculate: Sv = F + fv – Fv
Set u = argmin Sv .

and continue with thethen set SvCbe,

–

–

–

–

Is
Su >

fbete–Sbete?

Fv be the total = ∑r=1 Fte/be/r + ∑ν∈V
re–1

For a group ν ∈ V, if ∑i|order i∈ν wi +wo >

ν∈V

Figure 4: ,e first-period-first-picker-best-trip algorithm.
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Else If both i and its opponent have lost their matches at
week t, then

Distance x
t+1
id , b

t
id􏼐 􏼑 ≈ ψ2r2Distance b

t
kd, b

t
id􏼐 􏼑

+ ψ2r1Distance b
t
jd, b

t
id􏼐 􏼑, ∀i, d.

(38)

End.
In (29) and (30) and (35)–(38), d shows the group index

and i � 1, . . . , N is the individual index, where N denotes
the size of the population. It is important to note that in these
equations all of xt

id, bt
id, pt

id and pt
gd are stand for groups of

orders.

4.1.3. Generating a New Solution in GPSO and GLCA.
With the aid of adapted equations (29) and (30) for GPSO
and (35)–(38) for GLCA, we can generate new feasible
solutions and hence propose search-based methods for the
MPMTR problem. ,e whole process is simple. Given a
feasible parent solution i (Xt

i in GPSO and Bt
i in GLCA),

using the mentioned equations, some orders are removed
from groups in the first phase and some others remain in the
groups (inheritance), and then the removed orders are
backed to groups in the second phase (reinsertion).

(1) Inheritance Phase. According to (30), the construction of
the new group xt+1

id of the offspring solution Xt+1
i at iteration

t+ 1 should be such that its difference with group xt
id of the

parent solution (particle i) be around the value of vt+1
id . Let’s

start from (30)

Distance x
t+1
id , x

t
id􏼐 􏼑 � 1 −

x
t+1
id ∩x

t
id

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

x
t+1
id ∪x

t
id

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
≈ v

t+1
i d ⟶ x

t+1
id ∩x

t
id

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≈ 1 − v
t+1
id􏼐 􏼑 x

t+1
id ∪x

t
id

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(39)

Since in the inheritance phase, xt+1
id can inherit up to all

orders allocated to xt
id, we can replace |xt+1

id ∪ xt
id| with |xt

id|,
and arriving at

x
t+1
id ∩x

t
id

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ≈ 1 − v

t+1
id􏼐 􏼑 x

t
id

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (40)

Relation (40) says that the number of orders shared
between xt+1

id and xt
id, which is indeed the amount of

orders inherited by xt+1
i d from xt

id should be around the
value of (1 − vt+1

id )|xt
id|. ,is value is represented by nt

id and
is set as

n
t
id � 1 − v

t+1
id􏼐 􏼑 x

t
id

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (41)

For GLCA the same approach is also followed. For
example, let us consider (35). After calculation of the right
side, we get a scalar value. Let this value be called vt+1

id . Now
the process is same as above. ,at is, according to (35), the
construction of the new group xt+1

id of the offspring solution
at iteration t+ 1 should be such that its difference with group
bt

id of the parent solution Bt
i be around the value of vt+1

id , and
hence,

n
t
id � 1 − v

t+1
id􏼐 􏼑 b

t
id

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (42)

After calculation of nt
id for group d of the ith individual

in the population of GPSO or GLCA at iteration t, nt
id

Computation of Distance and Similarity values in the 
right side of (36). It has been assumed that i has won 
and its opponent has lost. Moreover, let us assume
that

Inheritance 
phase 1, 4 5

Reinsertion phase

d=1 d=2

d=1 d=2

d=1

d=1

d=2

d=2

d=1 d=2

1, 4, 3 5, 2

1, 2, 5 3, 4

2, 4 2, 3, 5

1, 2, 4 3, 5

Figure 5: A simple example to demonstrate the mechanism for generating the new solution in GLCA.
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Figure 6: Layout of the intended auto parts warehouse.
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number of orders are selected from xt
id (in GPSO) and bt

id (in
GLCA) and are assigned to the same group of the offspring
solution. Hence, nt

id − |xt
id| (in GPSO) and nt

id − |bt
id| (in

GLCA) a number of orders are orphaned and should be
reinserted back into groups during the reinsertion phase.

