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In practical application studies of glider formations, ocean currents are a major influencing factor in their path planning. *e
purpose of this paper is to solve the path planning problem of glider formations in time-varying ocean currents and establish
gliders, glider formation, and ocean current models based on existing data. *e Doc-CNN architecture is tailored to conform to
the operation and environment characteristics of gliders in practical application. After experiments, the algorithm of the improved
architecture can be used in the path planning task of glider formation. *e algorithm architecture is compared and tested on two
datasets, grid maps and ocean maps. Doc-CNN has an advantage over architecture without being tailored to glider characteristics
and makes full use of known global information and local information collected by gliders themselves. *e results show that the
path planning problem of glider formation in ocean currents can be solved by using Doc-CNN.

1. Introduction

After years of development, the technology of underwater
glider (UG) is gradually becoming mature [1], and many
types of equipment have achieved industrialization and
large-scale production [2]. It has been widely used in many
marine applications [3], including marine environment
monitoring [4], a marine scientific investigation [5], marine
resource exploration, and performing missions in deep or
dangerous waters that are difficult to reach by human beings
[6]. *e application of gliders is an important part of the
ocean observation network and integrated ocean observa-
tion system [7].

UG formation applications have broad application
prospects in a large-scale marine survey [8]. Many studies on
the area coverage capability of underwater unmanned for-
mation focus on the deployment of fixed nodes in the
network [9], which usually adopts the way of discharge to
increase the coverage by the ocean current. *e marine
environment in which these vehicles live is a highly dynamic
system with high spatiotemporal variability [10]. Most

gliders also lack power and usually travel at a relatively slow
speed, in most cases at or below the speed of the current.
Whether in some coastal or deep-sea applications, the in-
fluence of ocean currents is considerable and is even the
main cause of the influence on the glider path.

For glider applications, path planning is a necessary
capability. Path planning is one of the key technologies in the
field of underwater vehicles. It refers to finding a collision-
free path from the initial state to the target state according to
certain evaluation criteria in the water environment con-
taining obstacles. To a certain extent, path planning tech-
nology marks the level of intelligence of underwater vehicles
[11]. Compared with other types of vehicles, the underwater
mission environment is a large-scale three-dimensional (3D)
space, and the complexity of the underwater environment
increases the difficulty of planning. Meanwhile, the position,
energy consumption, posture, and motion constraints
should also be considered [12].

For traditional underwater path planning, the shortest
path can be found, but it lacks flexibility [13].*ere are also a
membrane evolutionary artificial potential field
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(memEAPF), combined with membrane computing, genetic
algorithm, and artificial potential field (APF) [14], and a
hybrid path planning algorithm based on membrane
pseudobacterial potential field (MemPBPF) [15]. *ese
combinations have better performance than the original
APF in terms of path length. Intelligent path planning
methods mainly apply modern artificial intelligence tech-
nology to the path planning of underwater vehicles, which
roughly includes swarm intelligence methods and machine
learning methods. Path planning methods are based on
swarm intelligence paths, such as genetic algorithm [16], ant
colony algorithm [17], and biogeography optimization al-
gorithm [18]. Among them, the energy consumption of
Autonomous Underwater Vehicle (AUV) in a large range of
environments is considered through planning in the un-
derwater environment, and the energy consumption term of
AUV dynamic estimation is added to the genetic algorithm
cost function [19]. Ant colony evolution was improved to
solve the problems of low search efficiency, long search time,
and insufficient ocean current information in global path
planning [20]. *e underwater vehicles planning system is
designed based on the BBO algorithm, and simulation ex-
periments are carried out [21]. *e results show that BBO-
based planning algorithms have significant potential in real
time.

With regard to the late research studies, generally
available ocean current prediction sources provide a series of
data at discrete time points, but such dynamic prediction is
difficult to be applied to motion planning. Problems in-
volving time-varying costs are notoriously difficult to solve.
*e time-dependent shortest path (TDSP) problem is the
simplest general form, and it is known to be NP-hard [22].
Many variables will need to be defined if gliders are to
perform dynamic path planning in ocean currents [23].
Dynamic path planning sometimes makes it better to defer
action for a while (waiting in place or floating downstream).
*is is non-FIFO (first-in-first-out) attribute, and efficient
algorithms for non-FIFO TDSPs have been gradually used in
the past two years [24]. Dynamic planning, for example, in
the study of planning in time-dependent flow fields [25],
demands accurate or regular predictions of the ocean cur-
rent environment due to the negative influence of dynamic
flow in the marine environment on navigation performance
in the ocean. However, the study [25] assumes that ocean
currents of various depths have the same velocity, which
clearly does not correspond to reality. Such dynamic pro-
gramming is not really useful when the overall system’s
prediction capacity is restricted or when the oceans are
unfamiliar.

At present, underwater path planning is more about
transforming the path planning problem into a search
problem or energy optimization problem; the real-time
requirement is not high. Machine learning, as a hotspot of
actual planning problems, usually describes path planning as
Markov Decision Process (MDP) problem, which provides
data for training and learning. It can be divided into a neural
network (NN), Reinforcement Learning (RL), and Deep
Reinforcement Learning (DRL). For the neural network, in
the path planning of underwater gliders, sensor data is

usually taken as network input and behavior action as
network output, and the network model is obtained through
training [26]. After the problem is upgraded to 3D space, the
AUV path planning problem is studied considering different
flow rates [27]. Reinforcement learning is a kind of unsu-
pervised machine learning, and its learning can be regarded
as a trial evaluation process [28]. Considering the impact of
ocean current on the energy consumption of underwater
gliders, the design considers the cost function of ocean
current to optimize the path planning in the 3D environ-
ment [29]. Compared with RL, which focuses on solving
learning problems, deep learning networks can extract ab-
stract features from large-scale data to cope with increasingly
complex task environments. DRL can also be used to plan
the obstacle avoidance of underwater vehicles [30].

