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Modeling dynamic networks has attracted much interest in recent years, which helps understand networks’ behavior. Many works
have been dedicated to modeling discrete-time networks, but less work is done for continuous-time networks. Point processes as
powerful tools for modeling discrete events in continuous time have been widely used for modeling events over networks and their
dynamics.-ese models have solid mathematical assumptions, making them interpretable but decreasing their generalizability for
different datasets. Hence, neural point processes were introduced that don’t have strong assumptions on generative functions.
However, these models can be impractical in the case of a large number of event types. -is research presents a comparative study
of different point process (Hawkes) models for continuous-time networks. Furthermore, a previously introduced neural point
process (neural Hawkes) model is applied for modeling network interactions. In this work, network clustering is used for
specifying interaction types. -ese methods are compared using different synthetic and real-world datasets, and their efficiency is
evaluated on these datasets. -e experiments represent that each model is appropriate for a group of datasets. In addition, the
effect of clustering on results is discussed, and experiments for different clusters are presented.

1. Introduction

Networks are ubiquitous everywhere in natural life, such as
human and biological networks and chemical reactions,
digital life, such as social networks, and technology, such as
transportation networks and computer networks. -ese
networks usually have dynamic structures and contain
continuous-time events occurring through them. -ese
events include interactions between individuals in a net-
work, such as contacts in human networks or message
passing between members of a social network, and protein-
protein interactions in a biological system. -ese dynamics
inside a network can reveal exciting information about the
network and individuals, such as the roles of the individuals
or groups in the network and the unknown structure of the
network which can be dynamic. Although dynamic net-
works have existed for a long time, studying them and
considering time as an important factor have become re-
cently attractive [1].

Different temporal granularities can be considered for
dynamic networks. Accordingly, different representation
models were introduced, which are (i) static networks, (ii)
weighted networks, (iii) discrete-time, and (iv) continuous-
time networks [2]. Static networks are the simplest repre-
sentations with the most coarse-grained granularity and
contain no dynamics. On the other side, continuous-time
networks are the most complex and precise representation
methods [3]. In this research, continuous-time networks are
studied, requiring more accurate modeling methods.

In the continuous-time networks studied in this re-
search, where only dynamics for edges are assumed (nodes
are assumed to remain constant), network events, i.e., edge
appearance or removal, occur randomly. -ese networks
vary according to link duration, which are distinguished in
some literature [3, 4]. Accordingly, the networks can have
instantaneous (or short-length) or long-duration links [3].
-e former networks are considered in this research in-
cluding interaction networks such as e-mail networks and
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temporal networks, e.g., human proximity networks. -ese
networks have higher dynamicity compared with the other
group of networks; hence they are more complex, and more
accurate methods are required for analyzing them.

Modeling dynamic networks has attracted many re-
searchers and provided valuable information about the
network under study, such as anticipating the future be-
havior of the network and its dynamic properties. As was
mentioned, modeling continuous-time networks demands
higher computational complexity. Several continuous-time
models have been proposed, such as Stochastic Actor Ori-
ented Models (SAOM) [5–9], Relational Event Models
(REM) [10–14], point process models [15–20], and deep
learning models [3, 21–23]. REMs and SAOMs are statistical
methods where defined statistics are used for modeling
network interactions. In REM methods, the intensity of the
occurrence of relations (events) depends on the events’
history and different covariates. In SAOM models, ties
(relations) are actor-oriented, and actors (nodes) select a tie
to maximize their utility function, depending on various
defined statistics. Point process models that are explained in
the follows, define functional dependencies of events on the
history of events. On the other hand, deep learning methods
use non-functional dependencies to avoid function mis-
specification. Furthermore, point process models can benefit
from the non-functional property of deep learning methods
by combining these methods, which is the basis of the
method proposed in this research [24, 25].

Point processes are strong models for modeling contin-
uous-time events that have been used for different real-world
events. -ese processes are characterized by their particular
intensity functions, which are appropriate for different
phenomena. -e possibility of defining intensity functions
gives a high interpretability power to these models. Some
examples of different functional forms are (i) homogeneous
and nonhomogeneous Poisson processes, (ii) self-exciting
(Hawkes) processes, and (iii) survival processes. Hawkes
processes [26] are the most appropriate models for modeling
interdependent events. -is process that was used for
modeling earthquakes [27, 28], has also been applied for
modeling dynamic networks in papers [15, 16]. -is model
which clusters events through time, considers the effect of
history on the occurrence of future events. Hence it can
capture inter-dependency between consecutive events in
networks. Furthermore, marked point processes are appro-
priate models for including types of events in addition to their
times, which is important for the events inside networks.

Although these models have been successful in some
applications, due to their strong assumption of the gener-
ative function, they might not be suitable for different sit-
uations (because of different characteristics of datasets that
yield different generative processes). Neural networks have
been successful models for tackling these problems, which
can extract dataset features and devise models without any
previous assumption about their underlying processes.
Hence point process models have benefited from the power
of neural networks for parameterizing their intensity
functions, where it can be fully or partially modeled using
these networks.

Recurrent Neural Networks (RNN) have recently suc-
cessfully modeled point processes because of their success in
modeling time-series events. Hence in the current research,
an RNN (more specifically a Long Short Term Memory or
LSTM) model based on the method introduced in the paper
[25] has been used for improving point process models and
applied for modeling dynamic interactions in networks.-is
model inherits some interpretability power of point process
models (Hawkes process) and the accuracy of deep learning
models.

In order to use marked point processes for network
interactions, an appropriate definition of event types is
required. Since considering every node pair as a distinct type
is not efficient and applicable in most situations (there will
be in the order of N2 types for a network with N nodes).
Hence, in this research, similar to the works of papers
[15, 16] events are specified by clustering nodes of the
network, which changes the scale of the network from node
pairs to cluster pairs. By using the clustering method, neural
network models are applicable for modeling network in-
teractions. However, selecting an appropriate number of
clusters is challenging. Increasing the number of clusters will
result in a more accurate model but will increase the model
complexity and requires more processing time. Hence, this
trade-off should be considered in selecting an appropriate
number of clusters.

In a nutshell, the contributions of this work can be
summarized as follows: (i) Different point process (Hawkes)
models are compared using synthetic and real-world data-
sets. (ii) A recurrent neural network-based point process
model has been used for modeling dynamic interactions in
networks. (iii) -e clustering algorithm is applied for
obtaining event types, and the effect of different numbers of
clusters on the accuracy of the interactions model has been
examined.

2. Related Work

Several studies have been dedicated tomodeling continuous-
time events inside networks, including interaction models.
In this section, some of these models and also event-based
methods are introduced.

2.1. Continuous-Time Dynamic Network Models.
According to our knowledge, few works have been dedicated
to the continuous-time modeling of networks. Some of these
models are relational event models (REMs), stochastic actor
oriented models (SAOMs), stochastic block models (SBMs)
for continuous-time, point process (Hawkes) models, and
deep learning models. -e following explains these models.