(2) Reinsertion Phase. As described above, those orders that
are not inherited from the groups of Xt

i in GPSO and Bt
i in

GLCA are orphaned ones and should be backed into groups
during the reinsertion phase. A constructive heuristic is
developed to assign the orders to groups. ,e algorithm,
which is called the first-period-first-picker-best-trip algo-
rithm, always creates feasible groups and hence causes both
GPSO and GLCA to perform their search in the feasible
region. Although it is described in high detail in Figure 4, the
algorithm logic is mainly as follows.

Every time among unassigned orders, select an order
based on a given attribute and try to put it in the best
feasible trip of the first available picker in the first possible
period.

To find the “best feasible trip,” the algorithm checks the
possibility of the assignment of order to different trips a
picker traverses in a given period. All possible trips are

checked, and an instance of the travelling salesperson
problem is solved for each trip to find the best trip, which
costs for a less picking time. Once the best trip was found,
if the sum of picking times over all picker trips was
smaller than the picker presence time in period t
(i.e., sbt − fbt), the order assignment to the best trip is
finalized and the process continues with the next order,
until all orders are assigned and a complete solution is
obtained.

To generate the initial solution, the first-period-first-
picker-best-trip algorithm starts with a random list of all
orders. ,at is, all orders are assumed orphaned and un-
assigned to groups.

Based on the two phases described above, the pseudo
code for generating a new feasible solution is as follows:

Begin.
Step 1 (the inheritance phase)

(i) Let xt
id (for GPSO) and bt

id (for GLCA) be the set of
orders allocated to group d inXt

i and Bt
i at iteration

t, respectively (Xt
i and Bt

i are the ith individual in
the population of GPSO and GLCA, which are
feasible grouping of orders).

Table 3: Results on instances with 5 orders.

Instance Periods No. of
picker

Capacity
level

Optimal/best
solution GPSO GLCA

Objective
function

Time
(s)

Objective
function Average

times (s)
GAP
(%)

Objective
function Average

times (s)
GAP
(%)