It is of great significance to study path planning algo-
rithms that can get the corresponding navigation strategies
directly from vehicles without manual intervention and the
navigation strategies can be obtained with as few operation
resources as possible. *erefore, it is of great significance to
study machine learning algorithms that can be used to solve
real-time dynamic programming problems without envi-
ronment dependence when the planning time is reduced
after the algorithm is formed.

Convolutional Neural Networks (CNNs) and Deep
Reinforcement Learning (DQN) can be adopted for path
planning in a dynamic environment [31]. Inspired by the
advanced performance of Deep Convolutional Neural
Networks (DCNNs) in visual feature representation and
learning, the image-based path planning learns planning
directly from the original image. A novel DCNN architec-
ture Value Iteration Network (VIN) can realize path
planning based on initial images [32]. *e superior feature
representation and learning capability of DCNN make it
possible to fit large-scale datasets in more convolution layers
and larger parameter space compared with CNN [33]. It can
be used in large-scale datasets and multiparameter envi-
ronments, such as ocean environments. DCNN also has the
disadvantage of requiring a lot of computing resources. By
studying the direction of DCNN and comparing VIN, the
Deep Convolutional Neural Network (DB-CNN) algorithm,
which has a dual-branch structure and can achieve higher
efficiency and precision of path planning, is proposed [34].
*e path planning based on the initial state is realized, which
is better than the traditional global path planning method
based on environment mapping.

Path planning for gliders frequently requires them to be
feasible and in line with their own abilities to move the path
rapidly. After a large number of improved algorithms and
some relatively complex algorithms, although we can get a
better path in simulations, there is sometimes inadequate
time or computation capacity to utilize complicated algo-
rithms in applications, such as the limited of independent
action in gliders, or the actual case where the sensors carried
by each glider in the formation are not exactly the same. *e
advanced and practical characteristics of algorithms need to
be balanced.

In order to accommodate the conditions of glider for-
mation use, such as movement constraints, and the
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limitation that the glider does not necessarily know the
global current conditions at each point in time during
operation, the algorithm should first characterize and learn
the initial state of the glider formation and the depth
characteristics of time-varying ocean current data. *en,
according to these depth characteristics, we determine the
optimal path for the current situation. Because these features
are similar to the data characteristics of the dual-branch
CNN network, the dual-branch algorithm utilized by the
glider formation in ocean current is improved in this study.
*e planning of the glider formation is realized from the
initial global data and the subsequent local data collected. A
Deep Convolutional Neural Network (Doc-CNN) for the
ocean current environment is designed and adapted to the
path planning of existing and future gliders in ocean cur-
rents, which can achieve higher efficiency and accuracy of
glider formation path planning in the ocean current
environment.

2. Preliminaries

*is section introduces the preparatory knowledge in this
paper. It includes the Markov Decision Process (MDP) and
knowledge of neural networks.

2.1.MarkovDecisionProcess. It is assumed that the gliders in
ocean current have MDP. A standard MDP for sequential
decision making is composed of state space S, action space
A, transfer probability distribution P, and reward function
R. S represents the set of descriptions of the possible states
of an agent in the environment, A represents the set of
descriptions of possible actions an agent may take in the
environment. R: S × A⟶ R, the received reward from
the environment for taking action in a certain state.
P: S × A × S⟶ R, an agent in a certain state will choose
its actions according to P and then move from one state to
another. *e quad 〈S,A, P, R〉 is to find the best strategy P

to perform a series of actions in the environment so that the
agent can complete the given task with the best turn return.
*e discounted factor is c, in which the policy is represented
by π: S × A⟶ R. c ∈ [0, 1] represents the discounted
factor of reward, and the optimal strategy is defined as

π∗ � argmax
π
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Equation (2) is substituted into (1); the optimal strategy
is derived as

π∗ � argmax
π

Es0
V s0( 􏼁􏼂 􏼃

� argmax
π

Es0 ,a0
Q s0, a0( 􏼁􏼂 􏼃.

(4)

However, since both state value function and action
value function are unknown, it is impossible to determine π∗
through (4) directly. *erefore, the value functions of MDP
have to be estimated precisely so that the optimal policy can
be found.

As both state value function and action value function
are unknown, π∗ is impossible to determine through (4).
*erefore, the value function of MDP has to be accurately
estimated in order to find the optimal policy.

2.2. Value Iteration Network. Value iteration is a typical
method for value function estimation for solving the MDP
problem [32]. Vk(s) is the estimated state value function at
step k; Qk(s, a) is the estimated action value function for
each state at step k. πk is utilized to represent the deter-
ministic policy at step k. When i � 0, 1, . . ., the value iter-
ation process can be expressed as

πk si( 􏼁 � argmax
ai

Qk si, ai( 􏼁,

Vk+1 si( 􏼁 � Qk+1 si, π si( 􏼁( 􏼁

� ri + Esi+1
Vk si+1( 􏼁􏼂 􏼃.

(5)

However, since it is difficult to determine the explicit
representation of πk, Qk, and Vk when the dimension of st is
high. Value Iteration Network (VIN) is designed to ap-
proximate this process successfully. A planning module is
added to the generic policy representation.

VIN has some advantages. *e reward function and the
transfer function are parameterized and can be derived. *e
solution of auxiliary policy is introduced to make policy have
more generalization ability. *e attention mechanism is
introduced in policy solving. *e design of the Value It-
eration Module is equivalent to a CNN network, and the
network can be updated by Error Back Propagation (BP)
algorithm.

Global information can be passed through VIN to
various states in the final value function layer. *is archi-
tecture performs well in learning to plan tasks. However,
VIN also has defects. It takes a lot of time to train such a
cyclic convolutional neural network, especially in the value
of iteration time.