REMs consider the interaction of the nodes in a network
as relational events, where the intensity of each interaction
can depend on the events’ history and the interaction time
[10, 11]. In [11], events with exact time and ordering in-
formation are modeled, where the intensity of events is
assumed to be piece-wise constant. Paper [12] uses this
method to model times of events and a normal distribution
to model weights of relations. Leenders et al. in [13] used
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REM to analyze team members’ behaviors and used various
statistics to formulate the intensity function. In [14], REM is
combined with stochastic block models [29], where distinct
clusters which are specified with the Chinese Restaurant
Process (CRP), representing different dynamic processes.
-is clustering method provides flexibility for the method in
the number of clusters. In this model, the intensity function
is modeled using relational event models and considers
constant intensities between consecutive events.

In addition to discrete-time SBMs, some continuous-
time models have also been introduced, such as in [30, 31].
Papers [30, 31] model interaction duration in continuous
time using block structures. In [30], which also has some
properties of SAOMs, lengths of interactions (and non-
interactions) between nodes are modeled using exponential
distributions where their parameters depend on the cluster
memberships of nodes (as in SBM).

In [5], SAOM was introduced. In this method, network
evolution is modeled as actions taken by users using a
continuous-time Markov chain process. Actors (users) in
this model make actions that maximize a random utility
function and a fixed utility that is a function of several
statistics. Also in [6], interactions are considered as a
function of network structure and attributes of nodes and
pairs of nodes. Network structure effects include appearing
links between friends of friends or triadic closure and effects
of nodes’ degrees. In [7], SAOM is modified for modeling
undirected networks, where both nodes in a relationship
should agree to create a link. In this model (DyNAM), the
objective function is composed of generic, signed, weighted,
and windowed effects. Stadtfeld et al. in [8] extend DyNAM
model for directed links of relational events. In [9], time
heterogeneity of SAOMs is studied and a method for testing
the heterogeneity of a model is introduced.

-e point process, specifically the Hawkes process, has
been used for modeling continuous-time interactions in-
side networks. In [19], directed interactions between nodes
are modeled using the Cox intensity model and using static
and dynamic covariates in the intensity function (similar to
REM method [11]). -is paper also models multiplicity in
interactions. Fox et al. in [17] proposed three Hawkes
models including (i) a Hawkes process with constant
background intensities for sending emails, (ii) a Hawkes
model with nonstationary background intensities for
considering weekends and nights and other effects, and (iii)
model (ii) with different e-mail response rates between
different users.-ey used these models to find leaders in the
network. In [18], Hawkes process is utilized for modeling
network interactions, and also missing information
(sender, receiver, or both) is estimated. In [15], latent
clusters with specific dynamic processes (Hawkes process)
are considered inside the network and interactions between
nodes of every cluster pair are considered dependent on
each other. In paper [16], this dependency is relaxed, and
nodes inside each cluster pair interact independently,
sharing the same parameters. -is property makes the
model tractable and scalable. In [20], the mutual point
process (Hawkes process) and latent space model are used
to model the intensity of interactions. Although these

models have interpretable intensity functions, considering
a predefined generative model for interactions might cause
them not to be applicable for more datasets.

In order to mitigate the aforementioned problem of
point processes, the neural network implementation of these
models was introduced, where the specification of the
generative process is not required. Graph neural networks
(GNNs) as neural networks for encoding network infor-
mation have recently become popular and dynamic GNNs
which model dynamic networks also were introduced that
are reviewed in [3, 21]. In [32], inspired by the neural
Hawkes model of Mei and Eisner [25], a neural network
model of point processes is proposed for modeling inter-
actions in knowledge graphs. In this model, every pair of
nodes is considered to have separate dynamic processes and
the history of events is reduced to relevant history, enabling
it to consider more event types than the original model [25].
However, limiting the history of events might not be ap-
propriate for some situations. In addition to intensity-based
models, generative models have also been successful in
modeling dynamic networks. In [22], generative adversarial
networks (GAN) and RNNs have been used for graph re-
construction, link prediction, and graph prediction. Ma et al.
in [33] propose a dynamic GNN model which uses LSTM
architecture for encoding nodes according to interactions.
-is model is used for link prediction and node classification
tasks.

2.2. Continuous-Time Network Event Models. Several point
process based models were proposed for modeling con-
tinuous-time events over networks such as diffusion pro-
cesses. In [34], a coevolutionary model based on point
processes (Hawkes and survival processes) is proposed,
which models network structure dynamics and diffusion
processes as interdependent processes. In neural point
processes (in particular recurrent neural network (RNN)
based models), some features of Hawkes processes are
preserved such as the dependency of intensity function on
the history of events. In [35], a joint model of event se-
quences and time-series data is proposed, which uses two
Long Short TermMemory (LSTM) networks for each kind of
input data. In this model, inspired by the Hawkes process,
influences between different event types are modeled using
an attention layer. In [25], an RNN (LSTM) based Hawkes
process is proposed, introducing a continuous-time LSTM
for modeling events. -is model consists of a discrete-time
LSTM and a continuous exponential decay of memory cells
(and hidden states) which resembles the exponential decay
of Hawkes intensity. -is model was used for modeling
diffusion processes over networks. Because of the depen-
dency of the number of parameters of this model on the
number of event types, it is not appropriate for events with a
vast number of types (e.g., interactions in a rather large
network considering every node pair as a different type).

In the current research, the model introduced in [25] has
been used for modeling network interactions by clustering
nodes of the network to reduce the number of event types.
-is model is presented in the following sections.
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3. Dynamic Network Models

In this section, different continuous-time dynamic network
models which are evaluated in our research are explained. In
addition, our proposed dynamic network model is intro-
duced. First in Sections 3.1 and 3.2, continuous-time dy-
namic networks assumed in this research and (marked)
point process models are explained. -en in Section 3.3, the
considered point process models for dynamic networks,
which are evaluated in this research, are explained. Finally,
in Section 3.4, the proposed neural point process model is
explained.

3.1. Continuous-Time Networks. In continuous-time net-
works, interactions between nodes inside a network, con-
sidered as events, can be represented as a series of occurrence
times. Let G represent a network containing N number of
nodes that are the individuals interacting with each other
and are assumed to remain constant. -e edges (instanta-
neous links) between these nodes represent discrete events in
continuous time, which are represented as Iij � tm􏼈 􏼉

M

1 ,
where Iij represents interactions between nodes i and j, tm is
the occurrence time of m-th event between them in the time
interval [0, T], and M is the total number of events (in-
teractions) between these nodes. -is network is considered
an undirected network. A sample of this representation is
illustrated in Figure 1.