Min Avg. Max Min Avg. Max
1

3

3
1 2 0.81 2 2 2 0.09 0 2 2 2 0.04 0

2 2 0 0.22 0 0 0 0.1 0 0 0 0 0.22 0
3 3 0 0.23 0 0 0 0.24 0 0 0 0 0.46 0
4

5
1 0 0.29 0 0 0 1.27 0 0 0 0 2.39 0

5 2 0 0.31 0 0 0 0.85 0 0 0 0 2.03 0
6 3 0 0.30 0 0 0 0.83 0 0 0 0 1.45 0
7

7
1 0 0.40 0 0 0 1.32 0 0 0 0 2.82 0

8 2 0 0.43 0 0 0 0.85 0 0 0 0 1.91 0
9 3 0 0.43 0 0 0 1.35 0 0 0 0 1.93 0
10

5

3
1 2 0.79 2 2 2 0.78 0 2 2 2 0.9 0

11 2 0 0.31 0 0 0 3.46 0 0 0 0 4.27 0
12 3 0 0.31 0 0 0 1.67 0 0 0 0 3.52 0
13

5
1 0 0.45 0 0 0 3.67 0 0 0 0 3.21 0

14 2 0 0.47 0 0 0 1.74 0 0 0 0 2.67 0
15 3 0 0.45 0 0 0 1.80 0 0 0 0 2.43 0
16

7
1 0 0.63 0 0 0 1.34 0 0 0 0 3.36 0

17 2 0 0.62 0 0 0 2.34 0 0 0 0 3.32 0
18 3 0 0.64 0 0 0 2.32 0 0 0 0 4.65 0
19

7

3
1 2 0.57 2 2 2 1.32 0 2 2 2 2.67 0

20 2 0 0.41 0 0 0 2.14 0 0 0 0 2.45 0
21 3 0 0.43 0 0 0 2.95 0 0 0 0 3.51 0
22

5
1 0 0.61 0 0 0 2.12 0 0 0 0 3.36 0

23 2 0 0.66 0 0 0 2.72 0 0 0 0 3.59 0
24 3 0 0.65 0 0 0 2.35 0 0 0 0 2.36 0
25

7
1 0 0.87 0 0 0 3.36 0 0 0 0 3.36 0

26 2 0 0.91 0 0 0 2.36 0 0 0 0 3.54 0
27 3 0 0.81 0 0 0 2.40 0 0 0 0 3.14 0
Avg. 0 0
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(ii) Compute nt
id using (41) for GPSO and (42) for

GLCA
(iii) Select nt

id orders from xt
id or bt

id and assign them to
xt+1

id . With a chance of 50%, the selection is done at
random. Otherwise orders are passed based on
Earliest Due Date (EDD) rule;

(iv) Repeat the above steps for all ds

Step 2 (the reinsertion phase)

(i) Using first-period-first-picker-best-trip algo-
rithm, assign each of the orphaned orders to
groups to obtain the complete offspring solution
Xt+1

i . With a chance of 50%, at the start of the first-
period-first-picker-best-trip algorithm, the orders
are sorted randomly. Otherwise, they are sorted
based on Earliest Due Date (EDD) rule;

End.

With a simple example depicted in Figure 5, we dem-
onstrate the mechanism for generating the new solution in
GLCA (the same figure can be extracted for GPSO
algorithm).

Recall that we developed two metaheuristic algorithms
for the problem, which are naturally randomized algo-
rithms. With this nature, we expect that if we use each
algorithm to solve one instance several times, the obtained
results will become different. Parts of the randomness are
also enforced by inheritance and reinsertion phases.

5. The Case Study, Experimentations,
and Results

In this section, the proposed mathematical formulation and
algorithms are tested using data obtained from a real-world
warehouse confronted by one of the prominent Iranian
automakers, the SAIPA Group. ,e intended warehouse
owns a drive-through racking storage systemwhich is loaded
and unloaded from both sides, and its layout has been
depicted in Figure 6.

,e inbound logistics division at SAIPA Group, which
performs on a daily basis, is responsible for providing the
required data on the list of suppliers and list of part orders
together with their specifications (e.g., size, weight, pallet
type, time windows etc). ,e problem is how to plan for

Table 4: Results on instances with 10 orders.

Instance Periods No. of
picker

Capacity
level

Optimal/best
solution GPSO GLCA

Objective
function

Time
(s)

Objective
function Average

times (s)
GAP
(%)

Objective
function Average

times (s)
GAP
(%)