2.3. DB-CNN for Value Function Estimation. DB-CNN ar-
chitecture is a new architecture for value function estima-
tion, which is improved from DCNN architecture and
consists of reprocessing layer and two branches: branch one
for global feature representation and branch two for local
feature representation. DB-CNN is a dual-branch DCNN
architecture for global path planning from raw images.
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*erefore, for DB-CNN, the policy of global path
planning can be written as

at � π st( 􏼁 � argmax
a

􏽢Q st, a( 􏼁, (6)

where 􏽢Q(s, a) is an estimate of Q(s, a).
Given the expert dataset (si, yi)􏼈 􏼉

i�N

i�1 of global path
planning, the cross-entropy training loss of L2 norm is as
follows:

L(α) � −
1
N

􏽘

N

i�1
Yilog Fα si( 􏼁( 􏼁 + λ‖α‖2, (7)

where α is the parameter of DCNN,
Fα: st⟶ softmax[ 􏽢Q(st, a � 0),. . ., 􏽢Q(st, a � n)]T is the
DCNN designed for value function estimation, and n is the
number of strategies.N is the number of training samples,Yi

is the one-hot vector form of yi, and λ is the hyperparameter
to adjust the influence of L2 norm on the loss function.

*e reprocessing layer consists of two convolution
layers, each of which is followed by a max-pooling layer. *e
reprocessing layer is to filter out the noise and compress the
raw data into features. *en, the global path planning is
changed from single-point data to l1 × l2 planning on the
region, which improves efficiency. Branch 1 is composed of
convolutional layers, residual convolutional layers, max-
pooling layers, and fully connected layers, representing all
the original data set global characteristics relative to the
target. Branch 2 is composed of convolutional layers and
residual convolutional layers, representing the local features
related to the current location. Compared with VIN, the
depth of DB-CNN is reduced, and the global path planning
problem is transformed into designing and training a DCNN
for value function estimation. Both global information and
local information are effectively retained and represented.

3. Model Description

In this paper, the multiglider path planning in ocean current
into MDP is defined as M � 〈S,A, P, R〉

3.1. Path Planning Model. *e state space ofM is denoted as
S � C,G,X{ }, consisting of C � Cint,Ct􏼈 􏼉, G � (g1

t , g2
t ,􏼈

g3
t )}, and X � (x1

t , x2
t , x3

t )􏼈 􏼉. C is the ocean current envi-
ronment space of gliders, and it is composed of two parts.
Cint ∈ R3 is all the ocean current information that can be
obtained by gliders in the initial state at the initial time. And
Ct ∈ R3 is the ocean current information that can be obtained
by gliders at step t time. G is the target area center position at
step t.X is the glider locations at step t.*e action space ofM is
denoted as A � (a1

t , a2
t , a3

t )􏼈 􏼉, representing the continuous
movement of gliders in the ocean current.

*e state transition process in the MDP of this paper is
deterministic. It is defined as P: S × A⟶ S. State st−1 gets
through action at−1; the state will get into st−1. It should be
noted that, for a given detection task, in each path planning
step t, the initial Cint of the glider does not change. Cint
belongs to all the ocean current information received by the
glider formation in the initial situation, which can be

understood as fixed global current information at the initial
time.*e target position (g1

t , g2
t , g3

t ) of the glider in state st is
unchanged, while the position (x1

t , x2
t , x3

t ) of the glider in
state st and the ocean current Ct around the glider will
change at each step.

After action at, gliders in the step t+1 reach the target;
the positive reward rt � ϕ1(ϕ1 > 0). Otherwise, gliders will
get a negative reward rt � ϕ2(ϕ2 < 0). *e single-movement
heading angle of the glider is within the steering angle β as
shown in Figure 1, and the glider obtains a positive reward
τ1(0< τ1≪ϕ1). If the glider forward angle is beyond the
heading, we get the negative bonus τ2(|τ2|> τ1). So, the
optimal path from the start area to the target area has the
maximal accumulative rewards.

According to the practical problems of gliders, in the initial
state, each glider in formation will receive all the environmental
data by the whole system in the current time. It can be roughly
understood as global ocean current information at t� 0. *e
ocean current is a time-varying environment; it is going to
change over time. *e expert data set (si, yi)􏼈 􏼉

i�N

i�1 may not be
the optimal expert path, and the cross-entropy training loss
defined by L2 norm can still be used from equation (8).

3.2.ModelUnderwaterGlider. In this paper, the gliders have
characteristics of self-examination, communication capa-
bilities on the water, and autonomous control. And the
gliders also have the omnidirectional motor ability, there is
no restriction on the direction of movement, and it can
adjust and control its moving and turning in any direction
and respond to change the direction of movement and
turning in a short time. For these omnidirectional gliders,
athletic ability and control equation are shown [35]. Figure 2
shows the glider motor ability on a small scale.

*e gliders can motion in almost all directions. *e
motion control equation is as follows.
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For this equation,

M11 � diag m + A11, m + A22, m + A33􏼂 􏼃,

M12 �
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

M22 � Ixx + A44, Iyy + A55, Izz + A66􏽨 􏽩,

(9)
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where m is the mass of the glider. xG, yG, and zG are the
barycentric coordinates of the glider. Fx, Fy, and Fz are the
resultant forces of the glider. Mx, My, and Mz are the
resultant moment of force. A11, A22, A33, A44, A55, and A66
are added mass. Ixx, Iyy, and Izz are the inertia moment
around the axes.