3.2. Marked Point Processes. Point processes represent
random processes which are a sequence of events
ξ � t1, . . . , tn􏼈 􏼉 in continuous time in a given interval [0, T].
-is model is characterized by conditional intensity function
λ∗(t) which is the conditional probability of occurring an
event i at time t given History H(t) � t1, . . . , tj􏽮 􏽯, which
represents events before event i. -is intensity function is
defined as in [36]

λ∗(t) �
f
∗
(t)

1 − F
∗
(t)

, (1)

where f∗(t) represents the conditional density function and
F∗(t) is its cumulative distribution function. Following this
definition, the intensity function can also be interpreted as
the expected number of events in a small interval [t, t + dt)

given history H(t), i.e., [36]

λ∗(t)dt � E[N(dt)|H(t)]. (2)

Marked (multivariate) point processes are generaliza-
tions of (univariate) point processes where types of events
are also considered in addition to the times. -ese processes
are represented in the form of ξ � (k1, t1), . . . , (kn, tn)􏼈 􏼉,
where ki is the type of event i. -e conditional intensity
function is dependent on the type and the time of events.
-is function is formulated in [36] as

λ∗k (t) � λ∗(t)f
∗
(k|t), (3)

where λ∗(t) is the ground intensity which is the same as the
unmarked case, but it can also depend on the marks of

previous events. f∗(k|t) is the conditional density function
of type k. In the method proposed in this research, inter-
action events in a network are considered as marked point
processes, where the types of events represent the clusters
(blocks) to which the interacting nodes belong. -is process
is explained in more detail in this section.

Different kinds of point processes are defined depending
on the intensity function formula. -e most general pro-
cesses are Poisson and Hawkes processes, which are defined
as the following.

3.2.1. Poisson Process (Nonhomogeneous). In the nonho-
mogeneous Poisson process, the conditional intensity
function is independent of the history of events and is only
dependent on the time, i.e., λ∗(t) � λ(t) [36].

3.2.2. Multivariate Self-Exciting (Hawkes) Process. In the
multivariate Hawkes process, the dependency between
events is modeled using the equation:

λ∗k (t) � μk + 􏽘
i:ti < t

αki,k
exp −βki,k

t − ti( 􏼁􏼐 􏼑, (4)

where μk represents the base intensity of events of type k,
αki,k

is the influence of an event of type ki on an event of type
k, and βki,k

is the corresponding decay rate. With the as-
sumption of positive α values, the occurrence of every event
increases the intensity functions, but they decay exponen-
tially towards μk [25].

-e parameters of these models are estimated using the
maximum likelihoodmethod. In this method, log-likelihood
of train events (in an interval of [0, T] ) is calculated using

L � 􏽘
i:ti <T

log λki
ti( 􏼁 − 􏽚

T

t�0
λ(t)dt. (5)

-en model parameters can be inferred by maximizing
the log-likelihood function. Maximization can be performed
using methods such as Expectation-Maximization (EM) and
Bayesian inference.

3.3. Hawkes-Based Dynamic NetworkModels. Since Hawkes
point processes can capture dependency between events
during the time, they have been used for modeling inter-
actions in networks in different studies. Some of these
models which are evaluated in this research are (i) vanilla
Hawkes model, (ii) block point process model (BPPM) [15],
and (iii) community Hawkes independent pairs (CHIP)
model [16]. -ese models are explained in this section.

3.3.1. Vanilla Hawkes Model (Hawkes). In this model, all
node pairs are considered to have independent and the same
process (i.e., every node pair interacts independently but
share the same parameters). In other words, the intensity
function for the events between every two nodes is for-
mulated as the following equation:
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λ∗(t) � μ + α 􏽘
i:ti < t

exp −β t − ti( 􏼁( 􏼁. (6)

-e parameters μ, α, and β are constant among all node
pairs, and the intensity function for each node pair only
depends on the events between them.-e parameters of this
model are estimated using the EM algorithm [37], which is
explained in more detail in the Appendix section.

3.3.2. Block Hawkes Model. -e BPPM introduced in [15] is
a community-based Hawkes model for modeling events of
networks. In this model, the nodes of each block (cluster)
pair share the same parameters, but the events between every
node pair of each block pair are dependent on each other.
-e inference procedure is performed using an interior point
optimization routine [15, 38]. Class memberships (clusters)
are obtained using local search and variational inference
methods. -ese classes are initialized using the spectral
clustering algorithm.

3.3.3. CHIP Model. -e CHIP model [16] is based on the
BPPM [15], but in this model the dependency assumption
between events of each node pair inside block pairs is re-
laxed. -is property makes this model more scalable and
reduces the complexity of its analysis. -e inference pro-
cedure is performed using the moments estimator method
followed by likelihood maximization using a standard scalar
optimization or line search method. In this method, also the
clusters are obtained using the spectral clustering algorithm.
Besides, the number of clusters is calculated using held-out
data by selecting the number of clusters that maximizes the
likelihood of this data.

3.4. Proposed Method. Point processes have strong as-
sumptions for intensity function and, as mentioned in [25],
have some restrictions, such as positive effects of the history
on intensity function. Hence, they cannot be generalized to
many real-world datasets. -erefore, in the current research,
a neural point process model based on the model introduced
in [25] is proposed, which uses clustering for specifying

event types and reducing them. -is model is explained in
this section.

3.4.1. Proposed Block Neural Point Process Model. -e
neural network-based point process model applied in this
research is based on the method introduced in [25]. In this
method, a continuous-time LSTMmodel is proposed, where
it consists of two components: (i) discrete-time and (ii)
continuous-time components.-e discrete-time component
is similar to the known LSTMmodel of [39]. In continuous-
time procedure, cell function c(t) decays with decay rate δ.
-e discrete part of the method is an LSTM model intro-
duced in [25], with additional equations of [25]

ci+1 � fi+1 ⊙ c ti( 􏼁 + ii+1 ⊙ zi+1,

δi+1←f Wdki + Udhti + dd( 􏼁.
(7)

k represents the type of an event which is a one hot
vector. W, U, and d are model parameters. h represents
hidden state. f, i, and c are defined the same as f (forget
gate), i (input gate), and c (cell state) with different pa-
rameters. -e variable δ in 7 is used in continuous update
process, where the value of c(t) is updated with an expo-
nential decay function which is adapted from Hawkes decay
function [25]:

c(t) � ci+1 + ci+1 − ci+1( 􏼁e
− δi+1 t− ti( ) for t ∈ ti, ti+1( 􏼃. (8)

According to (8), the value of c(t) is decreased from ci+1
towards ci+1 as t⟶∞. -ese cell values control hidden
states h(t) and intensities λk(t) according to [25]

h(t) � oi ⊙ (2σ(2c(t)) − 1) for t ∈ ti−1, ti( 􏼃, (9)

λk(t) � fk wT
kh(t)􏼐 􏼑, (10)

where fk: R⟶ R+ is the transfer function which is used
for converting negative values to positive values [25]. -is
function is defined as
λk(t) � fk(􏽥λk(t)) � sklog(1 + exp(􏽥λk(t)/sk)).