Min Avg. Max Min Avg. Max
28

3

3
1 4 2.28 4 4 4 3.38 0 4 4 4 4.62 0

29 2 0 0.35 0 0 0 2.65 0 0 0 0 4.46 0
30 3 0 0.34 0 0 0 2.98 0 0 0 0 3.91 0
31

5
1 5 0.83 5 5 5 2.12 0 5 5 5 3.4 0

32 2 0 0.53 0 0 0 2.14 0 0 0 0 3.55 0
33 3 0 0.54 0 0 0 2.61 0 0 0 0 3.16 0
34

7
1 3 0.96 3 3 3 2.58 0 3 3 3 3.02 0

35 2 0 0.67 0 0 0 3.01 0 0 0 0 3.07 0
36 3 0 0.67 0 0 0 2.78 0 0 0 0 3.98 0
37

5

3
1 12 14.76 12 12 12 1.81 0 12 12 12 1.97 0

38 2 0 0.51 0 0 0 2.71 0 0 0 0 2.17 0
39 3 0 0.50 0 0 0 2.65 0 0 0 0 3.52 0
40

5
1 5 0.77 5 5 5 2.53 0 5 5 5 2.29 0

41 2 0 0.81 0 0 0 3.01 0 0 0 0 3.32 0
42 3 0 0.80 0 0 0 3.18 0 0 0 0 3.31 0
43

7
1 3 16.31 3 3 3 2.09 0 3 3 3 3.36 0

44 2 0 1.13 0 0 0 3.2 0 0 0 0 3.21 0
45 3 0 1.07 0 0 0 3.46 0 0 0 0 4.51 0
46

7

3
1 12 2.98 12 12 12 2.18 0 12 12 12 2.48 0

47 2 0 0.69 0 0 0 2.14 0 0 0 0 3.36 0
48 3 0 0.68 0 0 0 3 0 0 0 0 3.48 0
49

5
1 5 3.11 5 5 5 2.92 0 5 5 5 3.61 0

50 2 0 1.18 0 0 0 3.15 0 0 0 0 3.51 0
51 3 0 1.1 0 0 0 3.45 0 0 0 0 3.65 0
52

7
1 3 30.25 3 3 3 3.15 0 3 3 3 3.34 0

53 2 0 1.57 0 0 0 3.26 0 0 0 0 4.99 0
54 3 0 1.67 0 0 0 3.25 0 0 0 0 4.4 0
Avg. 0 0

Complexity 17



picking orders from a central auto parts warehouse and
distributing them towards assembly plants.

,e daily auto parts logistic problem in SAIPA can be
defined as follows. At the start of each day, the number of
parts in each order is supplied by the warehouse over the
planning horizon, order time windows, and the desti-
nation of each order is known. ,e size, type, and weight
of orders are also known. Besides, data on receiving
products from suppliers over time is given for replen-
ishing the warehouse over the planning horizon. ,e
problem is to plan for picking orders such that the op-
erational constraints on receiving products and picked
orders are met in a way that the total tardiness is mini-
mized. A sample of the raw data has been summarized in
Table 2. Based on instance problems, the problem will be
solved and the results will be compared using different
solution procedures.

Based on described data structure, required problem
instances were generated based on real-world situation,
whose characteristics have been summarized as follows:

(i) Number of orders: 5, 10, 20, 50, and 100.
(ii) Number of periods: 3, 5, and 7.
(iii) Number of pickers: 3, 5, and 7.

(iv) Picker’s weight capacity: 1 (1000 kg), 2 (2000 kg),
and 3 (3000 kg).

(v) Picker’s capacity in terms of the number of orders it
picks in each trip: 1 (2 pallets), 2 (5 pallets), and 3 (8
pallets).

(vi) ,e layout has been depicted in Figure 6.
(vii) Manhattan distance is used for measuring the travel

times.

Based on the above characterization, 5× 3× 3 × 3�135
problem instances are generated given the combinations of
the number of orders, the number of pickers, the number of
periods, and the capacity level for pickers, respectively. ,e
performance of algorithms is evaluated using these problem
instances. Both the GPSO and GLCA algorithms were coded
inMATLAB and run on a computer with 32GB of RAM and
3.4GHz of CPU speed. ,e proposed mathematical for-
mulation has been coded in GAMS software and solved by
the Cplex solver.

,e parameters used for GPSO are set as follows:

(i) ,e population size (NP)� 10;
(ii) ,e maximum number of iterations� 250;
(iii) Inertia weight (w)� 0.4;

Table 5: Results on instances with 20 orders.

Instance Periods No. of
picker

Capacity
level

Optimal/best
solution GPSO GLCA

Objective
function

Time
(s)

Objective
function Average

times (s)
GAP
(%)

Objective
function Average

times (s)
GAP
(%)

Min Avg. Max Min Avg. Max
55

3

3
1 15 1500 13 13 13 6.9 15.4 13 13 13 6.2 15.4

56 2 4 1500 2 2.6 4 10.6 53.8 2 2 2 11.5 100
57 3 0 1120.2 0 0 0 10.7 0 0 0 0 8.95 0
58