In this paper, we consider the model of gliders as a type
of omnidirectional gliders with well-steering performance.
In this case, the motion of gliders is mainly determined by
their own pitch angle θ and heading angle ψ. *e gliders
dynamics can be modeled as a first-order system with
motion pitch angle commands θc and heading angle com-
mands ψc as follows:

_θ � −
1
τc

θ +
1
τc

θc, (10)

_ψ � −
1
τψ

ψ +
1
τψ
ψc, (11)

where τc and τψ are time constants.
*e energy consumption of gliders is related to its model,

current speed and direction, voyage distance and speed, etc.
When the shape and motion characteristics of gliders are
determined, the steady-state glide velocity is only related to
the net buoyancy and glide angle. During the steady-state
motion of gliders, the net buoyancy and glide angle remain
basically unchanged. In this paper, gliders are normal

cruising with standard cruising depth and constant depth
movement. *at means the rate of gliders is a constant value
in still water, which can conform to gliders’ own motion
characteristics and improve the computing speed and
simplify the model.

*e motion of gliders is often simplified into sawtooth
shape trajectories, and the whole voyage can be divided into
several cycles. *e trajectory of a single cycle is shown in
Figure 3, where θ is the angle of the pitch, α is the angle of the
attack, ξ is the angle of the glide, and ξ � θ − α.

Normally, the glider’s energy consumption mainly
comes from the control of the glider, i.e., forces to move and
change the mass, and the load consumption, e.g., onboard
processor and sensors [36].

ET � Et +[c] Ef + Ez􏼐 􏼑, (12)

where c is the number of glide cycles, and [·] is round up to
an integer. In this paper, Ef include the consumption of the
buoyancy adjustment module in the diving stage and
floating stage. Ez include the consumption of the adjusting
attitude control module and module standby consumption.
Et mainly includes sensors standby consumption and
communication module consumption.

UGs can complete the advancement to the target area
under time-varying currents. Avoiding or reducing the
overlap working areas with the adjacent gliders during the
process, keeping a relatively stable formation, the formation
system meets the following conditions:

Δqijt(t) � lim
t⟶∞

qij(t) − qij(t − 1)
�����

�����≤ 0, (13)

where Δqijt(t) is the position between the ith and jth glider
at time t compressing the previous time t-1. qijt(t) is the
position between ith and jth glider at time t. *e above
condition allows the formation system to move toward the
demanded area.

3.3. Ocean Model. UGs usually work in a complex dynamic
ocean environment, and gliders have speeds in water
ranging between 0.2m/s and 0.4m/s. *e influence of ocean
current on gliders’ motion parameters and trajectory is very
huge. For the work motion planning of gliders, the role of
currents will inevitably affect the trajectory of gliders [37].
For the path planning techniques in deterministic condi-
tions, ocean currents are ignored because they often have
poor performance in practice due to errors in navigation and
operative mode in the underwater glider dead reckons [38].
And the ocean current cannot be ignored under the criteria
of time or energy consumption in real underwater cases [39].

Ocean currents tend to be different at different depths. In
order to reach the destination in optimal time, underwater
vehicles need to utilize favorable currents and also avoid
adverse currents by diving or rising to appropriate depths
[40]. It is important to carry out underwater path planning
in the real 3D ocean. For such conditions, predicting ocean
currents in a real ocean environment is necessary, but
numerically challenging. Oceans are complex dynamic
systems, with multiple time scales from seconds to years and

β
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Gj

Figure 1: Schematic diagram of double glider formation moving in
the ocean current.
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Figure 2: *e glider spiral trajectory.
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length scales from millimeters to hundreds of kilometers
[10]. *erefore, robust and accurate numerical formats and
data assimilation models are needed [41].

*e time-varying ocean dataset was established by de-
sensitization data. *e image of the data set is shown in
Figure 4.

For the 3D environment, the model is constructed by the
layered modeling method, and the 3D model can be sim-
plified into several 2D models layered and superimposed.
Similar ocean currents are used for the models with different
depths.

In this paper, the real ocean currents are assumed to be
the same as the flow fields given above at least the char-
acteristics. In order to reduce the calculation amount and
difficulty, this paper adopts a two-dimensional ocean cur-
rent. *e glider formation simulates 3D motion in 2D ocean
current superposition and presents it in a 2D image. Similar
ocean currents are used for the models with different depths.

3.4. Network Model. In this subsection, we propose a novel
algorithm of multiglider formation path planning in ocean
currents, a deep convolutional neural network for the ocean
current environment (Doc-CNN). *e architecture consists
of two branches: branch 1 is used to extract global features,
and branch 2 is used to extract local features detected around
gliders at different positions, and the local features are used
to modify the global path. Previous studies [32] usually
designed single-branch DCNNs to extract features. How-
ever, since the convolution layers are locally connected, a
deeper architecture is required to extract global features of
the input image, which increases the computational cost and
reduces the convergence speed [34]. Doc-CNN as an al-
gorithm specifically designed to solve the glider formation
planning problem takes into account the limitation of
gliders’ movement ability. During operation, gliders do not
necessarily know the global current conditions at each point
in time.*e double branch is used to extract global and local
features, and local features modify the global path results.
*is architecture is more suitable for glider planning. Doc-
CNN consists of a data processing layer, branch 1, and
branch 2, as described below.

3.4.1. Data Processing. *e processing layer consists of a
convolution layer and a max-pooling layer to filter the
original data noise. As shown in Figure 5, the input data are
divided into the initial current dataset Cint and ocean at the
current point in time Ct. Cint is the original global data,

representing all current data available to glider formation at
the beginning. Ct, t is a time function starting from 0. Since
t� 0,Ct varies with the position of gliders.Ct represents the
ocean current data collected and detected by individuals in
glider formation at different times and positions.Cint andCt

combined input, in line with the actual use of glider
formation.