In our research, for improving the accuracy of this
model, a sequence of a certain length of history (i.e., a sliding

 

[15]
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Figure 1: Continuous-time representation of a dynamic network. (a) Sample dynamic network. (b) Continuous-time representation.
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window consisting of l previous events) for every event is
used for calculating its intensity and is fed into the LSTM
model. -erefore, for every next event, this window moves
forward and captures the l number of previous events in
history for calculating its intensity. Hence, it is assured that a
certain number of events in history (if available) are assumed
for calculating the intensity. Nevertheless, this increases the
time complexity of the method.

3.4.2. Event Types. In the proposed method, network block
(cluster) pairs are considered event types. -is assumption
makes the model proposed in the [25] applicable for
modeling network interactions. -is is because, if every pair
of nodes in a network were considered as event type, the
number of types would be in the order of N2. -is yields
enormous sizes of parameters in the neural network model,
which makes it unfeasible for rather large networks. Hence,
in our block neural point process model, nodes of the
network are clustered and divided into blocks b1, . . . , bK􏼈 􏼉,
where K is the number of clusters in the network, which can
be obtained by Eigenvalue decomposition method or by
experimental methods and choosing the best K.

Usually, large K values result in more accuracy (espe-
cially if the nodes are not well clustered). However, a high
number of clusters demand more computations and
memory usage. -erefore, this can be considered as a trade-
off problem, and the best number of clusters must be
selected.

According to this assumption, the type of event i is
represented as ki � (br, bs) where br and bs are the blocks to
which interacting nodes belong. Hence, the total number of
event types decreases to the order of K2 (since we have
K2 ≤N2), which makes it feasible for modeling network
interactions. In this model similar to the block point process
model [15], all nodes inside a block are treated equivalently
and have equal probability of being selected as the inter-
acting node inside that block.

-e framework of the proposed method is illustrated in
Figure 2. As it is represented, first, the nodes of the ag-
gregated network are clustered using the spectral clustering
algorithm. After obtaining the blocks, all interactions are
clustered according to the block pairs they belong to, and
sequences of events are obtained. -ese sequences are used
for training the model. Having a trained model, a sequence
of events is given as an input to the continuous-time LSTM
module, and intensity functions λk(t) for all event types k

are calculated. After obtaining intensities, the future events

time and type can be sampled and generated using the
thinning algorithm [25], which is explained in this section.

3.4.3. Inference Method. -e parameter inference method of
the proposed method is the same as the inference method
introduced in [25]. In this method, the log-likelihood of the
train events (5) is maximized using the gradient descent
method. In this equation, the integral expression (and its
gradient) is intractable and must be estimated. For tackling
this problem, the method presented in [25] is used in our
research, where a Monte Carlo algorithm was introduced for
estimating the integral and its gradient.

3.4.4. SimulationMethod. For generating sample events, i.e.,
interactions in the network, the thinning algorithm [40] is
used as applied in [25]. In this algorithm, the types and times
of the next events are generated using the thinning algorithm
as explained in [25]. -e output of this algorithm is a series
of events in the form of (ki, ti)􏼈 􏼉

n
1 which are block-level

samples. Hence, for generating node level samples, it is
required to sample nodes from each block pair as types of
events. As mentioned earlier, these nodes are sampled
randomly from each block, i.e., with the same probability
1/|br|, where |br| represents the number of nodes in block br.
-e overall simulation procedure is given in Algorithm 1.

4. Evaluation Metrics

In our research, different metrics for evaluating the type and
time of events are used. For evaluating both types (in node
pairs level) and the time of the events, the mean log-like-
lihood of test events is used. In order to account for the
complexity of a model (number of its parameters), the
Akaike measure is also utilized for evaluating different
models. Furthermore, some information retrieval metrics
are applied to evaluate only the types of the simulated events
(or link prediction) and their orderings performance. Fi-
nally, relative errors are calculated for measuring parameter
estimation errors for simulated data. -ese metrics are
explained as the following.

4.1. Mean Log-Likelihood. -e log-likelihood of events as
presented in (5) is an appropriate metric for evaluating
intensity-based models, but this equation evaluates the
likelihood of events in block levels (types). Hence, for
evaluating the model independent of cluster structures, this
equation is converted into

Lnode pairs � 􏽘
i:ti <T

log
λki

ti( 􏼁

N ki( 􏼁
− 􏽚

T

t�0
λ(t)dt � 􏽘

i:ti <T

logλki
ti( 􏼁 − 􏽘

i:ti <T

logN ki( 􏼁 − 􏽚
T

t�0
λ(t)dt. (11)
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In this equation, N(ki) represents the number of pos-
sible events in event type ki. In other words, it represents the
number of node pairs in block pairs (br i, bs i) representing
event type ki, which is

N ki( 􏼁 �

br i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 × bs i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, br i ≠ bs i,

br i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 br i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1􏼐 􏼑

2
, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

|br i| is the number of nodes in block br i. In the third
term of (11), λ(t) is the summation over all types of events,
i.e., λ(t) � 􏽐

K
k:1 λk(t). Using (11), log-likelihood of events in

node pairs level is obtained, which is independent of net-
work clustering.

After obtaining the total log-likelihood of test events, the
mean value is calculated by dividing the total log-likelihood
by the number of test events. It results in a metric inde-
pendent of the number of events (or test interval).

4.2. Akaike Measure. Akaike information criterion (AIC) is
a measure for evaluating prediction error and quality of the
statistical model and is used to select the appropriate model
among different models. -is measure considers a model’s
efficiency by counting the number of parameters in addition
to prediction error. -is measure is defined as follows:

AIC � 2k − 2lnL, (13)

where k represents the number of estimated parameters in
the model and L is the likelihood of tested events. Less
values for this measure are more desirable, and it includes a
penalty for the number of parameters in the model. Hence,
this measure can be compared between different models
with a different number of parameters.

4.3. Information Retrieval Measures. For evaluating the link
prediction, i.e., types of the events, general information
retrieval metrics have been used. -ese metrics consider the
number of correctly and mispredicted links in the ordered
simulated and real links. In this research, precision, recall,
and F1-score are used, which are TP/TP + FP, TP/TP + FN,
and 2∗ recall∗ precision/recall + precision, respectively. TP,
FP, and FN are the numbers of correctly predicted, mis-
predicted, and falsely unpredicted links. In this research,
these measures are calculated for top K predicted links, i.e.,
precision@K, recall@K, and F1 − score@K.

4.4. Mean Relative Error of Parameter Estimation. For
evaluating the parameter estimation accuracy of a model for
the simulated data generated using that model, relative
errors are calculated, and the mean value as mean relative

Clustered NetworkAggregated Network Event Sequences

Cluster Events

Continuous-time LSTM

Event Seq Input

λk (t)

Clustering

Figure 2: -e framework of the proposed method.