5
1 12 1500 10 10 10 9.6 20 10 10 10 10.5 20

59 2 3 1500 0 0 0 9.3 + 0 0 0 8.2 +
60 3 2 1500 0 0 0 18.9 + 0 0 0 15.9 +
61

7
1 19 971.2 19 19 19 14.7 0 19 19 19 14.3 0

62 2 2 1500 0 0 0 20.6 + 0 0 0 20.75 +
63 3 4 1500 0 0 0 24.5 + 0 0 0 22.7 +
64

5

3
1 28 1500 24 24 24 11.1 16.7 24 24 24 11.8 16.7

65 2 3 1500 2 2 2 25 50 2 2 2 26.2 50
66 3 5 1500 0 0 0 14.5 + 0 0 0 14 +
67

5
1 31 1500 30 30 30 22.5 3.3 30 30 30 22.6 3.3

68 2 2 1500 0 0 0 21.7 + 0 0 0 20.85 +
69 3 1 1500 0 0 0 30.9 + 0 0 0 33.8 +
70

7
1 20 1500 19 19 19 30 5.3 19 19 19 33.1 5.3

71 2 5 1500 0 0 0 32 + 0 0 0 34.55 +
72 3 4 1500 0 0 0 62.6 + 0 0 0 55.9 +
73

7

3
1 37 1321.6 37 37 37 25.1 0 37 37 37 22 0

74 2 3 1500 2 2 2 28.6 50 2 2 2 29.8 50
75 3 5 1500 0 0 0 32.2 + 0 0 0 27.4 +
76

5
1 34 1500 30 30 30 43.6 13.3 30 30 30 37.3 13.3

77 2 4 1500 0 0 0 26.0 + 0 0 0 24.25 +
78 3 6 1500 0 0 0 50.7 + 0 0 0 45.9 +
79

7
1 22 1500 19 19 19 50 15.8 19 19 19 43.5 15.8

80 2 4 1500 0 0 0 32.3 + 0 0 0 28.7 +
81 3 3 1500 0 0 0 79.0 + 0 0 0 73.65 +
Avg. >22.3
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(iv) c1� 0.2;
(v) c2� 0.5;

,e parameters used for GLCA are set as follows:

(i) ,e population size (NP)� 10;

(ii) ,e maximum number of iterations� 250;

(iii) ψ1 � 0.4;
(iv) ψ2 � 0.4;

Each algorithm was run 10 times on each instance. In
each instance, the min, the max, the average performance,
the average time for achieving the best solution and the gap
values between the objective functions reported by the two
algorithms or the gap values between the objective functions
reported by the two algorithms versus optimal objective
value are presented. Results are reported based on min, max,
and average performances. Results have been reported in
Tables 3–7.

In Tables 3 and 4, the results of the proposed algorithms
are compared with those provided by GAMS/Cplex. Based
on the results for small instances, the gaps for GPSO and
GLCA are zero, confirming that the use of these algorithms

would probably be effective for solving larger-sized prob-
lems. As can be seen on small-sized problems, the running
times are close to each other. ,ere are several problem
instances with 10 orders on which GAMS/Cplex takes a
considerable time to report the optimal solution. However,
for GPSO and GLCA, time trends are rather constant. From
the results, it can be seen that on small problems, the
performance of different methods is independent of the
number of periods, the number of pickers, and the capacity
level of the pickers.

On problems with 20 orders in Table 5, the perfor-
mance of GPSO and GLCA is the same on 26 out of 27
problems in terms of the average performance. ,e only
exception is problem #56, for which GLCA performs
better than GPSO, whose max performance is worse than
GLCA. ,is indicates that GPSO and GLCA exhibit stable
performance and achieve the same objective value in each
run. ,erefore, the standard deviation of the results for
each problem category is equal to zero.

On many test problem instances in this table, GAMS/
Cplex fails to approve the optimal solution. Only on three
instance problems, it approves optimality. In terms of gap
values, there exists a significant gap between the output of

Table 6: Results on instances with 50 orders.