Compress the original dataset Cint into a feature dataset
Cint′, and the ocean current Ct is compressed into a feature
dataset Ct

′. In Ct, during the operation of glider formation,
the time-varying current in a global environment cannot be
understood. Instead, the current data within the perceived
range of each glider can only be collected to form the time-
varying current data related to the current time position.
After this, the global planning for the dynamic ocean current
environment becomes for the feature datasetCint′ and the set
Ct
′, rather than the scattered state of the original dataset.*is

improves the efficiency and conforms to the objective en-
vironment of gliders’ operation; that is, gliders’ state and
path depend on global conditions and their own current
environments.

3.4.2. Branch One and Branch Two. Branch one consists of
convolutional layers, residual convolutional layers, and fully
connected layers. Notably, the residual convolutional layer
not only increases the training accuracy of convolutional
neural networks with deep feature representations but also
makes them generalize well to testing data.

Doc-CNN needs to represent the depth characteristics of
the ocean current environment and can achieve high ac-
curacy in an unknown environment (test dataset), so the
residual convolution layer is embedded in Doc-CNN. We
represent the depth features extracted by this branch from
the original dataset Cint′ as f1 ∈ RD, where D is the di-
mension of the feature vector. f1 can be regarded as the
global guidance of glider formation in the original dataset,
representing the global features of all data points in the
dataset Cint related to the target position (g1

t , g2
t , g3

t ).
Branch two consists of convolution layers and residual

convolution layers. *is branch feature extracts and maps it
to f2 ∈ RD. *e self-convolution neural layer is locally
connected, rather than fully connected at this branch. f2
extracts the local characteristics of ocean current Ct at the
current time point and position and the processed original
dataset Cint′. Branch 1 obtained the global feature Fc-2 and
estimated the value function of local, as the gliders’ local
guidance with current state correction.

A

B

Cξ

α
θ

Figure 3: Single glide cycle abridged general view.
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*e Doc-CNN is shown in Figure 5, where Conv, Pool,
Res, Fc, and S are the abbreviations for convolutional layer,
max-pooling layer, residual convolution layer, full-con-
nected layer, and softmax layer, respectively. Compared with
VIN and DB-CNN, Doc-CNN is more suitable for gliders
application environment, namely, the ocean current envi-
ronment, and the global information and local current in-
formation of the data set are effectively retained and
represented. Doc-CNN parameters are shown in Table 1.

Doc-CNN parameters in Table 1 are designed for glider
path planning data set of 128 × 128 ocean current envi-
ronment. Data processing layer parameters and other pooled
operation kernel sizes are consulting to existing value
functions [32]. We select the kernel size of all residual
convolution layers as 3. After comprehensive consideration
of training accuracy and calculation cost, we choose kernel
size 20. In order to filter the noise of the input data set, we
choose the kernel size of the first convolution layer in each

branch to be 5. *e number of nodes in the fully connected
layers is fine-tuned by experiments.

Doc-CNN can also be trained on other data sets of
different sizes. In order to find the optimal kernel size, kernel
number, and layer number of Doc-CNN in other datasets,
the training accuracy remains stable.

3.5. Learning-Based Path Planning Algorithm. *e path
planning algorithm based on learning based on Doc-CNN is
described as a whole, and its working principle is as follows.

In the training phase, the expert data set for global path
planning is available, so the training phase is offline. For each
training step, batch data is randomly selected (line 3), and
the loss Lα is calculated according to equation (8). At this
time, the motion of gliders should conform to its own
motion characteristics in equation (9)–(11). We calculate the
random gradient ∇L(α) and update the learning rate δ by
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Figure 5: Doc-CNN for path planning.
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gradient descent. When all batches of data are used for one
training, the training epoch ended. After the number of
training epochs reaches the maximum, the phase will stop.

In the planning phase, the glider formation first obtains the
initial state s0, the initial ocean current data Cint , and the
current time ocean dataset Ct obtained by the whole system,
the initial position (x1

0, x2
0, x3

0) of gliders, and the target po-
sition (g1

0, g2
0, g3

0) (line 8). With s0 as input, Doc-CNN will
output the estimated value function Fα(s0) (line 10). *e
moving direction of the glider a0 can be determined according
to equation (7) and its own motion capacity limitation
according to equation (9)–(11) (line 11). *e position of

gliders becomes (x1
1, x2

1, x3
1), and the status can be updated to

s1 (line 12). Repeat the steps of this plan up to (x1
t , x2

t , x3
t ) �

(g1
t , g2

t , g3
t ) (line 9) to plan the formation global path.

As shown in Figure 5, considering the original dataset
Cint, Ct, and target position (g1

0, g2
0, g3

0), Doc-CNN can
output the position of estimated value Q through calcula-
tion.*e entire local feature mapping layer (output of Conv-
21) is input directly to layer Fc-3. *e time and resource
consumption of computing the Q set values 􏽢Q( (Cint,Ct),􏼈􏽮

(g1
0, g2

0, g3
0), (x1

t , x2
t , x3

t )}, at)|(x1
t , x2

t , x3
t ) ∈ X, at ∈ A} is

approximately equal to a single Q value
􏽢Q( (Cint,Ct), (g1

0, g2
0, g3

0), (x1
0, x2

0, x3
0)􏼈 􏼉, at).

Table 1: Parameters of Doc-CNN (example of 128 × 128).