Input: Interval [start T, end T]; Previous events (ki, ti)􏼈 􏼉
M

1 ; Blocks bi􏼈 􏼉
K

1 and Model parameters
Output: Generated node-level events (si, ri, ti)􏼈 􏼉

(1) t0←start T; i←1prev eventsi←Previous events
(2) while ti−1 < end T do
(3) ((bsi

, bri
), ti)← Generate next event using thinning algorithm [25]

Randomly select si and ri from blocks bsi
and bri

add sample (si, ri, ti) to prev eventsi

pop first event from prev eventsi

i←i + 1.

ALGORITHM 1: Simulation-thinning.
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error (MRE) is reported. -is error is calculated as the
equation:

MRE � E
x − 􏽥x

􏽥x
􏼔 􏼕. (14)

In this equation, x represents the estimated parameter
and 􏽥x is the true parameter. Mean values of these errors
through different simulations are calculated and reported as
parameter estimation errors.

5. Experiments and Numerical Results

In this section, experimental details and the obtained results
are presented. First, in this section, experimental settings are
explained. -en the synthetic and real-world datasets are
explained. Finally, the experiments’ results are presented and
discussed at the end of this section.

5.1.Experimental Settings. -is section presents some details
about the implementation environment and settings of the
model. -e proposed method has been implemented on a
system with an Intel Core i5 processor, NVIDIA GeForce
GTX 1650 GPUs and 4GB GPU RAM. CUDA technology
has been used for parallelization and speeding up the
computations. Besides, the Networkx library has been used
for processing network data.

According to different network sizes, various values for
hyperparameters have been set. -e sizes of the hidden layer
of neural networks are set to the values in the range of [20,
100]. -e sequences of lengths 20 to 100 have been used for
modeling events dependency on their history. For training
the model with batches, a batch containing several con-
secutive events (100–200) is selected at each training iter-
ation. -e log-likelihood of these events during the time
interval containing them is calculated and maximized using
the Adam optimization method with a learning rate of 0.001.
-e training process is iterated for 3 to 100 epochs of data. In
order to evaluate the models using information retrieval
metrics, the first 50, 100, and 200 events in test events were
considered.

5.2. Datasets. -e proposed method has been compared
with other methods using both synthetic and real-world
datasets. -ese data and their generation details are pre-
sented in the following.

5.2.1. Synthetic Data. For generating synthetic data, two
event-based network models, i.e., the vanilla Hawkes process
and block point process models, were used in this research.
-e thinning algorithm was used to simulate point processes
(Hawkes process). -e vanilla Hawkes networks of 50, 100,
and 200 nodes are with parameters μ � 0.00005, 0.05,
α � 0.03, 0.25, and β � 0.03, 0.39. Every network was sim-
ulated ten times, and mean values of evaluation metrics and
errors (standard deviations) were reported. -e block
Hawkes networks of the same sizes with three clusters (with
ten simulations for each network) were generated. -e

average number of events for each generated network type is
given in Table 1. -e performances of different models on
these networks are evaluated in Section 5.3.1.

5.2.2. Real-World Data. Different real-world network in-
teraction data have been used for testing the effectiveness of
different models. -ese datasets consist of different human
interaction networks, which are detailed in the following and
their statistics are given in Table 2:

(1) MIT Reality Mining. -is dataset consists of phone call
information between 75 MIT students and faculty [41] from
October 2001 to February 2002. -e preprocessed data used
in [14, 16] were also used in this research for evaluating
different methods.

(2) Hospital Dataset. (https://www.sociopatterns.org/
datasets/hospital-ward-dynamic-contact-network/) -is
dataset represents the interactions between patients and
faculty of a hospital in Lyon, France, from Monday, De-
cember 6, 2010, to Friday, December 10, 2010. -e Hospital
data includes interaction information of 75 people [42].

(3) Hypertext Dataset. (https://www.sociopatterns.org/
datasets/hypertext-2009-dynamic-contact-network/) -is
dataset contains face-to-face proximity information between
113 participants of the ACM Hypertext 2009 conference
during about 2.5 days [43].

(4) Enron Email Dataset. Enron dataset [44] contains e-mail
messages between about 150 users of the Enron Corporation
from July 2001 to August 2001. -e preprocessed version of
this dataset from [14, 16] was used in this research, con-
taining 142 users.

(5) Primary School Dataset. (https://www.sociopatterns.
org/datasets/primary-school-temporal-network-data/)
-is dataset contains interactions between students and
teachers during about 1.5 days and includes 242 nodes
[45, 46].

(6) Highschool Dataset. (https://www.sociopatterns.org/
datasets/high-school-contact-and-friendship-networks/)
Highschool dataset involves contact information between
high school students in France [47]. -is dataset contains
327 nodes interacting over five days in December 2013.

Multiple splits of each dataset were selected (with
constant duration of half of the total duration) to evaluate
the models on different realizations of these datasets, and
their statistics are given in (2). -e splits with less than 50
events in validation or test events were ignored. -e mean
values of evaluation metrics and their errors on these splits
for each dataset are calculated and discussed in Section 5.3.2.
Every split of both synthetic and real-world datasets is di-
vided into three parts, i.e., train, validation, and test events.
Validation events are used in our proposed method to select
the best model among trained models for different data
epochs.
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In all methods (except vanilla Hawkes method), network
datasets are clustered for assigning event types using spectral
clustering. In order to obtain an aggregated network for each
interaction dataset, the number of interactions between
every two nodes is considered as edge weights between them
in the aggregated network. -en, this network is clustered
using the spectral clustering algorithm considering different
numbers of clusters. -e results of modelings using different
clusters are presented in the next section. In the block point
process model, cluster memberships can be optimized using
the local search algorithm.

5.3. Results andDiscussion. In this section, numerical results
of testing methods mentioned above on both synthetic and
real-world data are presented and discussed.

5.3.1. Results for Synthetic Networks. -emodels mentioned
above are evaluated on the synthetic networks explained in
Section 5.2.1 using different evaluation metrics explained in
Section 4. In this section, parameter estimation accuracy, the
likelihood of test events, and data generation performance of
different models are evaluated, which are explained in the
following.

For both synthetic data types generated by vanilla
Hawkes and BPPM, the MRE metric evaluates parameter
estimation accuracy by the corresponding model. -ese
results are given in Tables 3 and 4. For the Hawkes data,
estimation accuracies for μ and α parameters are acceptable,
but MRE values for the estimated β parameter are higher
(especially for the networks with 100 nodes), and its high
standard deviation represents instability of the predicted
parameter. It might result from bad initialization of the
method, which results in disparate estimations, and β is the
parameter of the exponent more affected by the initializa-
tion. Furthermore, by increasing the number of simulations,
the deviation might decrease. For the BPPM data, as rep-
resented in Table 4, relative errors of parameter estimations

and their deviations are acceptable, representing a more
accurate estimation of this method.