Instance Periods No. of
picker

Capacity
level

Optimal/best
solution GPSO GLCA

GAP
(%)Objective

function
Time
(s)

Objective
function Average

times (s)

Objective
function Average

times (s)
Min Avg. Max Min Avg. Max

82

3

3
1 ∗ 1500 46 46 46 15.5 46 46 46 15.6 0

83 2 ∗ 1500 46 46 46 40.7 46 46 46 39.7 0
84 3 ∗ 1500 23 27.5 35 75.3 23 23 23 74.8 19.6
85

5
1 ∗ 1500 40 40 40 43.3 40 40 40 36.4 0

86 2 ∗ 1500 20 20 20 80.4 20 20 20 69.7 0
87 3 ∗ 1500 5 8.75 11 145.2 5 5 5 145.9 75
88

7
1 ∗ 1500 37 37 37 45.5 37 37 37 45 0

89 2 ∗ 1500 8 8.75 11 64 8 8 8 66.8 9.4
90 3 ∗ 1500 0 0.75 3 86.5 0 0 0 60.15 +
91

5

3
1 ∗ 1500 80 80 80 25.3 80 80 80 24.2 0

92 2 ∗ 1500 46 47.5 49 54.5 46 46 46 57.2 3.3
93 3 ∗ 1500 26 31.75 36 102.3 23 23 23 112 38
94

5
1 ∗ 1500 100 100 100 43.8 100 100 100 43.1 0

95 2 ∗ 1500 20 20 20 104.7 20 20 20 115.5 0
96 3 ∗ 1500 5 6.5 9 252.4 5 5 5 228.2 30
97

7
1 ∗ 1500 66 66 66 109.9 66 66 66 101.4 0

98 2 ∗ 1500 8 8 8 163.6 8 8 8 155.8 0
99 3 ∗ 1500 0 0 0 138 0 0 0 128.45 0
100

7

3
1 ∗ 1500 115 115 115 56.6 115 115 115 51.1 0

101 2 ∗ 1500 46 47.5 50 59.9 46 46 46 66 3.3
102 3 ∗ 1500 25 27.25 31 130.4 23 23 23 135.1 18.5
103

5
1 ∗ 1500 100 100 100 71.6 100 100 100 76.1 0

104 2 ∗ 1500 20 20 20 164.3 20 20 20 149.1 0
105 3 ∗ 1500 5 5 5 273.2 5 5 5 266.4 0
106

7
1 ∗ 1500 66 66 66 72.6 66 66 66 77.7 0

107 2 ∗ 1500 8 8 8 195.4 8 8 8 176.3 0
108 3 ∗ 1500 0 0 0 172.3 0 0 0 157.95 0
Avg. >7.3
∗no feasible solution found.
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GPSO and GLSA versus GAMS/Cplex. However, in many
cases, which are indicated with a “+” sign, the gap values
cannot be computed due to zero objective values reported by
GPSO and GLCA.

For larger-sized problems with more than 50 orders,
GAMS/Cplex is not able to find a feasible solution for any
problem instance within the given time limit. We therefore
compare the performances of GPSO and GLCA. However,
there is no guideline to judge the quality of results achieved
by GPSO and GLCA, except for their reported statistics. ,e
results related to the large-sized problem instances are
summarized in Tables 6 and 7.

On a problem with 50 jobs, again GLCA performs ro-
bustly and achieves the same results in all runs on each
problem instance. However, there are fluctuations in the
performance of GPSO. On 9 out of 27 instances, GPSO fails
to show constant behavior and hence its standard deviation
is not zero.

On problems with 100 orders, still GLCA performs
very stable compared to GPSO. It achieves the same
objective value on all runs for 23 out of 27 problem
instances. However, this record for GPSO is only 9 out of

27. Moreover, the worst performance of GLCA is sig-
nificantly better than GPSO. Such a reliable performance
indicates that GLCA is a more dependable algorithm than
GPSO.

In terms of the running times, as depicted in Figure 7,
the behavior of CPSO and GLCA is close to each other.
,e reason is mainly because that both algorithms use the
same number of population size and iterations and hence
generate and evaluate the same number of solutions.
Moreover, both algorithms use the same mechanism and
heuristics for the generation of new solutions. As can be
seen from the figures, as the capacity of the picker in-
creases, it is allowed to form longer tours and visit more
locations. Hence, larger instances of TSP should be in-
evitably solved, and this will increase the computation
times. Enlarging the length of the planning horizon in
terms of the number of periods and increasing the
number of pickers will increase the computation times
required to generate a feasible solution. Because the
number of groups has increased and checking the suit-
ability of the assignment of orders to more number of
groups will take significant time.