Layer Detail Parameters

Processing layer Conv-00 12 ×5× 5 kernels with stride 1
Pool-00 3 × 3 kernels with stride 1

Branch 1

Conv-10 20 ×5× 5 kernels with stride 1
Pool-10 3 × 3 kernels with stride 2
Res-11 20 ×3× 3 kernels with stride 1
Pool-11 3 × 3 kernels with stride 2
Res-12 20 ×3× 3 kernels with stride 1
Pool-12 3 × 3 kernels with stride 2
Res-13 20 ×3× 3 kernels with stride 1
Pool-13 3 × 3 kernels with stride 2
Fc-1 192 nodes
Fc-2 12 nodes

Branch 2

Conv-20 20 ×5× 5 kernels with stride 1
Res-21 20 ×3× 3 kernels with stride 1
Res-22 20 ×3× 3 kernels with stride 1
Res-23 20 ×3× 3 kernels with stride 1
Res-24 20 ×3× 3 kernels with stride 1
Conv-25 12 ×3× 3 kernels with stride 1

Output layer Fc-3 4 nodes
S-1 4 nodes

(i) Training phase (offline)
(1) for epoch 1 to T do
(2) for step 1 to M do
(3) Randomly select one batch of training data. To restrict the movement based on equation (9)–(11).
(4) Calculate the loss L(α) and its gradient ∇L(α) based on equation (8).
(5) Update Doc-CNN Fα.
(6) end for
(7) end for
Planning phase (online)
(8) Receive the initial state s0 � (Cint,C0), (g1

0, g2
0, g3

0), (x1
0, x2

0, x3
0)􏼈 􏼉 (Cint constant)

Ct change over time and location,
(g1

t , g2
t , g3

t ) � (g1
0, g2

0, g3
0)

(9) while (x1
0, x2

0, x3
0)≠ (g1

0, g2
0, g3

0) do
(10) Input st into Doc-CNN and output Fα(st).
(11) Using action at based on Fα(st), equation (7), (9)–(11).
(12) Update state st to st+1.
(13) end while
(14) Send path planning results to glider formation.

ALGORITHM 1:Learning-based path planning algorithm.
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Lines 10–12 of the online planning phase need to be
calculated in the initial stage. For the real-time position
feedback data of gliders, global planning is modified through
the local feature mapping layer, making the whole path more
suitable for the time-varying environment. When multiple
gliders at different locations share the same destination,
traditional search algorithms have to plan the path of each
glider in sequence. Doc-CNN can plan paths for them si-
multaneously through one forward calculation, which sig-
nificantly improves efficiency. It can be intuitively
understood that branch 1 is a global path planning, and
branch 2 is a path correction based on time-varying ocean
current at different locations.

Doc-CNN architecture can effectively extract both the
global features of UGs formation path planning and the local
features of the location at the current time point, so it has
good performance in global path planning for gliders in
time-varying ocean currents. Due to the local connection
characteristics of convolutional layers, the single-branch
DCNN has to be deep enough, so that global information
such as original data set and target information can be
transmitted to each state in the final value function layer.
*erefore, their convergence speed is slow and calculation
cost is high.

In order to speed up the training speed and reduce the
network complexity, Doc-CNN uses a separate branch to
compress the original data set, effectively preserving and
expanding the global information. *erefore, branch 2 can
focus on extracting local features at different times in the
operation of gliders, significantly reduce the depth of local
features, and modify the path, making the path planning
with the characteristics of dynamic programming.

4. Experiments and Analysis

*e experimental settings, comparison, and analysis of Doc-
CNN for UGs planning are as follows. Simulations are run
with AMD Ryzen 2600× 3.6GHz processor, Nvidia 1660Ti
GPU, and 16G memory.

4.1. Experimental Settings. Two datasets are used to evaluate
the performance of the tailored Doc-CNN for UGs path
planning.

*e first dataset is maps with obstacles, consisting of
10,000 gird maps with size 64 × 64 (actual size 300 km ×

300 km in realistic application) and random man-made
obstacles. Each input contains a grid map with coordinates
target position and glider location. *e grid map can be
regarded as a simplified glider operating environment for
evaluating the capability of global path planning algorithms.

*e second set is ocean maps with obstacles and ocean
currents. *e data set is generated by desensitization of real
ocean current data and consists of 10,000 map sets with size
128 × 128 (actual size 300 km × 300 km in realistic appli-
cation), random man-made obstacles, and vector ocean
currents at position points. Each input includes a set of
initial time 3D current velocity data, a set of real-time ocean
current data around the glider (within 8 km of a single

glider) for location features, a set of target positions, and the
gliders’ input positions. *e path planning algorithm based
on Doc-CNN for gliders can also be extended to other
similar flow field scenarios. Example data images of two
datasets are shown in Figure 6.

For each data set, the output is the optimal direction of
movement consistent with the motion capability of gliders.
7/8 pieces of data are randomly selected for training, leaving
1/8 pieces of data for testing. In experiments, the maximum
training epoch T is chosen as 70. *e initial value of the
learning rate δ is generally 0.003, and the attenuation value
of the learning rate is generally 0.95.

4.2. ComparedwithOtherArchitectures. *e planning under
Doc-CNN is compared with the planning under two other
algorithm architectures.

VIN is the state-of-the-art deep neural network structure
on path planning with full observations [32]. *e iteration
number K in VIN is set to 80. By running VIN on the grid
map dataset with increasing K values (K� 20,40,60,80,100),
the optimal K value is selected and the K value with the
highest training accuracy is found.

DB-CNN, which is a relatively new network, also has two
branches. It consists of reprocessing layer, convolution layer,
max-pooling layer, and full connection layer. It does not
require prior knowledge and achieves higher accuracy and
efficiency in global path planning tasks than existing VIN
[34].

*e accuracy of global path planning, the success rate of
global path planning, and the average path per unit energy
are used to evaluate the performance of gliders on the path
planning task in the ocean current. Among them, accuracy is
defined as the percentage of optimal movement direction
predicted by them, the success rate is defined as the per-
centage of safe path planned by them, and the average path
per unit energy is the travel energy efficiency planned by
them.

4.3. TrainingandTestingResults. Training performance of all
architectures on two datasets is as follows. Training per-
formance of all architectures is shown in Figure 7, Figure 8
and Table 2.