-e results of measuring test data’s likelihood (log-
likelihood) and data generation performance are also il-
lustrated in Figures 3–6.-e illustrated information retrieval
metrics evaluate types of generated events which is de-
pendent on the clustering. Hence, they should be considered
separately for each number of clusters. But log-likelihood
and Akaike measures can be compared through different
clusterings. As can be seen, the mean log-likelihood results
represent the similar performance of different methods for
the small number of clusters (except for the BPPM with one
cluster in BPPM data with 100 nodes). In order to include
model complexity in log-likelihood, the Akaike measure was
also evaluated. According to these figures, the Akaike of our
proposed method (BNHM) is high, representing its high
complexity, which should be decreased in the case of in-
sufficient resources. It can be performed by decreasing the
number of hidden layers of the model, but it might affect the
model’s performance, which should be configured according
to the application. As Figures 3–6 represent, the log-like-
lihood of the BNHM decreases with increasing the number
of clusters of the model. Since the complexity of the model

Table 1: Statistics for different realizations of synthetic networks.

Network type Number of nodes Average number of events

Vanilla Hawkes
50 6114.7
100 7432.2
200 6966

BPPM
50 6173.1
100 6142.6
200 6144.7

Table 2: Dataset statistics for dynamic networks.

Dataset # of nodes # of train events # of valid events # of test events # of splits Average number of events in each split
Reality 70 1303 198 661 9 1297.3
Hospital 75 30869 864 692 12 17061.3
Hypertext 113 16468 2665 1686 9 10396.2
Enron Email 142 2673 328 1000 10 1982.4
Primary School 242 123573 1114 1087 8 45396.5
Highschool 327 187109 925 475 4 93843

Table 3: Parameter estimation errors by vanilla Hawkes model for
synthetic Hawkes data.

# of nodes μ α β
50 0.0109 (0.0076) 0.9841 (0.0153) 2.0952 (2.7723)
100 0.0129 (0.0070) 0.9943 (0.0097) 29.9112 (70.2657)
200 0.0103 (0.0062) 0.9995 (0.0008) 1.3768 (1.8095)

Table 4: Parameter estimation errors by BPPM for synthetic BPPM
data.

# of nodes μ α β
50 0.9929 (0.4299) 0.9891 (0.0025) 0.9820 (0.0062)
100 0.7251 (0.4919) 0.9895 (0.0088) 0.9977 (0.0741)
200 0.3897 (0.0766) 0.9819 (0.0170) 1.0128 (0.1346)
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Figure 3: Mean results for synthetic Hawkes data with 100 nodes.
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Figure 4: Mean results for synthetic Hawkes data with 200 nodes.
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Figure 5: Mean results for synthetic BPPM data with 100 nodes.
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Figure 6: Mean results for synthetic BPPM data with 200 nodes.

Complexity 11



increases with the increasing number of clusters, this might
represent the need for more training iterations for these
models, which is more time-consuming. Accordingly, for
higher numbers of clusters in larger networks (with 200
nodes) due to higher time complexity, BNHM and BPPM
were not trained. But the CHIP model has better speed in
training and is more appropriate for time-constrained ap-
plications. Furthermore, for each model, the best model
according to the Akaike measure was selected and reported
in Tables 5 and 6. As Figures 3 and 6 and Table 5 illustrate,
for Hawkes data, vanilla Hawkes, BPPM, and CHIP perform
similarly (considering one cluster). According to Table 6, for
BPPM data, BPPM and CHIP models can usually find the
proper number of clusters (which is three) in addition to
better performance in terms of log-likelihoods (which is
close to vanilla Hawkes result). But BNHM fails to find the
correct number of clusters, which can arise from a small
number of training iterations. Overall, according to these
results, the CHIP model outperforms all other methods (its
accuracy and time complexity) for both types of synthetic
data.

5.3.2. Results for Real-World Networks. -is section presents
the results of testing Hawkes-based models explained in
Section 3.3 and our proposed model (BNHM) on different
real-world datasets. Similar to the experiments performed
for synthetic networks, several experiments were done for

different splits of real-world data, and mean values of
evaluation metrics and their errors (standard deviation) are
reported. In addition, for cluster-based models (BPPM,
CHIP, and BNHM), different numbers of clusters were
tested, and the best cluster numbers for each model (in each
dataset) were obtained. Finally, a comparison of different
cluster numbers for some datasets (using the whole dataset)
is also presented.

-e average results of evaluating different methods on
different splits of six real-world datasets and their selected
models according to the Akaike measure are given in
Figures 7–12 and Table 7. According to Figure 7, BNHM
does not have good performance for the Reality dataset, and
it has high model complexity according to the Akaike
measure. It has a log-likelihood close to BPPM for the small
number of clusters. For this dataset, the CHIP and vanilla
Hawkes models represent better performances in terms of
Akaike and log-likelihood measures. Considering recall and
precision values, BPPM and CHIP have similar perfor-
mance. As indicated in Table 7, all models except BPPM find
one cluster as the best number of clusters. It represents a
lower clustering feature of this dataset. -e results for
Hospital and Hypertext datasets in Figures 8 and 9 and
Table 7 illustrate the good performance of BNHM on these
datasets. But still, vanilla Hawkes is the best model according
to AIC and likelihood values, and BNHM has higher model
complexity. In the Hypertext dataset, after vanilla Hawkes,
BNHM has overall the best log-likelihood. In these datasets,

Table 6: Best mean results for synthetic BPPM dynamic networks with different simulations.

# of nodes Method Best K AIC Mean log-likelihood Mean P Mean R

50

Hawkes 1 8388.5 (240.3) −7.68 (0.07)
BPPM 3 8311.9 (191.6) −7.6 (0.08) 0.27 (0.06) 0.09 (0.003)
CHIP 3 7990.4 (205.8) −7.27 (0.05) 0.25 (0.06) 0.09 (0.003)
BNHM 1 15008.6 (224.5) −7.92 (0.03) 1 0.09 (0.003)

100

Hawkes 1 10122.2 (493.9) −9.21 (0.06)
BPPM 4 9737.2 (435.3) −8.78 (0.10) 0.24 (0.07) 0.09 (0.005)
CHIP 3 9584.7 (435.6) −8.67 (0.09) 0.24 (0.07) 0.09 (0.005)
BNHM 1 16597.2 (512.1) −9.31 (0.05) 1 0.09 (0.005)

200

Hawkes 1 11909.7 (462.6) −10.67 (0.04)
BPPM 3 11420.3 (426.2) −10.19 (0.06) 0.29 (0.04) 0.09 (0.004)
CHIP 3 11296.6 (428.8) −10.08 (0.05) 0.26 (0.08) 0.09 (0.004)
BNHM 1 18284.9 (459.0) −10.69 (0.04) 1 0.09 (0.004)

Table 5: Best mean results for synthetic Hawkes dynamic networks with different simulations