Table 7: Results on instances with 100 orders.

Instance Periods No. of
picker

Capacity
level

Optimal/best
solution GPSO GLCA

GAP
(%)Objective

function
Time
(s)

Objective function Average
times (s)

Objective function Average
times (s)Min Avg. Max Min Avg. Max

109

3

3
1 ∗ 1500 92 92 92 38.7 92 92 92 41.3 0

110 2 ∗ 1500 92 93.5 95 70.2 92 92 92 70.7 1.6
111 3 ∗ 1500 53 65.25 75 150.2 46 47.5 48 142.3 37.4
112

5
1 ∗ 1500 95 95 95 75.6 95 95 95 71.5 0

113 2 ∗ 1500 40 44 48 103.2 40 40 40 96.6 10
114 3 ∗ 1500 76 81 85 327.3 65 67.75 69 330.5 19.6
115

7
1 ∗ 1500 95 95 95 75 95 95 95 71.8 0

116 2 ∗ 1500 74 76.75 79 248.5 74 74 74 217.5 3.7
117 3 ∗ 1500 43 46.25 50 298.8 37 37 37 283.8 25
118

5

3
1 ∗ 1500 190 190 190 64.5 190 190 190 56.2 0

119 2 ∗ 1500 94 99.5 104 161 92 92 92 173.8 8.2
120 3 ∗ 1500 141 163 170 302.4 139 139.25 140 312.4 17.1
121

5
1 ∗ 1500 200 200 200 147.9 200 200 200 130.7 0

122 2 ∗ 1500 123 129.25 136 238.4 120 120 120 259.9 7.7
123 3 ∗ 1500 72 81.25 93 456.2 65 65.5 67 412.9 24
124

7
1 ∗ 1500 190 190 190 199.8 190 190 190 171.8 0

125 2 ∗ 1500 77 80.75 83 344.8 74 74 74 341.2 9.1
126 3 ∗ 1500 46 49.25 52 452.3 37 37 37 497.5 33.1
127

7

3
1 ∗ 1500 285 285 285 132.1 285 285 285 131.8 0

128 2 ∗ 1500 234 253 273 199.7 230 230 230 188 10
129 3 ∗ 1500 162 175 180 332.9 138 138 138 323.2 26.8
130

5
1 ∗ 1500 285 285 285 158.6 285 285 285 141 0

131 2 ∗ 1500 121 129 138 401.7 120 120 120 408 7.5
132 3 ∗ 1500 75 81.5 90 469.7 65 65 65 395.6 25.4
133

7
1 ∗ 1500 190 190 190 287.1 190 190 190 244.5 0

134 2 ∗ 1500 75 82 86 651.7 74 74 74 550 10.8
135 3 ∗ 1500 37 45.5 52 825 37 37 37 757.2 23
Avg. 11.11
∗no feasible solution found.
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6. Managerial Insights and
Practical Implications

In this paper, we considered a real-world application of OPS
planning and used mathematical programming techniques
(e.g., MILP formulations and solution methods) to deal with
it. ,e problem is mostly related to product warehousing,
especially in the automotive industry. ,e main character-
istics of such warehouses are that the number of order
pickers in terms of the material handling equipment such as
lift trucks, transpallet trucks, reach trucks, etc. is limited and
they are used in circulation. ,is justifies the need for
considering multitrip order picking when modeling OPS
planning in the automotive industry.

Usually, there is a lag (in days) to pick, pack, and deliver
the orders to their destinations. ,erefore, planning based

on daily span is just an oversimplification that is seen almost
in most research studies related to OPS.