In Table 2, UEP is the unit energy forward path length for
the glider. *e higher the UEP, the better the gliders’ energy
utilization, the farther the gliders can voyage with the same
amount of energy.

4.3.1. Training Results Analysis. As shown in Figure 8, the
training accuracy and training loss of Doc-CNN converge
faster than the other two algorithms in gliders planning. In
Table 2, after 70 trained epochs, Doc-CNN achieved high
accuracy and success rate in all datasets, superior to other
CNN algorithms. Doc-CNN is applied to the planning of
glider formations, which makes the planning of paths more
accurate and efficient due to the direct use of the detectedCt

data and the initial global ocean current data Cint.
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4.3.2. Testing Results Analysis. As shown in Table 2, Doc-
CNN maintains excellent global path planning performance
on the test data. It is noteworthy that the data in the test data
are not exactly the same as those in the training data, which
are randomly selected from the dataset, indicating that Doc-
CNN is able to plan paths from the unknown data after
training. Since gliders work in known or unknown oceans,
the known oceans may also have not exactly the same en-
vironmental conditions depending on the moment.
*erefore, the algorithm needs to plan in both the known
environment and the unknown environment to plan the
path. Compared to other architectures, Doc-CNN is more
effective in actual gliders path planning.

4.4. Compared with Other Algorithms. In order to verify the
advantages of Doc-CNN in glider path planning, the al-
gorithm is compared with various architectures and algo-
rithms in terms of the number of path cycles, path length,
and unit energy path, all of which are indicators of glider
path planning. Unit energy path refers to the distance the
glider can travel in the horizontal direction per unit of
energy. Unit energy path represents the energy utilization
efficiency of the glider; the higher the better. In this work, the
unit of it is km/Wh [42].

Not all algorithms adapt to the ocean environment and
motion constraints of gliders. In this subsection, in addition
to the other architectures (DB-CNN and VIN) in the
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Figure 6: Example data images of two datasets. (a) One grid maps of maps dataset. (b) One Ocean data images of Oceans maps of maps
dataset.
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Figure 7: Training performance of all architectures on the grid dataset. (a) Training accuracy of the grid dataset. (b) Training loss of the grid dataset.
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previous subsection for comparison after the adaptation of
ocean environment, the Oci-RRT∗ algorithm [42] and the
improved artificial potential field method (iAPF) that can
adapt to the ocean current are also selected. *e DB-CNN,
VIN, and APF are redesigned tomeet the constraints of UGs’
motion and ocean. Simulation experiments are conducted
1000 times. *e search step Lstep of the OCI-RRT∗ algo-
rithm and the step Lastep of the iAPF are set as the limit
horizontal distance of UGs movement 6.75 km. *e analysis
of the five algorithms is shown in Figure 9.

Simulation test data are as shown in Table 3.
As shown in Figure 9 and Table 3, in the randomly

selected incompletely identical experimental environment,
after the algorithms run 1000 experiments, the Doc-CNN is
better in the three indicators (number of path cycles, path
length, and unit energy path). In addition to the Doc-CNN
andOci-RRT∗ , the unit energy path index of the other three
algorithms is poor, which conforms to the features that the
three algorithms do not optimize for UGs and energy. In

terms of computation time, due to the dual-branch structure
of Doc-CNN and DB-CNN, it takes more time. *e iAPF is
easy to fall into the dead zone and also runs for a long time.

Compared with DB-CNN, VIN, Oci-RRT∗ , and iAPF,
the average number of cycles of Doc-CNN is reduced by 2.50
%, 6.02 %, 11.36 % , and 14.29 %, respectively, and the
average path length is reduced by 2.75 %, 4.98 %, 7.62 % , and
9.55 %, respectively. *e unit energy paths increased by
33.33 %, 33.33 %, 6.67 % , and 45.45 %, respectively. *e
effectiveness and superiority of Doc-CNN are proved.

Although the Doc-CNN is superior to the UGs’ problem,
it still has its limitations. On the computation time, as shown
in Table 3, Doc-CNN is 14.90 %, 34.11 % , and 17.25 % slower
than DB-CNN, VIN, and Oci-RRT∗ , and 11.67 % faster than
iAPF. Compared with the traditional CNN, the dual-branch
structure of Doc-CNN is complex, and it is easy to generate
invalid calculations or makes problems which can be trained
with a simple architecture become more complex. For Doc-
CNN, compared with VIN, more parameters need to be
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Figure 8: Training performance of all architectures on the ocean map dataset. (a) Training accuracy of the ocean map dataset (b) Training
loss on the ocean map dataset.

Table 2: Accuracy and success rate of all architectures on two datasets.

Dataset Metrics Doc-CNN DB-CNN VIN

Grid maps

Acc1 96.1% 87.6% 85.8%
Acc2 90.8% 85.4% 77.4%
SR1 90.6% 87.6% 69.0%
SR2 90.0% 83.0% 64.4%
UEP 0.15 0.12 0.12

Ocean maps

Acc1 97.5% 88.5% 83.0%
Acc2 92.2% 84.9% 75.6%
SR1 94.3% 81.0% 48.7%
SR2 86.5% 72.4% 46.2%
UEP 0.16 0.12% 0.12%

Acc1 : path planning accuracy on training data. Acc2 : path planning accuracy on test data. SR1 : path planning success rate on training data. SR2 : path
planning success rate on test data. UEP : unit energy forward path length for the glider. *e bold values are the experiment results of the Doc-CNN algorithm
proposed in this paper.*e bold values of this group data are to strengthen its comparison with other data of algorithms, and it is to show the superiority of the
Doc-CNN algorithm.
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adjusted and the range of parameter changes is larger. Under
the condition of limited cost, the performance improvement
brought by Doc-CNN does not necessarily offset the con-
sumption. Even so, for the planning of UGs, Doc-CNN is also
an available and advantageous algorithm.