# of nodes Method Best K AIC Mean log-likelihood Mean P Mean R

50

Hawkes 1 4414.8 (83.7) −4.0 (0.03)
BPPM 1 4415.1 (83.6) −4.0 (0.03) 1 0.09 (0.002)
CHIP 1 4415.1 (83.4) −4.0 (0.03) 1 0.09 (0.002)
BNHM 1 12447.5 (155.5) −5.51 (0.02) 1 0.09 (0.002)

100

Hawkes 1 16340.2 (600.9) −10.90 (0.04)
BPPM 1 16340.2 (601.0) −10.90 (0.04) 1 0.07 (0.003)
CHIP 1 16343.0 (601.0) −10.90 (0.04) 1 0.07 (0.003)
BNHM 1 22702.5 (598.3) −10.90 (0.04) 1 0.07 (0.003)

200

Hawkes 1 13688.7 (384.5) −10.90 (0.03)
BPPM 1 13688.8 (384.5) −10.90 (0.03) 1
CHIP 1 13688.9 (384.4) −10.90 (0.03) 1 0.08 (0.002)
BNHM 1 20055.4 (386.6) −10.91 (0.03) 1 0.08 (0.002)
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Figure 8: Mean results for Hospital data.
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Figure 7: Mean results for reality data.
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Figure 9: Mean results for Hypertext data.
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Figure 10: Mean results for Enron data.
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Figure 11: Mean results for Primary School data.
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Figure 12: Mean results for Highschool data.
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BNHM in more clusters has a degradation in its perfor-
mance because of fewer training iterations. For the Enron
dataset, also CHIP and vanilla Hawkes models perform
better (in terms of Akaike and log-likelihood). -e BPPM
outperforms in Primary School and Highschool datasets
which can represent dependency between cluster members’
interactions. Its performance in these datasets is significantly
better in terms of Akaike and log-likelihood measures.
However, it should be mentioned that CHIP has a faster
training process, and BPPM and BNHMmodels have higher
training time complexity.

-e results in Table 7 have high errors (standard devi-
ations) for some datasets, which can arise from the small
number of splits selected for these datasets and the variety of
event patterns in the selected splits (corresponding to dif-
ferent timings). Due to the data dependency feature of deep
learning methods and requiring enough data for training the
BNHM, the splits were selected to include enough events for
training.

In addition to the experiments on multiple splits of real
data, all models were also trained and tested using all the
events in these datasets. -ese results are illustrated in
Table 8, where the best cluster number for each model
(cluster-based models) is selected according to log-likeli-
hood values. According to these results, the CHIP model
has the best results in Reality Mining and Enron Email
datasets, which is very similar to the results of the vanilla
Hawkes model. In these datasets, the CHIP model has a
small number of clusters (2 and 3) which makes it close to
the vanilla Hawkes model (CHIP model with 1 cluster). For
these datasets, BPPM and BNHM have close results with
the same number of clusters (10 and 4).-is table illustrates

that BNHM has the best result for Hospital and Hypertext
datasets with 4 clusters. In addition, the vanilla Hawkes
model performs well for these datasets (as the second best
method). For Primary School and Highschool datasets,
BPPM has significantly the best results with 1 cluster, i.e.,
no clustering. It can confirm the interdependence between
interactions of node pairs in these datasets. In addition,
according to this model, all nodes have the same dynamic
process (because of no clustering). BNHM has the second
best results for the Primary School dataset with more
clusters, but BPPM performs considerably better. In the
Highschool dataset, the vanilla Hawkes model also per-
forms well as the second best model. According to these
results, the compared models perform differently on dif-
ferent datasets. Besides, because of the large number of
parameters of our proposed model, it has an extendibility
problem that can not consider a large number of clusters for
larger datasets and longer sequences for capturing more
history information.

In addition, information retrieval metrics were com-
pared on two datasets considering different clusterings. -e
results of these experiments are given in Tables 9 and 10. In
Table 9, the results for the Reality Mining dataset are il-
lustrated. For this dataset, BPPM and BNHM have better
log-likelihood with increasing the number of clusters.
However, for the CHIP model, fewer clusters result in better
performance. It is also noticeable that our proposed method
has better precision (and F1-score) for fewer clusters (2 and
6). For the Enron dataset, CHIP has the best results re-
garding the log-likelihood of test events. Although BNHM
has not had good efficiency for this dataset, precision@K
values are comparable with other methods.

Table 7: Best mean results for real-world dynamic networks with different splits.

Dataset Method Best K AIC Mean log-likelihood Mean P Mean R

Reality

Hawkes 1 557.4 (105.5) −3.75 (0.66)
BPPM 2 1112.2 (216.4) −7.30 (0.40) 0.51 (0.16) 0.61 (0.12)
CHIP 1 557.7 (104.0) −3.75 (0.64) 1
BNHM 1 7495.2 (342.2) −7.45 (1.48) 1

Hospital

Hawkes 1 17915.4 (14586.4) −7.13 (0.95) 1 0.14
BPPM 10 26002.5 (20429.3) −9.86 (1.25) 0.09 (0.07) 0.05 (0.05)
CHIP 1 29062.5 (28700.1) −11.52 (3.67) 1 0.14 (0.20)
BNHM 1 30481.0 (18757.3) −10.33 (2.39) 1 0.14 (0.20)

Hypertext

Hawkes 1 16418.9 (6463.4) −7.19 (0.54)
BPPM 9 24260.6 (9404.9) −10.38 (0.49) 0.17 (0.17) 0.05 (0.02)
CHIP 4 28115.1 (12354.2) −12.27 (2.80) 0.35 (0.22) 0.05 (0.02)
BNHM 2 29425.8 (8701.2) −9.92 (0.67) 0.81 (0.18) 0.05 (0.02)

Enron email

Hawkes 1 1399.2 (522.8) −4.71 (0.66)
BPPM 4 2389.8 (830.8) −7.72 (0.71) 0.27 (0.18) 0.32 (0.09)
CHIP 1 1398.4 (524.6) −4.72 (0.70) 1 0.38 (0.15)
BNHM 1 9218.3 (1195.8) −9.38 (0.16) 1 0.38 (0.15)

Primary School

Hawkes 1 42305.0 (12058.3) −7.21 (0.56)
BPPM 2 −42497.2 (17832.3) 7.37 (2.19) 0.35 (0.19) 0.02 (0.006)
CHIP 4 58783.9 (24182.7) −10.00 (2.93) 0.32 (0.14) 0.02 (0.006)
BNHM 5 49477.5 (15642.1) −6.57 (0.66) 0.21 (0.06) 0.02 (0.004)

Highschool

Hawkes 1 19478.6 (11788.4) −6.26 (0.43)
BPPM 2 −15885.7 (19601.6) 3.43 (3.60) 0.48 (0.17) 0.05 (0.04)
CHIP 4 32330.1 (24086.3) −10.06 (4.54) 0.25 (0.12) 0.05 (0.04)
BNHM 3 30653.5 (13693.0) −7.55 (0.62) 0.34 (0.08) 0.05 (0.04)
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Due to the difference of models in different datasets,
some relations between features of datasets and the ap-
propriate model can be concluded. According to the results
of real-world datasets, we might conclude that BPPM

outperforms other models in larger networks. It can be the
result of the model’s assumption, which considers interac-
tions on a large scale (cluster level). Hence, it is more ap-
propriate for larger networks (such as Primary School and

Table 8: Results for real-world dynamic networks.