Besides retrieval, storage is also an equally important
process in warehouse management. When orders are
delivered, product shelves become empty and ready to be
nested by new products that constitute future orders.
Shelves management is a crucial task in warehousing
because the delivery timeline of the orders should be in
such a way that provides shelve spaces for arriving
products. ,is issue is addressed as product replenish-
ment. Most research studies only consider the retrieval
planning. However, due to the limited capacity o ware-
houses, the retrieval plan can affect the replenishment or
storage plan. ,erefore, both the replenishment and re-
trieval planning should be done in an integrated fashion.
If the planning span becomes multiperiod, both the
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Figure 7: Plot of computation times taken by various methods.
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retrieval and replenishment planning can be done in an
integrated manner.

Under multiperiod planning, it is possible to consider
order delivery due dates and hence consider responsiveness
measures, which are in relation to customers, such as total
order tardiness, rather than the conventional total retrieval
cost measure, which is internal. Such an objective function is
fit for the automotive industry, in which line stops impose
huge costs.

With reference to the above issues, this research
conducted an integration of the order batching and
multitrip picker routing decisions with the possibility of
product replenishment in a multiperiod order picking
system to minimize total order tardiness. ,e notion of
product replenishment planning in a multiperiod order
picking system was introduced for the first time in the
current study. Besides, minimizing total order tardiness
has not been used in previous research studies.

7. Concluding Remarks and Future
Research Directions

,is study focused on integrating order batching and multi-
trip picker routing in an order picking system. ,e possi-
bility of product replenishment, which was considered for
the first time in this research, calls for considering the
picking planning as a multiperiod planning. Products are
entered into the warehouse and constitute orders that are
picked during the time. ,erefore, picking planning should
be such that the empty rooms for replenishment of new
products are provided. With the aim of minimizing total
tardiness, as a new criterion for measuring the performance
of picking planning, we presented a mixed integer linear
formulation for the problem and developed adapted met-
aheuristic algorithms equipped with constructive heuristic
to ensure feasibility.

,e proposed mixed integer linear formulation in-
troduces new constraints enforced by the notion of
multiperiod order retrieval and replenishment planning
and the new objective function, i.e., the total tardiness,
which makes more sense for responsive warehouse
planning (especially for auto parts order management,
that should be in such a way that it prohibits assembly line
stops and the cost imposed).

,e metaheuristic algorithms were based on grouping
particle swarm optimization (GPSO) and grouping league
championship algorithm (GLCA). We heavily adapted these
algorithms to be responsive to the structure of the grouping
problems to which the problem under consideration be-
longs. Our results indicated that the league championship
algorithm can stably solve large instances of the problem in a
reasonable time.

,e results of the computational experiment indicated
that

(i) ,ere were problem instances with 10 orders on
which GAMS/Cplex took a considerable time to
report optimality. For GPSO and GLCA, time
trends were rather constant.

(ii) On problems with 20 orders, the average perfor-
mance of GPSO and GLCA was almost the same on
all problems. In many test problem instances,
GAMS/Cplex failed to approve the optimality.

(iii) On problems with more than 50 orders, GAMS/
Cplex was not able to find a feasible solution to any
problem instance. GLCA performed robust and
achieved the same results in all runs on each
problem instance. ,ere were fluctuations in the
performance of GPSO.

(iv) On problems with 100 orders, GLCA performed
very stable compared to GPSO. It achieved the same
objective value on all runs for 23 out of 27 problem
instances. ,is record for GPSO was only 9 out of
27. Moreover, the worst performance of GLCA was
significantly better than GPSO.

For future research, the inclusion of the congestion of
pickers can be considered in the picking process. Our
modeling, which considered limited access to pickers, can be
extended to relate preventive maintenance of order picker
facilities with typical operational decisions of the order
picking systems. Multilayer layouts can also be considered.
Besides the proposed metaheuristic algorithms, developing
the grouping version of other new metaheuristic algorithms
such as optics-inspired optimization [59–62]) or F3EA
metaheuristic algorithm [63] and measuring their suitability
for OPS is recommended. Finally, developing exact solution
methods like column generation or enhanced MILP for-
mulations [64] would be worthwhile to consider in future
research.
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