4.5. Simulation Results and Discussion. Figure 10 shows the
positions corresponding to the glider formation motion
when the Doc-CNN is planning the formation. It contains
the shape of the glider formation at each position state.
Figure 11 shows the relative distance between individual
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Figure 9: Compared to other algorithms. (a) Comparison of the path cycles. (b) Comparison of the path lengths. (c) Comparison of the unit
energy paths. (d) Comparison of the computation times.

Table 3: Comparison of experimental data of the five algorithms (average of 1000 times).

Methods Doc-CNN DB-CNN VIN Oci-RRT∗ iAPF
Number of cycles 78 80 83 88 91
Path length 389.49 400.50 409.91 421.63 430.61
Unit energy path 0.16 0.12 0.12 0.15 0.11
Computation time 40.1 34.9 29.9 34.2 45.4
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gliders in the horizontal direction during this planning
process. *is means that the gliders did not collide during
the planning process.

Figure 10 illustrates that the Doc-CNN improved for
glider problems can be useful for glider planning in time-
varying ocean current environment. Each planning is a
decision made by gliders in the current state through Doc-
CNN. *e ocean currents in Figure 10(a), 10(c), 10(e), and
10(g) correspond to the currents at four moments, re-
spectively: the moment of the start point S (ocean current
Cint), the moments of the intermediate states A and B, and
the moment of the arrival at the end point T, where the blue
line indicates the path planned by the glider formation to
reach the target from state points S, A, and B using the Doc-

CNN algorithm, using the current oceans as a static envi-
ronment. *e blue line is used to compare the ability of the
Doc-CNN algorithm to plan based onCint and dynamicCt.
Figure 10 also shows the shape and the horizontal distance
relationship within the glider formation when the formation
is in the four states S, A, B, and T. Figure 11 illustrates that
the gliders are not colliding within the formation in the
planning process.

Figure 12 shows some successful paths planned by Doc-
CNN based on the ocean data environment. It can be seen
that the path of formation is able to avoid obstacles of
different sizes (man-made obstacles) with the guidance of
Doc-CNN. In addition, the path trajectory is almost optimal.
It is worth noting that prior knowledge of obstacles is only
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Figure 10: *e UGs formation path planning on128 × 128 time-varying ocean maps and the formation shape of UGs in different cycles. (a)
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Figure 11: Relative horizontal distance between gliders in one task formation.
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known in Cint, and Doc-CNN needs to be trained to learn
and understand these deep features of obstacles at the initial
moment in order to still have the ability to avoid obstacles
during travel, through changes by Ct. *erefore, the per-
formance of Doc-CNN is more applicable to the glider
planning problem in ocean currents.

Doc-CNN is an algorithmic architecture that is tai-
lored to the individual motion characteristics of gliders
and the operational characteristics of glider formations in
operation, making full use of known global information
as well as local information collected by the gliders
themselves. *e dual branches structure of Doc-CNN
retains the ocean current characteristics of gliders in
applications and makes use of them. In summary, Doc-
CNN can play a positive role in the path planning of
glider formation and maintain its advantages in the other
two CNN architectures.

5. Conclusions

*is work utilizes the DCNN type algorithm approach to
solve the path planning problems faced by the glider for-
mation in practical application. In order to solve the
planning problem of glider formations in a large-scale ocean
current environment, this paper improves the DCNN al-
gorithm as follows. Firstly, the algorithm is improved
according to the characteristics of gliders; this architecture
directly plans the gliders’ path from the environmental data
level, without prior knowledge of environmental data, and
there is no need to know the global environmental data all
the time. Secondly, according to the characteristics of energy
consumption of a single glider, the decision that can be used
for glider planning is obtained, so that it conforms to the
motion characteristics of gliders and optimizes the path at
the same time, reducing the path cycles. A large number of
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Figure 12: Images of experiments on 128 × 128 ocean maps dataset.
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simulation experiments show that the improved algorithm
described in this research outperforms the DB-CNN and
VIN algorithms and has advantages in energy efficiency and
the ability to operate in dynamic environments. *e Doc-
CNN algorithm proposed in this paper has broad applica-
tion prospects in the field of glider planning.

*e contribution of this research is to explore suitable
algorithms for the path planning application of glider for-
mations in the ocean environment, improve the ability of
formations to perform path planning tasks, and provide
support for the use and rapid deployment of UGs in practical
applications. It makes contributions to the path planning of
UGs formation. Firstly, an effective planning algorithm is
proposed for the rapid deployment of low-speed gliders
(taking UGs as an example) in a relatively unfamiliar ocean
environment. Secondly, too radical control strategies are
reduced. *e trained Doc-CNN network can make the
formation and internal gliders’ energy utilization (unit
energy path) better and more conducive to the long-term
operation of gliders. *irdly, due to the improvement of
energy utilization, the glider and the formation have enough
energy to make effective maneuvers when necessary and
sudden. Finally, the paper proves that the class algorithm of
DCNN can also be applied to path planning problems in
large-scale ocean environments, which lays the foundation
for further research.

In future research, in addition to the improvement of the
algorithm, the collaborative planning of multiple formations
on a large scale will be studied. For example, in the overall
ocean current, the environmental information of the for-
mation in the front currents can be used as a reference and
prediction basis for the future environment of the rear
formation. While strengthening the accuracy of the system
environment prediction, the rear formation can be dy-
namically planned to a certain extent. In this way, the
planning of static and dynamic coexistence and full utili-
zation of environmental data in the large formation of
gliders is carried out.*is situation will bring new challenges
to the planning algorithm of gliders. *e artificial neural
network will also be considered to solve this kind of glider
formation planning, simplify the input of the overall
problem, and rapidly get the optimal path.

Data Availability

Ocean current data can be found at https://www.hycom.org/
.
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