Dataset Method Mean log-likelihood K

Reality

Hawkes −3.87 1
BPPM −5.95 10
CHIP −3.83 2
BNHM −6.01 10

Hospital

Hawkes −6.78 1
BPPM −9.17 10
CHIP −7.87 2
BNHM −5.74 4

Hypertext

Hawkes −7.36 1
BPPM −10.32 10
CHIP −11.66 5
BNHM −7.3 4

Enron Email

Hawkes −4.8 1
BPPM −7.2 4
CHIP −4.8 3
BNHM −7.5 4

Primary School

Hawkes −7.87 1
BPPM 6.7 1
CHIP −11.3 13
BNHM −2.46 13

Highschool

Hawkes −6.4 1
BPPM 0.39 1
CHIP −9.08 7
BNHM −6.66 7

Table 9: Results of Reality dataset.

Method K Mean log-likelihood Precision @200 Recall @200 F1-score @200
Hawkes 1 −3.87 — — —

BPPM
2 −7.55 0.45 0.3 0.36
6 −6.86 0.26 0.3 0.28
10 −6.61 0.04 0.29 0.08

CHIP
2 −3.83 0.46 0.3 0.37
6 −5.05 0.18 0.28 0.22
10 −5.9 0.14 0.3 0.2

BNHM
2 −8.08 0.93 0.30 0.46
6 −7.88 0.9 0.29 0.44
10 −6.01 0.14 0.28 0.19

Table 10: Results for Enron dataset.

Method Cluster num. Mean log-likelihood Precision @50 Recall @50 F1-score @50
Hawkes 1 −4.8 — — —

BPPM
3 −7.43 0.32 0.05 0.09
4 −7.2 0.22 0.05 0.08
6 −7.3 0.06 0.05 0.05

CHIP
3 −4.8 0.34 0.05 0.09
4 −5 0.26 0.05 0.08
6 −4.9 0.3 0.05 0.09

BNHM
3 −7.97 0.34 0.05 0.09
4 −7.5 0.44 0.05 0.09
6 −7.6 0.26 0.05 0.08
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Highschool datasets). -e BNHM has the same assumption
but requires more training iterations to be more efficient
because of its model complexity. Furthermore, another
conclusion that can be drawn is that BPPM performs better
in datasets including face-to-face interactions and a high
clustering feature with a higher influence of interactions on
each other (which are the characteristics of Primary School
and Highschool datasets). On the other side, the CHIP (and
vanilla Hawkes) model performs better for datasets where
interactions are not face-to-face (such as online interactions
in Enron and Reality datasets). For BNHM, it is required to
decrease the model complexity to increase its efficiency in
real applications.

6. Conclusion

In this research, different point process (Hawkes) based
dynamic network models were compared using different
synthetic and real-world datasets. Furthermore, a neural
network Hawkes process based on the method introduced in
[25] was proposed, which uses network clustering for
specifying types of interactions and models interactions of
dynamic networks using a continuous-time LSTM intro-
duced in [25]. -ese models were tested on six different
datasets, and the best number of clusters was selected
according to the results. -ese results for synthetic data
express the efficiency of the CHIP model. In addition, the
experiments on real-world datasets represent that the per-
formance of the tested methods depends on the dataset, and
these methods have different efficiency for the tested
datasets. Furthermore, because of the dependence of the
proposed model on the number of event types, it is not

extensible for more event types such as interactions in
networks. Hence, to be more appropriate for the network
interactions, it is required to improve the model to not
depend on the number of event types. In addition, the ef-
ficiency of this model increases by more training iterations
(which was not performed in most simulations because of its
time complexity). Hence, for this model’s better perfor-
mance, sufficient training must be conducted. Furthermore,
this model can not capture much history dependency for
larger networks, which decreases its accuracy in calculating
intensities.

Considering the aforementioned deficiencies of the
proposed model, the avenues for future work are (i)
extending the model to consider more event types by de-
vising a model independent of event types, (ii) extending the
model to consider more history information, (iii) using
methods such as attention mechanism to reflect Hawkes
influence matrix, as used in [35], and (iv) using Wasserstein
generative adversarial networks (WGANs) [48, 49] for
modeling network interactions which have been used for
modeling point processes but it requires to extend it to
model the types of events in addition to their times.

Appendix

Vanilla Hawkes Inference Method

-e parameters of the vanilla Hawkes model can be inferred
using the EM method introduced in [37]. In this method,
log-likelihood of all events in an interval [0, T] is given by
the following equation:

L � 􏽘
a,b∈N

􏽘
ti∈I(a,b)

log μ + 􏽘
tj ∈ I(a,b)t

j< ti

αe
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1 − e
− β T− ti( )􏼒 􏼓, (A.1)

where I(a, b) represents all interactions between nodes a

and b. -is summation is performed over all node pairs of
the network. By having Tβ≫ 1, expression

􏽐ti <T(1 − e− β(T− ti)) ≈ nab, where nab is the number of all
events between nodes a and b. -erefore, we get
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Since maximizing the log-likelihood in (A.2) using
gradients is difficult, an EM method introduced in [37] is
used. We assume hidden variables pij indicating the

probability of event i being triggered by event j. By this
definition, the formula for log-likelihood changes into the
form of

L � 􏽘
a,b∈N
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piilogμ + 􏽘
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According to the definition of pij, E-Step of EM algo-
rithm can be written as
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μk
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By determining derivatives of log-likelihood in (A.3)
with respect to the parameters and setting them to zero, we
obtain parameters for M-Step:
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Data Availability

(i) -e “Hospital” [42], “Hypertext” [43], “Primary School”
[45, 46], and “Highschool” [47] datasets are publicly
available on the website of SocioPatterns (https://www.
sociopatterns.org/datasets). (ii) -e “MIT Reality Mining”
and “Enron Email” datasets supporting this manuscript are

from previously reported studies and datasets, which have
been cited. -e original data of MIT Reality Mining [41] and
Enron [44] datasets were preprocessed by the previous
studies of [14, 16]. -ese datasets are publicly available from
https://github.com/IdeasLabUT/CHIP-Network-Model/
tree/master/storage/datasets. (iii) -e synthetic data used to
support the findings of this study can be obtained from the
first author upon request (h.sdizaji@tabrizu.ac.ir).
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